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Abstract— In this paper, we investigate decentralized
and cooperative resource allocation problems in a class
of P2P systems that provide replication service. Unlike
conventional structured replication systems like content
distribution networks (CDN), peers in an unstructured
P2P system may have heterogeneous, sometimes low, online
availability. Therefore, how to achieve good system level
file availability by autonomous peers is an important goal
in P2P replication systems. On the other hand, files in
the system may not be of equal importance, hence the
desirability for availability may also vary accordingly
among individual files. We quantify the importance of
files in terms of weight, and formulate this replication
problem as an optimization problem to maximize the sys-
tem level weight based file availability. A bi-weight model
is studied and then applied to a decentralized random
replication algorithm through a statistical rounding poli cy.
This algorithm is implemented by autonomous peers with
partial information about the resources of the system,
and yet yields favorable performance in delivering the
differentiated replication service while maintaining the
system level replication goal.

I. INTRODUCTION

No matter what the motivation might be, the au-
tonomous peers in a peer-to-peer (P2P) system collec-
tively accomplish a service. Our interest is in studying
how the P2P system provides a replication service, and
how the autonomous peers might be molded to provide
a better replication service.

This question has been studied in [1], in which the
authors considered how to replicate files among peers so
as to minimize the bandwidth costs in accessing the files.
They obtained a intuitively satisfactory answer that the
amount of replication of each file should be proportional
to the frequency of access to that file. Furthermore, this
system level service can be naturally implemented if each
peer simply tries to manage its storage of files as a LRU
(least recently used first) cache.

In [2], the authors considered a different system level
metric to optimize - the average file availability. They
allowed the peers to have different availability (pro-

portion of time being online), and investigated several
distributed algorithms for maximizing file availability
- a random algorithm, a group-based algorithm and a
greedy algorithm favoring using high availability peers
first. Their conclusion indicates that each distributed
algorithm can be favorable depending on whether vari-
ance of file availability is important, and simplicity is to
be emphasized. In any case, as the amount of storage
increases, the performance of the different algorithms
also converge.

In this paper, we make a natural extension to [2].
We assume the files may not be of equal importance,
hence the desirability for availability for them may also
vary accordingly. We let the importance of the files
be categorized by a weight distribution, and make the
objective to maximize the weighted availability of the
files. The weight of a file may be determined by different
factors. In particular, it may be simply determined by the
popularity (frequency of access) as in [1]. In this case,
the bigger weight does result in more replication, but
the amount of replication is no longer proportional to
the weight, as in the case of [1]. Fortunately, a simple
distributed algorithm used by the peers can still delivery
this differentiatedreplication service.

Such a differentiated replication, which we state in-
terchangeably through out this paper with the terms
of “ replication with preferences” and “weight based
replication”, is explored to deliver a replication service
that makes more efficient use of the storage resource. In
such replications, the preferred, or important files will
be provided with more storage resource, hence higher
availability according to the requirements. This actually
deals with the situation that sometimes unimportant
files occupy more storage resource than necessary in
the equal weight replications. We enhance the resource
efficiency by reallocating part of it to those preferred
files which are yet in need for more storage to meet
their availability requirements. This action makes sense
especially when the total storage resource is limited, or
when the distribution pattern of file weight is diverse in



the replication system.

A. Related Works

Other than [1] and [2], there has been a considerable
amount of research work on object replication to differ-
ent locations or computers. In [3], the author studied the
file allocation problem of replicating a single file over a
set of computers. The file was demanded by various users
who had different access costs to different computers.
The author proved that the optimal assignment of the
replicas to the computers that minimized the total cost
was NP-complete. Authors in [4] studied the problem
of replicating objects optimally in content distribution
networks, in which each autonomous system (AS) repli-
cated some objects and demanded objects stored in other
ASes at the same time. The optimality of this replication
was defined as the minimization of the average inter-AS
hop distance a request must transverse. They proved that
this optimization was NP-complete, and proposed some
centralized heuristic algorithms to solve the replication
problem.

