
Network Fairness for Heterogeneous Applications

D. M. Chiu Adrian S. W. Tam
Department of Information Engineering
The Chinese University of Hong Kong
{dmchiu,swtam3}@ie.cuhk.edu.hk

December 30, 2004

Abstract

In this paper, we revisit the definition of fairness and TCP-
friendliness in a network with heterogeneous applications. We
suggest a utility optimization approach in which elastic and
inelastic flows have different utilities. The fairness and TCP-
friendliness are then evaluated based on a stochastic model of
elastic and inelastic flows with finite files size, holding time and
arrival rates (instead of the traditional model of flows competing
indefinitely).

We argue that this view will open up new ways for elastic
and inelastic flows to share the network, leading to improved
performance for both kinds of traffic. Using this approach, we
proceed to demonstrate distributed admission control can be used
by inelastic flows instead of congestion control, and how this
satisfies the new TCP-friendly criteria.

1 Introduction

Without special configurations, the Internet treats all pack-
ets in the same way, thus it provides a connectionless
service. When there is congestion, TCP flows run a
distributed congestion control algorithm that at least theo-
retically converge to fair bandwidth allocation based on the
AIMD analysis [1]. Other applications may either use RTP
[2] or use their own transport services that run over UDP.
These flows typically grab whatever bandwidth they can
manage to and do not worry about fair bandwidth allocation
among competing flows.

There are therefore two classes of Internet citizens: TCP
flows and UDP flows. The former types are considered
“courteous” or “civilized” by following some conventions
of behavior that are accepted as guaranteeing fair resource
allocation during congestion. The latter types are con-
sidered “rude” network citizens who are not concerned
about others. It is feared that this situation may be unfair
to TCP flows and lead to congestion breakdown as the
percentage of the UDP traffic increases. This is the well-
known TCP/UDP co-existence problem.

A compromise solution was proposed: TCP-friendly
congestion control. The applications using UDP (and RTP)
often cannot respond to congestion without reducing their

user satisfaction. The compromise requires these UDP
applications to react to congestion more slowly. If all
flows continue indefinitely and congestion persists, then a
congestion control algorithm is considered TCP-friendly if
it gradually brings the rate of UDP flows to the same as the
TCP flows. It is a compromise because it lets these flows
react slowly, but eventually these flows must converge to
their fair share. What if the fair share is not adequate for a
UDP application? The answer is Internet applications must
be adaptable, i.e., to use whatever fair share bandwidth that
the network gives them. For example, a video application
may adapt by using lower resolution, fewer frames per
second, or a smaller display area.

A significant number of efforts went into designing TCP-
friendly congestion control algorithms1 [3] and network
adaptation mechanisms for multimedia applications [4]. In
effect, the introduction of the “TCP-friendliness” notion
broadens the range of network behaviors that are considered
“civilized”.

The question is, is the “TCP-friendly” framework ac-
cepted by the UDP applications? Our observation is that
it is not, or at least not universally. The reason is that
some applications may not be adaptable, or it is hard from
them to adapt without sacrificing quality or ease-of-use.
These flows from these applications have traditionally been
referred to asinelasticflows.

The whole thesis of this paper is to suggest that we
should further broaden the range of “civilized” behavior.
We do this by redefining what is “TCP-friendly”. We use
the scenario where all flows run TCP congestion control as
a benchmark. We then introduce reasonable performance
metrics for TCP and UDP flows respectively — think of
these metrics as utility functions. If a new control algorithm
for UDP flows that results in a higher utility for both TCP
and UDP flows for different traffic mixes (characterized
by a model of arrival and departure rates, file sizes and
playback rates and other parameters) is introduced, then the
new control algorithm is a fair game. This methodology,
if accepted, represents a paradigm shift in how we think of
network fairness for heterogeneous applications.

As a concrete example, we show that some form of

1More discussion and references are given in section 5
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admission control (instead of TCP-like congestion control)
for UDP flows should be considered as TCP-friendly under
our new definition. Adopting admission control for inelastic
flows is hardly a new idea. In particular, Kelly et al
[5] proposed and analyzed distributed admission control
algorithms. Our new contribution in this paper is in making
the case for reconsidering what is “TCP-friendly”, and
describing a methodology for judging whether a certain
network behavior (such as admission control) is “TCP-
friendly”.

