
Designs and Evaluation of a Tracker in P2P Networks

Adele Lu Jia and Dah Ming Chiu
Department of Information Engineering
The Chinese University of Hong Kong
{jl007, dmchiu}@ie.cuhk.edu.hk

Abstract

The ”tracker” of a P2P system is used to lookup which
peers hold (or partially hold) a given object. There are var-
ious designs for the tracker function, from a single-server
tracker, to multiple-server tracker system, to DHT-based
serverless systems. In this paper, we classify the different
designs, discuss the different considerations for these de-
signs, and simple models to evaluate the reliability of these
designs.

1 Introduction

In Peer-to-Peer (P2P) systems, the term tracker origi-
nated from the design of the popular file sharing system
BitTorrent (BT) [2]. A tracker is a server that is used to
bootstrap a P2P system, an otherwise entirely distributed
system. The most critical function provided by a tracker is
to introduce other peers engaged in the same activity to a
requesting peer. In order to perform this function, a tracker
keeps track of peers as soon as they make a request. A
tracker may also perform other related peer management
functions. For example, peers may be required to periodi-
cally report to the tracker for keeping other statistics. Fur-
thermore, a tracker can also be used to authenticate peers
before providing them any service.

Subsequently, many other P2P content distribution
systems, including many P2P streaming and Video-on-
Demand (VoD) systems such as [3], adopted similar archi-
tectures as BitTorrent. All these P2P content distribution
systems divide the content into many pieces and distribute
them through different dynamically formed peer trees based
on what pieces of content different peers are holding. This
approach is referred to as data-driven, or unstructured P2P
content distribution algorithms. Its surprisingly good per-
formance and adaptability in the face of peer churn and het-
erogeneous resource availability is attracting a lot of interest
in the research community. This is particularly the case for
the distributed algorithms for forming the peer overlay (peer

selection algorithms in BT’s terminology) and for schedul-
ing the piece exchange among peers (piece selection algo-
rithm in BT’s terminology).

In this paper, we focus on the design of the tracker func-
tion, which is a key enabler in this architecture. We use the
word tracker to mean the service (provided by a BT tracker)
rather than the server itself. There are two main approaches
in tracker design, one is based on using deployed servers
(we call server-based approach), and the other is based on
using the peers themselves (we call peer-based approach).
Based on these two approaches, there are many variants in
the design, supporting scalability in the number of objects
(e.g. files) and scalability in the number of peers simultane-
ously accessing the same object. For example, distributed
hash table (DHT)[6][4] and replication may be applied in
tracker design. Our contribution is to provide a systematic
description of the different designs of the tracker function,
give a general discuss of the pros and cons of the different
approaches, and present some simple models for comparing
the reliability of these designs.

The paper is organized as follows. In section 2, we pro-
vide a taxonomy of different tracker designs. In section 3,
we discuss the merit of different designs. In section 4, we
present some simple models to compare the reliability of
different designs quantitatively, and derive some general ob-
servations from these models and their system parameters.
Finally, we give conclusions and future directions.

2 A taxonomy of tracker designs

For the data-driven P2P content distribution architecture,
it is necessary for each peer to discover other peers en-
gaged in the same content distribution session, as well as
what pieces of content these peers have. The tracker usually
only supports the discovery of peers. The discovery of what
pieces peers hold is normally accomplished by gossip[2],
in other words, by a peer directly querying its neighbor-
ing peers. What pieces peers hold changes frequently with
time, so in most scenarios only gossip can provide the most
timely information without overburdening a server and in-



curring excessive network overheads. While it is possible,
broadly speaking, to consider this (providing piece informa-
tion) also part of the tracker function, we take a narrower
view. That is, the tracker only maps an object (distribution
activity) to a set of peers (partially) holding this object.

Therefore, the tracker needs to deal with only two kinds
of information: (a) objects, and (b) peers; and provide the
mapping between them. Objects are the files (in P2P file
sharing or VoD) or video channels (in P2P streaming). A
tracker should be able to serve multiple objects simultane-
ously. Peers are the users downloading the objects. Each
peer registers with the tracker for the object it is download-
ing; and requests for a set of other peers downloading the
same object. Although a broader view of the tracker can
include additional interactions between the tracker and the
peers (e.g. statistics collection), we assume the minimum
responsibility for the tracker in this study.

Tracker design can be classified by the following three
dimensions:

Who provide the tracker function? There are basically
two choices: using deployed servers (DS), or using peers
(P). In the latter case, it is possible to rely on only a subset
of the more powerful peers known as supernodes.

How are objects assigned to tracker nodes? In the
same P2P system, there may be many objects made avail-
able for sharing. Instead of having one tracker node serv-
ing all these objects, multiple tracker nodes (whether DS or
peers) can share the load. The assignment can be by manual
configuration (M), or via a distributed hash table (DHT).