The work in [5] focused on the problem of assigning
file replicas according to the files’ demand characteris-
tics. The authors described a decentralized and adaptive
protocol to replicate files in a way that balanced server
load. Authors in [6] considered assigning replicas in
an unstructured P2P system, focusing on minimizing
the expected search size of the search queries. Their
results showed that replicating files proportionally to the
square root of a file’s demand popularity is an optimal
replication scheme. In [7], the authors proposed a suit
of adaptive algorithms for replicating and replacing files
as a function of evolving file popularity to maximize the
“hit probability”, i.e. the probability of finding the file
within the community such as a LAN. Their algorithms
were based on the structured p2p system, and assumed
homogeneous peer online pattern.

Besides the above, web caching can also be regarded
as a distributed replication network. In [8], the authors
studied the problem of distributing a fixed set of web
proxies in the Internet. There was a setup cost involved
when assigning a proxy to a potential site, as well as
a link cost for connecting any two potential sites. They
modeled the network topologies as trees, and proposed
a centralized algorithm to distribute the proxies with
minimum total cost. Authors in [9] modeled this web
sever placement problem as a K-median problem and
developed several centralized placement algorithms to
solve it.

As an orthogonal evaluation to the existing replication

related studies, we put our focus on how to replicate
a set of files so as to optimize file availability. There
has already been some research dealing with this issue,
such as [10], [11]. However, in our model, peers are
allowed to have different online availability, which is
more general in comparison with previous models [3],
[4], [9], [10]. Our work differs from [11] in that [11]
tried to achieve a pre-determined availability target while
we are trying to optimize file availability based on given
resources. Moreover, both [10] and [11] were equal
weight replications.

B. Organization

In the rest of the paper, we first give the problem for-
mulation; then solve the problem in a simple bi-weight
case, and discuss how the solution can be recursively
used to extend the result to multi-weight cases. We
then describe the simple distributed algorithm and use
simulation to study its performance.

II. PEER-TO-PEER REPLICATION SYSTEM

We first introduce notations and terminologies to for-
mulate the problem. Table I summarizes the parameters
used in our model.

A. Peers

In our model, peers are assumed to cooperate for the
same overall replication objective. When a peer joins the
system, it is willing to offer a certain amount of storage
for other peers to place their file replicas. In return, it
can also distribute its file replicas to other peers, thereby
increasing availability of its own files.

Each peer in this replication system is characterized by
three parameters. First, we denote the online availability
pi ∈ [0, 1] as the proportion of the time peeri stays
online. When a peer is online, all the replicas it stores
are assumed to be available and accessible by other peers
in the system. Therefore, the probability of retrieving
the replicas stored in peeri is equal to its availability
pi. Second, peeri has a set of filesFi that needs to
be replicated. These files are of different weights. The
third parameter is the amount of storage space that peer
i offers for replication purposes, denoted bysi. This
shared storage is made available to other peers in the
system. We do not consider the bandwidth consumption
between peers in this paper, and file replicas are assumed
to be assigned to other peers in a negligible amount of
time.



Pi Writable peer set of peeri
P The set of peers in the system,P =

S
i
Pi

Fi The set of files to be replicated in peeri

F The set of files in the system,F =
S

i
Fi

M Number of peers in the system:M = |P|
N Number of files in the system:N = |F|

p = [pi] Peer online availability vector
s = [si] Peer storage capacity
w = [wj ] File weight of each filej
x = [xj ] Amount of replication redundancy of each filej

nH = [nH(i)] Number of high weight files in peeri
nL = [nL(i)] Number of low weight files in peeri
R = [ri,j ] A feasible replica placement

p[rj ] Availability vector of peers replicating filej
A = [Aj ] File availability distribution

Aw Overall weight based file availability

TABLE I

SYSTEM PARAMETERS

B. Estimation of File Availability

The availability of a file after replication is comprised
of two parts: the replicas stored in the network and the
original file in the peer who shares it, provided it is kept
there. Due to storage limitation, it happens that some
files cannot be replicated at all. Although users may be
able to get access to an unreplicated file from the peer
who shares it, provided the original copy is retained,
the file in discussion is still considered to have0 file
availability in our model. That is to say, the contribution
of the original copy is excluded. The reason behind this
is to extract the file availability achieved by replication
from the dependence on availability of the original copy.
This promises a more explicit performance evaluation of
the replication system. Moreover, peers may not always
keep the files they share.