The organization of the paper is as follows. In Section 2,
we present our new definition of network fairness and TCP-
friendliness. In Section 3, we introduce a stochastic model
and explain of how TCP-friendliness is evaluated for a par-
ticular example. That is, inelastic flows apply (distributed)
admission control instead of TCP-like congestion control.
In Section 4, we provide numerical results and conclude a
suitable form of admission control is indeed TCP-friendly
under the new definition. In Section 5, we briefly discuss
related works. Finally, in Section 6, we give our concluding
remarks and discuss directions for future work.

2 Fairness and TCP-friendliness Re-
defined

Let there be two classes of network flows: elastic flows
that practice TCP congestion control and inelastic flows.
Each elastic flow transfers a file whose size is randomly
distributed. Its goal is to finish the transfer in as little time
as possible. Each inelastic flow, on the other hand, needs to
use the network for a randomly distributed period of time
(known asholding time) at a constant bit rate.

The extent to which the needs for each type of flows are
satisfied is measured by their respective utility functions
Ue() and Ui(). Suppose a flow arrives at timet0 and is
allowed to transmit at ratex(t), t > t0. The functionx(t)
is the service curve for this flow. The utility functionsUe

andUi can each be thought of as a function ofx(t) 2. The
social welfareW is the sum of the utility of all flows over a
long time horizon

W = ∑
k

Ue(xk)+∑
h

Ui(xh) (1)

where k and h indexes respectively over all elastic and
inelastic flow that arrive or complete during the given time
horizon.

In recent literature, the thesis of [6] in redefining the
fairness of bandwidth allocation in terms of the solution to
utility optimization has been widely accepted. We therefore
follow this convention by considering the set of service
curvesxk and xh that maximizes the social welfare and
still satisfy the network capacity constraint to be thefair

2That is, mapping the functionx(t) to a value. Sometimes, such utility
function is known as afunctional.

allocation. Semantically, however, there is a significant
difference. Since both kinds of flows arrive at random
times and have finite duration, fairness is not rigorously
defined and achieved necessarily among flows that share the
congested network simultaneously, but rather by flows that
may use the network at different times.

There is a problem with applying equation (1) in practice.
While the utility of the same type of users is assumed
additive routinely, adding the utility of different types of
users would require the different utility functions to be
compatible and calibrated, which is not easy (or even
possible) to accomplish in practice.

To appreciate the situation, let us consider an example.
Let there be two flows, one elastic and one inelastic, sharing
some common resource. The service curves achieved under
control algorithm a are xa

1(t) and xa
2(t) for the elastic

and inelastic flows respectively. Under a different control
algorithmb, the achieved service curves arexb

1(t) andxb
2(t)

respectively. Suppose the given utility functionsUe() and
Ui() result in

Ue(xa
1)+Ui(xa

2) > Ue(xb
1)+Ui(xb

2)

Can we conclude algorithma is better than (fairer than)
algorithm b? This is highly questionable. Let us scale
the utility function for the inelastic flow by a factorc, to
reflect the fact that we cannot accurately calibrate the two
utility functions. Then it is easy to see that the conclusion
of whether algorithma or b is better can flip depending on
the value ofc. In economics, utility functions areordinal
but notcardinal. In other words, it is reasonable to compare
two situations based on their respective utility functions, for
example,Ue(xa

1) > Ue(xb
1); but it is dangerous to add the

utility functions, especially for different types of users, and
then compare them, as the above example shows.

To make our problem tractable, we do assume the utility
of the same type of users can be added together. Therefore,
we rewrite the social welfare as

W = We+Wi

whereWe andWi denote the sum of utilities of the elastic
flows and inelastic flows respectively. When comparing the
total welfare achieved by control algorithmsa and b, we
require that bothWa > Wb as well as the same relationship
to hold for the individual components (Wa

e ≥Wb
e andWa

i ≥
Wb

e ) in order to conclude that algorithma is greater thanb.
In this paper, we are not seeking the optimal solution

to the above utility optimization problem. Rather, we are
interested in the comparison with using TCP for both elastic
as well as inelastic flows, which is assumed to yield the
following utility

WTCP = WTCP
e +WTCP

i

When the inelastic flows use an alternative algorithm,a,
then the resulting stochastic process would yield different
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utility for both the elastic and elastic flows, to be denoted

WTCP+a = WTCP+a
e +WTCP+a

i

We say the alternative algorithma is TCP-friendlyif

WTCP+a
e ≥WTCP

e (2)

On the other hand, the alternative strategy should also make
sense for the inelastic flows, in the sense

WTCP+a
i ≥WTCP

i (3)

Together, we also have

WTCP+a ≥WTCP (4)

So our new definition of TCP-friendliness is really based on
all the above properties (in equations 2, 3 and 4) being true.