How are peers assigned to tracker nodes? A large
number of peers may be accessing the same object simul-
taneously, causing too much load for a single tracker node
to handle the load. There may be other locality and reliabil-
ity reasons for having multiple tracker nodes serve a single
object. In this case, the assignment depends on whether the
tracker nodes are deployed servers or peers. In the former
case, the assignment can be based on user choice, if tracker
nodes are explicitly advertised to users (U), or can be au-
tomatic (A), if the tracker node must be found by a DHT
mechanism. In the latter case, the assignment has to be au-
tomatic (A).

Let us now consider some examples of these different
designs below.

In the classic BitTorrent, the tracker is a server and the
binding of the tracker node to the object is advertised in a
meta-file (the ”torrent” file)[2]. A user (peer) can choose the
tracker based on which meta-file it selects to use (or a spe-
cific tracker in a meta-file with multiple trackers). The peer
then contacts the tracker to find other peers downloading
the same object. We can refer to this design as (DS+M+U).
For scalability, BitTorrent also enables DHT recently to
perform tracker function. Being backups for servers,
BitTorrent’s DHT function is similar to that of eMule,

another popular P2P file downloading protocol.
eMule connects to two networks at the same time,

ED2K and KAD. In KAD network, eMule uses DHT to
let the tracker function be shared by peers themselves. It
uses a particular DHT algorithm known as Kademlia [4][1].
The basic idea of any DHT algorithm is that it provides a
mapping from an object name to a target node that keeps
some information about the object of interest. In reaching
this node, the lookup process may have to traverse several
intermediate nodes. A well-designed DHT also provides
some redundancy (via replication) in the paths reaching any
object. The mapping from the object to the set of trackers
for the object is then stored at the target node. In our tax-
onomy, this design can be labeled (P+DHT+A). In ED2K,
tracker function is performed by deployed servers, sim-
ilar to that in BitTorrent.

A third example is the PPLive VoD system. According to
the designers [3], the tracker function is provided by several
deployed servers, and a DHT is used to allocate the objects
(video files) to this set of servers. This design can be labeled
as (DS+DHT+A).

3 Design considerations

In designing the tracker function, there are many consid-
erations. Many of them are not quantifiable. We discuss
them briefly here.

Ease of implementation: A simple client server model
should be simpler than DHT, and this can be the reason for
the original tracker design.

Legal liability or management responsibility: There may
be legal liability in running a tracker. It also incurs manage-
ment chores. So a serverless (based on DHT) design is very
desirable.

Costs: There are also some costs associated with run-
ning a tracker, e.g. the server and bandwidth costs. With a
serverless tracker, these costs are absorbed by the peers.

Flexibility: Implementing tracker in servers certainly
gains more control for the content distributor (in the case
when content comes from on distributor rather than from
the peers themselves). For example, the content provider
may make peers in different networks/countries use differ-
ent trackers and form different sessions.

Security: On the one hand, server-based tracker can be
subjected to DoS attacks, and DHT-based tracker can be
more robust in that regard. On the other hand, server-based
tracker can be used to implement some access control poli-
cies.

While the above considerations are all important and
could decide the tracker design, another important consid-
eration is the reliability which directly affects user percep-
tion. This metric can be quantitatively evaluated, by system
models presented in the next section.



(a) Server-based (b) DHT-based

Figure 1. Reliability system model

4 Performance Models of Tracker Design

We measure reliability by a simple criterion: probability
of lookup success. This probability depends on two factors:
(a) Are the tracker node(s) required to answer the lookup re-
quest up and running? (b) Are the tracker node(s) required
to answer the lookup request overloaded? The first fac-
tor can be evaluated based on standard reliability theory[5].
The second factor can be evaluated based on simple queue-
ing theory.

4.1 Reliability

Let us first assume the tracker nodes all have infinite ca-
pacity, so performance is not a problem.

For reliability, the tracker design can be modeled either
as a parallel set of units, or a series set of units where each
unit may be composed of a parallel set of units, as shown
in Fig. 1. The former captures the design of manually-
configured, server-based tracker with some degree of repli-
cation (DS+M+U); whereas the latter captures the DHT-
based tracker design (P+DHT+A). The lookup process in
the DHT-based tracker traverses a path of tracker nodes
(served by peers), where each tracker node may have sev-
eral other peers serving as backups.

Let Rserver and RDHT denote the reliability of the two
tracker designs; and let Rs and Rp denote the reliability of
deployed servers and peers respectively. Then:

Rserver = 1− (1−Rs)n, (1)

where n is the number of deployed nodes serving as the
tracker for one object.

RDHT = (1− (1−Rp)m)k, (2)

where k is the expected path length of tracker nodes visited
by the DHT, and m is the number of backup peers for each
tracker node.

Each term, Rs or Rp, can be further expressed in terms of
the mean time to failure and mean time to repair for the two
kinds of tracker nodes; also, different tracker nodes may all
take different reliability values. Furthermore, the expected

path length k may depend on the peer population size (e.g.
log of population size is an upper bound). These details can
be added without changing the nature of the above models.