As a consequence, a file is available when at least one
of its replicas is online. The probability of having at least
one replica/peer available out ofx is

P{≥ 1 online} = 1− (1− p1)(1− p2) · · · (1− px). (1)

Since each peer in the system may have a different
online probability, and there may be a huge number of
files involved, it is too expensive to calculate the exact
availability for each file. Therefore, we use the average
peer availability as an approximation:

A({pi}, x) ≃ 1 − (1 − p̄i)
x, (2)

wherep̄i refers to the average peer availability of{pi}.
This approximation in fact gives a lower bound of the
exact file availability.

C. Replication with Preferences

In our replication system, files are assigned with
different weight values to indicate how important they
are, and how they should be replicated. Our goal is to
build a system in which highly weighted files receive rel-
atively higher availability and vice versa. Such strategy
is referred asreplication with preferences. We define the
overall system level availability as follows:

Aw =

∑N
j=1 wjAj

∑N
j=1 wj

, (3)

where wj is the weight value of filej, and Aj is the
resulted file availability of filej after replication.

III. A W EIGHT BASED MODEL FOR P2P
REPLICATION SYSTEM

A real world P2P replication system is complicated to
model. Part of the problem comes from the complexity
of network topology, partial connectivity and network
dynamics. In this paper, we propose a simple weight
based replication model to abstract away the above
aspects. Although the model is simple, it is capable of
illustrating the difficulties in resource allocation in a real
world P2P replication system, specifically, heterogeneity
of peer availability and file weight.

A. The Multi-Weight Replication Problem

Let us consider a replication system with a fixed
population ofP peers whose availability distribution is
p. Each peeri has a set of filesFi to be replicated. The
set of all files to be replicated in the system isF = ∪iFi,



with a weight distributionw. We denote the number of
peers asM = |P| and the number of files asN = |F|.

When replicating, for a particular filej ∈ Fi, peer
i first needs to decide how much redundancy to add.
This is denoted by the number of replicasxj(wj), which
depends on the file weightwj . Then peeri creates
xj replicas, to be assigned toxj different peers. For
simplicity, it is assumed that all files in our model have
the common sizeΓ, and the storage space offered by
peeri is always in units of the file size.

From the angle of an individual file,xj should be as
large as possible in order to maximize file availability.
The largest possible value is given byxj = M . However,
the total storage offered by peers is limited, so it is not
always feasible for each file to be replicated by all peers.
This implies the need of determining a suitablexj(wj)
for each filej from the angle of the overall replication
system.

More generally, the problem is to seek a replica
assignment policy. We define the replication placement
matrix R = [ri,j]M×N :

r1,1 r1,2 · · · r1,N

r2,1 r2,2 · · · r2,N

...
...

. . .
...

rM,1 rM,2 · · · rM,N ,

whereri,j indicates whether a replica of filej is assigned
to peeri:

ri,j =

{

1 : if peer i stores a replica of filej
0 : otherwise

where

i = 1, 2, . . . M

j = 1, 2, . . . N.

Obviously, peeri cannot store more than its storage
capacitysi:

N
∑

j=1

ri,j ≤ si ∀i. (4)

The number of replicas of filej stored in the system is
equal toxj(wj):

M
∑

i=1

ri,j = xj(wj) ∀j. (5)

A replica placement matrixR is feasible only if it
satisfies both conditions 4 and 5.