Another way to think ofWe() and Wi() is to consider
them as some system performance metrics which are used
to measure the outcome for an aggregated class of users.
We use TCP congestion control to establish the benchmark
performance target. We want to find alternativerobust
control algorithms that out-perform TCP for inelastic flows,
for various system parameters.

What we have introduced and discussed in this section
is a general framework for redefining network fairness for
heterogeneous applications. In the next section, we will
introduce specific models and evaluate the TCP-friendliness
of specific control algorithms.

3 Modeling and Evaluating the Fair-
ness of Admission Control

We now introduce a specific model with several simplifying
assumptions to make our problem tractable.

Let us assume that the elastic and inelastic flows are
stationary stochastic processes with Poisson arrival ratesλe

andλi . The network is a single bottleneck and its bandwidth
is 1. The elastic flows have exponentially distributed file
sizes with mean equal to1/µe. So, if the entire bandwidth
is used to serve an elastic flow, it has a departure rate
of µe. The inelastic flows have exponentially distributed
holding times with mean1/µi and a playback rate ofα ≤ 1.
So, once an inelastic flow starts, it consumesα of the
bottleneck’s bandwidth and departs at the rate ofµi .

The elastic flows are always assumed to be implementing
TCP congestion control which consumes the bottleneck
bandwidth (available to them) in equal proportions. For
inelastic flows, we are interested in evaluating the following
different strategies:

1. Perform TCP-friendly congestion control and split the
bottleneck bandwidth equally among TCP flows when
there is a congestion. When the fair share for each
flow is greater thanα , the inelastic flows would still

consumeα 3. Otherwise, it is assumed that the
convergence to fair share is instantaneous which is
the same as the elastic flows’ controls. This is the
benchmark case. We refer to this simply as the TCP
strategy.

2. Perform neither congestion control nor admission con-
trol. This models the behavior of today’s UDP flows.
In this case, when1/α or more inelastic flows are in
the network, the network capacity is totally consumed
(equally shared) by the inelastic flows. Therefore, the
elastic flows get no service. Otherwise, if there are
m< 1/α inelastic flows, each inelastic flow getsα and
the elastic flows share the remaining(1−mα). We
refer to this as the UDP strategy.

3. Perform “selfish” admission control but no congestion
control. In general, the admission control function can
be quite sophisticated. For example, it may depend on
the playback rateα and the holding timeµi . In our
analysis, we consider two simple admission control
strategies, in each case assumed to be performed by
the arriving flow itself. If the arriving inelastic flow is
“selfish”, it admits itself if

nε +(m+1)α ≤ 1

where (n,m) is the current number of elastic and
inelastic flows in the network. Here,ε represents the
minimum rate consumed by an elastic traffic already
in the network. Typically,ε ¿ α . In other words, the
selfish flow admits itself as long as it is possible to
achieve its playback rate ofα, even though it means
all elastic flows have to run at their minimum rate ofε.
We refer to this as the AC1 strategy.

4. Perform “considerate” admission control but no con-
gestion control. In this case, the arriving inelastic flow
(assumed to be “considerate”) admits itself if

1−mα
n+1

≥ α.

In other words, the considerate flow assumes hypothet-
ically that it is an elastic flow, and admits itself only if
its fair share of the bandwidth is no smaller thanα.
The above condition actually reduces to

(n+m+1)α ≤ 1.

We refer to this as the AC2 strategy.

Further, both the elastic and inelastic flows and their con-
trols are modeled using fluid approximation. This means
all the flows share the network as a processor sharing
server, and all the control regulating the flows take effects
immediately. Given these assumptions, each of the four
scenarios above can be modeled by a Markov Chain with
two-dimensional state space, as shown in Figure 1.