4.2 The Performance Factor

In reality, both deployed servers or peers have finite ca-
pacity, and they can be overwhelmed under heavy load.
So the node reliability R (which can be Rs or Rp) can be
viewed as the product of the following factors:

R = PupPqueuedPserved (3)

The first term, Pup, takes the original value Rs or Rp re-
spectively. The last term, Pserved, the probability that the
tracker node stays up till the request is served, is normally
very close to 1, and can be ignored. The second term,
Pqueued, the probability that the tracker node is not over-
whelmed, can be derived from a simple queueing model,
e.g. an M/M/1/h queue where h is the queue length (the
number of simultaneous lookup request accepted by the
tracker node). The request service rates, µs or µp, are prop-
erties of the tracker nodes. The request arrival rate, λ, is
given by the workload of the model, derived from the peer
arrival rate and the average number of objects each peer ac-
cesses while in the system. Based on these parameters, we
can derive the reliability of a server-based tracker as fol-
lows:

Rs = Ps ∗ (1− ρh
s − ρh+1

s

1− ρh+1
s

) (4)

where
ρs =

λ

nµs

assuming the requests are evenly distributed to the n server
nodes.

The node reliability for a peer node, Rp, can be writ-
ten down in a similar fashion. There is a significant dif-
ference: since there are more peers in the system serving
as tracker nodes, the request arrival rate to each peer, ρp,
would be much lower than the request rate to a tracker node
in a server-based system. The exact formula depends on the
particular DHT algorithm, and the computation of average
peer population in the system, and is not include here due
to space limits. The bottom line is that since ρp ¿ 1 there
is little reliability effect due to blocking, and Rp ≈ Pp.

Finally, Rs and Rp can be plugged into the reliability
formula to derive the lookup success rate of both server-
based or DHT-based trackers.

5 Observations from Modeling

The tracker models can be used to evaluate tracker de-
sign alternatives for various network and workload param-
eters. They can also be further refined to serve as capacity



0 2000 4000 6000 8000 10000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Peer number

Lo
ok

up
 S

uc
ce

ss
 P

ro
ba

bi
lit

y

 

 

replication 5 server−based
replication 5 DHT−based

Figure 2. Influence of peer number

800(20) +10% +10% +10% +10% +10%
0.98

0.985

0.99

0.995

1

Average life time: server(peer) (min)

Lo
ok

up
 S

uc
ce

ss
 P

ro
ba

bi
lit

y

 

 

replication 5 server−based
replication 5 DHT−based

Figure 3. Influence of churn

planning tools for deploying the tracker function to meet-
ing reliability and performance objectives. For example, we
have done some preliminary work in extending the models
to include the repair process. While it is more straightfor-
ward for the deployed server case, the DHT case is more
complicated since it also relies on a periodic maintenance
mechanism. Due to space limitations, we have not included
the extended models in this paper.

Based on the simple models described in the last section,
we can make some general observations:

The reliability of server-based tracker design can dete-
riorate quickly under heavy load, whereas the DHT-based
tracker can scale with load since when the load increases the
number of servers will increase automatically, see Fig. 2.
This problem can be remedied by careful capacity planning.

For both the server-based and DHT-based trackers, the
increase in mean-time-to-failure of the tracker node can im-
prove the tracker reliability, as expected. But it is interest-
ing to see the sensitivity to this parameter is stronger in the
DHT-based design, see Fig. 3. The reason is that our model
assumes that a server needs a random repair time before be-
coming available again.

For both the server-based and DHT-based trackers, the
increase in replication improves reliability, as expected. In
this case, the sensitivity is about the same for both designs,
see Fig. 4.

Besides reliability, some other interesting dimensions

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Replication

Lo
ok

up
 S

uc
ce

ss
 P

ro
ba

bi
lit

y

 

 

server−based
DHT−based

Figure 4. Influence of replication

to quantify the tracker performance also exist, e.g.
tracker load for different rates of access and perfor-
mance cost of locating content. We simply contain the
former in our queuing model and the latter is a new met-
ric to compare different tracker designs. All of these im-
provements and extensions will be included in our future
work.

6 Conclusions

In this paper, we provide a preliminary study of the de-
sign of tracker in p2p systems and its evaluation. More de-
tailed modeling and analysis is in progress. We are also
interested in building a capacity planning tool for server-
based tracker design, which requires more detailed model-
ing of various other functions of a tracker not included in
our simple models.

References

[1] D. Carra and E. Biersack. Building a reliable p2p system out
of unreliable p2p clients: The case of kad. In Conext 2007,
Hong Kong, 2007.

[2] B. Cohen. Incentives build robustness in bittorrent. In P2P
Econornics Workshop, Berkeley, CA, 2003.

[3] Y. Huang, T. Fu, D. Chiu, J. Lui, and C. Huang. Challenges,
design and analysis of a large-scale p2p vod system. In to
appear in ACM Sigcomm 2008.

[4] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In Revised Pa-
pers from the First International Workshop on Peer-to-Peer
Systems, pages 53–65, March 2002.

[5] M. Rausand and A. Hoyland. System Reliability Theory:
Models,Statistical Methods, and Applications. John Wiley &
Sons, 2004.

[6] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Bal-
akrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Sigcomm’01, San Diego, California,
USA, August 2001.