Let rj denote thejth column vector of the replica
placement matrixR, which then gives the subset of peers

that replicate filej. We select the online availability of
peers who replicate filej (i.e., ri,j = 1), and denote it
asp[rj ]. Then the overall weight based file availability
can be computed as in equation 3:

Aw(R) =

∑N
j=1 wjAj(p[rj ], xj(wj))

∑N
j=1 wj

,

whereAj(p[rj ], xj(wj)) is the availability of file j.
Based on equation 2, we are able to rigorously define
the resource allocation problem as a problem to find
an optimalR to maximize the overall file availability
Aw(R).

B. The Bi-Weight Replication Model

The replication problem described in III-A actually
includes two parts: storage allocationx, and replica
placementR. To further simplify the problem, we now
introduce theBi-Weight Replicationmodel, which en-
ables us to find an optimal resource allocation scheme
among files.

In the Bi-Weight Replication model, files are classified
into two categories: high weight files(H-files) and low
weight files(L-files), assigned with the weight valuewH

and wL respectively, wherewH > wL. A file to be
replicated in the system is either an H-file or an L-file. In
fact, there are various metrics to determine the weight of
a file, depending on the particular situation. For example,
if we take popularity of files as the metric, the weight
of a file can be determined by its accessing rate. To
apply our model, a predetermined threshold is needed.
If a file has an accessing rate higher than the threshold,
it is assigned withwH , otherwise, it is assigned withwL.

We intend to provide files in the same weight level
with the same amount of storage resource. By equation
2 and 3, the problem can be formulated as

max :
nHwH [1 − (1 − p)xH ] + nLwL[1 − (1 − p)xL ]

nHwH + nLwL

,

(6)

where
nHwH + nLwL ≤ s. (7)

Here nH and nL are the number of H-files and L-
files respectively, whilexH and xL are the amount of
redundancy per file for each weight level.s is the total
storage space that offered by peers in the system, which
gives a general constraint to the optimization problem.

In order to enhance the overall file availability, we
assume a saturated usage of the storage resource by
taking equality in constraint 7. We further denote:

q = 1 − p ∈ (0, 1)



aH =
nHwH

nHwH + nLwL

aL =
nLwL

nHwH + nLwL

After using the constraint to reduce the variables, prob-
lem 6 becomes

max : 1 − (aHqxH + aLq
s−nHxH

nL ), (8)

which is equivalent to

min : G = aHqxH + aLq
s−nHxH

nL . (9)

Since the functionG is convex, and the gradient is

∇G = ln q(aHqxH −
aLnH

nL

q
s−nH xH

nL ), (10)

by letting ∇G = 0, for 0 < wL < wH as defined, we
then have

q
(nH+nL)xH−s

nL =
aLnH

aHnL

=
wL

wH

∈ (0, 1). (11)

Sinceq = 1 − p ∈ (0, 1), this indicates

(nH + nL)xH > s,

compared with 7, it follows thatxH > xL. This is
consistent with our expectation that provides the high
weight files with more redundancy, which then naturally
leads to higher file availability.

Based on the analysis above, the closed-form solution
to problem 6 can be readily expressed as:











x∗
H = s

nH+nL
+

nL

ln
wL
wH

ln(1−p)

nH+nL

x∗
L = s

nH+nL
−

nH

ln
wL
wH

ln(1−p)

nH+nL
.

(12)

This solution indicates a logarithmic relationship be-
tween the amount of redundancy and system parameters
such as file weight and file distribution pattern.

C. Discussion

In fact, the solution in equation 12 makes sense only

when s ≥ nH

ln
wL

wH

ln(1−p) because bothxH and xL should

be nonnegative. For the special situations < nH

ln
wL

wH

ln(1−p) ,
which means either that the number of H files in the
system is extremely large or the L-files are of awfully
low weight compared with the H-files. In both cases, the
L-files are considered to be neglectable since they make
trivial contributions to the system level file availability.
Therefore, it degenerates to the equal weight replication,
wherex = s

nH
.

Although simplified, the Bi-Weight model is nontriv-
ial. A straightforward extension is to further classify

the H-files and/or L-files into two sub-categories, and
then apply this model to each sub-storage allocation
problem. Such extension enables the application of Bi-
Weight model to multi-weight replication problems.

IV. T HE DISTRIBUTED REPLICATION ALGORITHM

By using the average peer availability as an approx-
imation, the Bi-Weight model solves the problem of
general storage allocation between H-files and L-files.
We then need to find an optimal replica placement
schemeR to assign the replicas properly in the network.
In fact, similar problems were considered as combina-
torial optimization problems in previous studies. They
were proved to be NP-complete, and coupled with some
heuristic solutions, as in [8], [9]. Such heuristic solutions
can be implemented by a central agent that had all the
necessary system parameters.

However, in a typical P2P system, there might be
a huge number of peers whose participations are not
synchronized, making timely collection of the system
parameters from all peers intractable. Even if it is possi-
ble to collect all the parameters needed, it would be very
time consuming for a central agent to solve this problem
and distribute solutions to all other peers. Therefore,
we focus on decentralized solutions that enable self
operations by autonomous peers.

In this paper, we investigate a decentralized heuristic
algorithm in which peers make their replication decisions
independently to derive a feasibleR. These replication
decisions are made based on the partial and limited
information available to each peer, e.g. availability and
storage space of the neighboring peers.

A. Writable peer set

P2P replication systems are constituted by connected
peers. Unlike centralized or structured replication sys-
tems like RAID, peers in a P2P replication system may
not be aware of the presence of all other peers in the
system. We characterize the limited information available
to each peer by introducingdegree of connectivityfor a
peer. This is not the physical connectivity, but the logical
reachability of a peer in terms of asking other peers to
help it replicate a file. In this sense, a replication system
with an indexing server, which allows each peer to know
of all other peers’ existence, can be considered as a
replication system with100% connectivity, despite the
fact that peers are not directly connected to each other.

Given a degree of connectivity, a peer is called a
neighbor of peer i if it can potentially be reached by
peer i for replication. Due to storage limitation, it is



possible that a peer cannot always distribute one replica
to each of its neighbors. Hence, a peeri may choose
a subset of its neighbors for replication. We name this
subset thewritable peer setPi. And we assume that no
peer is left isolated in the system, therefore:

P = ∪iPi.

As described before, each peer requires several types
of information from other peers in the writable peer set to
facilitate making replication decisions. Such information
can be encapsulated in the control protocol messages
of a P2P system (such as the ping-pong messages in
Gnutella), or can be transmitted in a separate protocol
message. For each peeri′ in the writable peer set of peer
i, we define three types of information to be conveyed
from i′ to i.

1) The storage space offered by peeri′ for replication,
i.e. si′ .

2) The number of files in different weight level that
peeri′ requests to replicate, i.e.nH(i′) andnL(i′),
wherenH(i′) + nL(i′) = |Fi′ | .

3) Online availability of peeri′, i.e. pi′ .

B. The Statistical Rounding Policy

As discussed in section III-A, a feasible replica place-
ment solution must satisfy the storage constraint, namely,
all replicas must fit into the storage space offered by
the peers. To ensure this feasibility in a decentralized
manner, each peer collects the pertinent information from
its writable peer set and estimates suitable amount of
storage overhead, i.e.xH , xL, for its files. In whole file
replication, the number of replicas for any file should
be an integer. However, this is not guaranteed in the
Bi-Weight model. In order to channel the theoretical
solution into applications, we introduce thestatistical
rounding policy.

We denoteceil(x) as the minimal integer that larger
thanx, while floor(x) the maximal integer that smaller
thanx. For a nonnegativex, both ceil(x) andfloor(x)
are nonnegative. The differenceceil(x) − x is then
defined as therounding threshold. Specifically, to de-
termine the exact number of replicasxj that can be
placed in the network by an H-filej, a random number
λ ∈ (0, 1) is generated. Thenxj is decided as the
following:

xj =

{

ceil(xH ) : if λ > ceil(xH) − xH

floor(xH) : otherwise

The same method is also applied to L-files.

When determining the amount of replication redun-
dancy x, there may be the situation that two peers
having common elements in their writable sets replicate
simultaneously, which would probably result in inaccu-
rate estimation of the system parameters, e.g. the total
storage so far available in the writable peer set. To avoid
incorrect calculation ofx, we employ thelocking phase
strategy, which works in the following way. Each peer in
our system has a locking phase indicator to indicate its
current state: locked or released. Once peeri begins the
replication process (including estimation ofx), all peers
in its writable peer setPi are set to be locked. While in
the locking phase, a peer is “unaccessible” to other peers
in the system except for peeri. These locked peers will
be released when peeri finishes replication. Therefore,
whenever a peer chooses the writable peer set, it must
first remove the locked neighbors.

C. The Distributed Random Replication Algorithm

Generally, the availability of a file depends on (a)
how many replicas can be placed in the network, which
is measured in terms of the replication redundancy
allocated to that file, and (b) the availability of those
peers who store the replicas of that file. The Bi-Weight
model tries to allocate the storage resource based on the
weight of the files. The random replication algorithm,
on the other hand, gives each file an equal opportunity
in selecting peers. Both the processes are implemented
by peers in a decentralized way. Hence, the entire
replication algorithm includes the following two steps.

Storage allocation: First, each peeri calculates the
average peer availability (̄pi), the total storage space
offered (Si), and the total number of files of each
weight level to be replicated, namely,{NH(i), NL(i)},
by peers in its writable peer set. Peeri then estimates
the replication redundancy for all filesj ∈ Fi by:















xH(i) = Si

NH(i)+NL(i)
+

NL(i)

ln
wL
wH

ln(1−p̄i)

NH(i)+NL(i)

xL(i) = Si

NH(i)+NL(i)
−

NH(i)

ln
wL
wH

ln(1−p̄i)

NH(i)+NL(i)
.

This replication redundancy estimates how much storage
space each file (in the writable peer set) can use on
average. If all peers in the system cooperate and follow
such estimation, it is very likely that the storage space
will not be overused.

Replica placement: Before replicating filej, peer
i applies the statistical rounding policy to determine
xj, the exact number of replicas of filej, based on
{xH(i), xL(i)} from last step and the actual weight of



file j. After that, peeri randomly picksxj peers, whose
storage space is not exhausted, in its writable peer set
Pi. Replicas of filej are then produced and assigned
to these peers. Peeri stops the replication process when
all its files are replicated, or when storage space in the
writable peer set runs out.

To enhance the overall weight based file availability of
the system, the high weight files are entitled with priority
in the order of replication. That is, the high weight files
in the system will be replicated before the low weight
files.

The distributed random replication algorithm

Writable peer set estimation:
1. Peeri chooses the writable peer setPi.
2. All peers inPi are “locked”.
3. EstimateSi =

P
i′∈Pi

si′

NH(i) =
P

i′∈Pi
nH(i′)

NL(i) =
P

i′∈Pi
nL(i′)

p̄i =
P

i′∈Pi
pi′

NH(i)+NH(i)
.

4. Estimate{xH(i), xL(i)}.
To replicate filej:

5. Generate a randomλ ∈ (0, 1) and determinexj by the
statistical rounding.

6. Createxj replicas of filej.
7. IF peeri cannot findxj peers with available storage space,

skip replicating this file.
8. ELSE peeri randomly picksxj peers fromPi to store the

replicas. Update available storage space of thesexj peers.
9. Peers inPi are released.

V. EVALUATION OF THE SYSTEM

The performance of the replication algorithm is eval-
uated by simulations. The concerned file availability is
used as the main metric, including a) the weight based
system level file availabilityE[Aw] which measures
how the peers replicate at the overall replication goal,
and b) the actual expected file availabilityE[AH ] and
E[AL] which measures how the files in the system are
treated differently based on their weights. In addition, we
employ the varianceV ar[AH ] andV ar[AL] as a fairness
measurement of the achieved file availability in the same
weight level.

We first discuss the simulation setups, followed by the
results.

A. Simulation Setup

We simulate a replication system with 100 peers that
are randomly linked. The connectivity of the network is
controlled by a parameterm ∈ [0, 1]. Any two peers in

the system are linked if a uniformly generated random
number in [0, 1] is greater thanm. So the expected
number of links would be(1 − m)N(N − 1)/2 =
4950(1−m). These links are logical, and the link delays
and transmission costs are ignored in our model. In fact,
the parameter(1 − m) can be viewed as the degree of
connectivity of the system.

We are interested in how the algorithm perform under
different system parameters, such as the total number of
files to be replicated in the system, the weight patterns,
and the percentage of high weight files out of the
general file set. These parameters are summarized in
table II. In all simulations, the system has a degree of
connectivity of0.5, and the peers’ online availability is
uniformly distributed in(0, 1). The system-wideaverage
replication redundancy, defined as the ratio of the total
storage space offered by all peers to the total size of all
files in the system regardless of file weight, is set to be

E(X̂) =

∑

i∈P si
∑

j∈F fj

= 2.

That means, each file, no matter with a high weight or a
low weight, is expected to have2 replicas stored in the
network on average. However, the exact storage space
offered by each peer is not the same. Instead, it followed
a uniform distribution withE(X̂) as the expected value.

To minimize simulation errors due to random pertur-
bations, each simulation setup is run200 times, and the
average results are reported.

B. Simulation Results

We first evaluate the system performance in terms of
the overall file availability. The theoretical results gen-
erated by the Bi-Weight model under the same expected
parameters are used as the benchmark for evaluation.
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Fig. 1. System level weight based file availability,wH : wL = 2 : 1,
avrg. {10, 50, 100} files per peer



Expected number of files per peer File weight pattern Percentage of H-files

Uniform in [0,20] / Expected 10 wH : wL = 2 : 1 [0, 100%]
Uniform in [0,100] / Expected 50 wH : wL = 2 : 1 [0, 100%]
Uniform in [0,200] / Expected 100 wH : wL = 2 : 1 [0, 100%]
Uniform in [0,100] / Expected 50 wH : wL = 4 : 1 [0, 100%]

TABLE II

SIMULATION SETUPS

Figure1 shows the results of the system level weight
based file availability, against the percentage of high
weight files out of all the files to be replicated. The
expected number of files in total varies from1000 to
10000. Compared with the optimal solution, the file
availability achieved by simulations is 2% – 10% infe-
rior. As the number of files to be replicated in the system
increases, the achieved file availability tends to approach
the optimal, but the growth is not significant. The reasons
for such a gap between the achievable and the optimal
may come from the following: (a) The number of files
in total and the percentage of H-files are precise in
the model analysis. However, these parameters in the
simulations are random, only using the exact numerical
values as used in the analysis as the expectation. (b)
Peers can have only partial and limited information of the
system resource from its neighbors, which may result in
uneven estimations among peers depending on particular
writable peer set. (c)The statistical rounding policy also
introduces certain amount of randomness.
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Fig. 2. System level weight based file availability,wH : wL = 2 : 1,
avrg. 50 files per peer

A comparison of differentiated replication and pro-
portional replication is showed in figure2. The result
reveals that when the metric changes to the overall file
availability, the proportional relationship between the

number of replicas and file weights can no longer achieve
the optimality.
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Fig. 3. Achieved file availability of H-files and L-files, avrg. 50
files per peer,wH : wL = 2 : 1
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Fig. 4. Achieved file availability of H-files and L-files, avrg. 50
files per peer,wH : wL = 4 : 1

As a measurement of the differentiated replication
service, figure3 shows the actual file availability of the
high weight and low weight files respectively. It can
be observed that when the percentage of H-files is low,
e.g. 10%, they can receive an availability up to around
85% after replication. As the percentage increases, the
availability of H-files decreases. The explanation is that



when the percentage of H-files turns high, hence the
number of such files becomes large, the H-files turns
to be ”less important” compared with before. When the
percentage of H-files is0% or 100%, the replication
degenerates to the equal weight replication.

However, the H-files can always get higher availability
than the L-files, regardless of their percentage. This
hit the purpose of the differentiated replication service.
Moreover, when the difference of weights grows, e.g.
from wH : wL = 2 : 1 to wH : wL = 4 : 1, the
availability of H-files and L-files separates further. The
comparison of figure3 and4 provides an illustration of
this.
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Fig. 5. Variance of achieved file availability of H-files and L-files,
avrg. 50 files per peer,wH : wL = 2 : 1
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Fig. 6. Portion of H-files and L-files that be successfully replicated,
avrg. 50 files per peer,wH : wL = 2 : 1

To gain a more comprehensive understanding of our
model, we evaluate the variance of the achieved file
availability and the portion of files that be successfully
replicated. It can be observed from figure5 and figure
6 that theV ar[A] of H-files is significant lower than

that of L files. However, when the percentage of H-files
exceeds a certain threshold, i.e.≥ 70% in our simulation,
V ar[AL] turns down. This is because when the H-files
act as the majority in file population, part of the L-files
remains unreplicated due to the storage limitation. They
are then considered to have a0 availability. Generally the
H-files can be 100% replicated while the L-files can be
replicated with a ratio near 100% only when the H-files
are rare in the system. The above results reveal that the
weight based replication tends to guarantee the service
quality in favor of the high weight files while maintaining
that of the low weigh files at a reasonable level.

VI. D ISCUSSION ANDFUTURE WORK

The simulation results reveal the fact that the random
replication algorithm yields favorable performance in
delivering the replication service with preferences while
maintaining a good system level file availability. Yet
there are still many interesting topics remained for future
work.

For example, when determine the file weight, we
assume in this paper that all peers are honest and treat
their files with deserved importance. However, in real
world systems, there might exist the cheating behavior
that a peer claim its unimportant files as high weighted
so as to get more availability than deserved. In order to
prevent such behaviors, certain incentive is necessary to
be built into the system. One possible consideration is
that a peer will be required to provide more storage for
others in case it wants to replicate a high weight file than
a low weight file.

Another extension is related to network dynamics.
In this paper, we assume astatic replication system:
a fixed set of peers join the system and each of them
replicates a fixed set of files. In a real world system,
peers continuously join and leave; they may remove
old files and introduce new files; the preference of a
file may change over time. These dynamics bring many
interesting possibilities. For example, if some peers leave
permanently, the availability of the files it stored will be
affected. How do we redistribute these file replicas in
order to maintain the file availability in this scenario?

The details of such problems are remained for future
study.

VII. C ONCLUSION

In this paper, we address the issue of delivering
replication service with preferences in unstructured peer-
to-peer systems. We categorize the preference of files as
weight, and formulate the resource allocation problem



as an optimization problem that maximizes the overall
weight based file availability.

Since the problem is computation-intensive, we inves-
tigate a bi-weight model, in which the optimal solution
reveals a logarithmic relationship between the amount of
replication and system parameters like file weight and
file distribution pattern. Yet simple, the bi-weight model
can be extended to multi weight cases by recursion. We
then apply the solution to a distributed random repli-
cation algorithm by introducing the statistical rounding
policy. The algorithm is implemented by autonomous
peers who cooperate with the neighbors, based on partial
and limited information about the system resource. The
performance of this algorithm under different system
parameters is evaluated by simulations. Our results show
that, by employing the optimal solution from the model
analysis, the random algorithm yields favorable perfor-
mance in delivering the differentiated replication service
while achieving a good system level file availability.
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