3This is a different treatment than the model in [7]
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(n,m)→ (n,m+1) (n,m)→ (n+1,m) (n,m)→ (n,m−1) (n,m)→ (n−1,m)
TCP (n+m)α ≤ 1 λi λe mµi (1−mα)µe

(n+m)α > 1 λi λe mµi
n

n+mµe

UDP mα ≤ 1 λi λe mµi (1−mα)µe

mα > 1 λi λe mµi 0
AC1 nε +(m+1)α ≤ 1 λi λe mµi (1−mα)µe

nε +(m+1)α > 1 0 λe mµi max(0,(1−mα)µe)
AC2 (n+m+1)α ≤ 1 λi λe mµi (1−mα)µe

(n+m+1)α > 1 0 λe mµi max(0,(1−mα)µe)

Table 1: State transition rates corresponding to the four Markov models
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Figure 1: Markov model of two type of flows with different
controls

The Markov transition rates of the four scenarios are
summarized in Table 1.

Independent of what control strategy is to be used for
inelastic flows, the arrival rate of elastic flows is alwaysλe

since there is no admission control for elastic flows. For
inelastic flows, the arrival rate is alwaysλi except for the
two cases (AC1 and AC2) where admission control is in
effect. The inelastic flows are always departing at a rate
of µi which is their average holding time. The service
rate allocated to the elastic flow, however, is different for
the four different cases. When the inelastic flows use TCP
control, the elastic flows will get at least their fair share, or
more if the inelastic flows cannot use theirs. For the other
cases (AC1, AC2 and UDP), the inelastic flows will not
perform congestion control. Hence, the elastic flows will
only get what is not used by the inelastic flows (1−mα), or
zero if 1≤mα.

These Markov models generally do not have simple
product form solutions, except for certain boundary cases.
For example, in the AC1 case, ifε is zero, then the state
transitions for inelastic users are independent of the elastic
users and the system has a product-form solution. In fact
for that case, the blocking probability for inelastic users is
given by the well-known Erlang-B formula.

The steady state probability distributionP(n,m) can be
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Figure 2: ProbabilityP(n,m) whenρ = 0.95, with ρe = αρi

andα = 0.05

derived from simulation. Due to the Markov assumptions,
the Markov chain itself (see Fig 1) is simulated for a variety
of parameters. We validated the simulation tool by verify-
ing the results with those cases where we have closed-form
solutions.4 Figure 2 shows a typical probability density
functionP(n,m) obtained from one of our simulations using
the TCP strategy withρ = 0.95.

The other difficult task in this modeling exercise is to
define some plausible utility functions for both the elastic
and inelastic flows. We have some intuition of what we
want:

• For inelastic flows, users care about whether the de-
sired playback rate,α, is achieved at every moment of
the holding time.

• For elastic flows, users want each bit of the file to be
transferred as fast as possible.

Additionally, we want the utility functions to be normalized
so that:

• The amount of utility achieved per unit time for one
unit of the bandwidth is between zero and one.

To make the evaluation tractable, we let both utility
functions be decomposable. For elastic flows, we define

4We also built a simulation tool to for the queueing system, which can
be used to investigate non-exponential interarrival and service times. This
is significant slower, but served as another way to validate the Markov
chain simulation.
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the utility for the transfer of each bit of information as a log
function of the rate at which the bit is transferred.

ve(r) = ln(1+(e−1)r)

wheree is the base of natural logarithm.
For flowk with file sizes, transferred at rates (determined

from the service curve,xk) r1, r2, ..., rs, the total utility of the
flow is

Ue(xk) = ∑
1≤i≤s

ln(1+(e−1)r i) (5)

The total utility of a large number of elastic flows over a
long time horizon can then be approximated as the product
of arrival rate of elastic flows and the utility of an average
elastic flow in the steady state:

∑
k

Ue(xk) ≈ λe

∫ ∞

0
skµee

−µeskdsk ∑
n6=0,m

ve(ae(n,m))P(n,m|n 6= 0)

= ρe · ∑
n6=0,m

ve(ae(n,m))P(n,m|n 6= 0)

= ρeve.

whereae(n,m) represents the allocation of bandwidth to
an elastic flow when the system is in state(n,m). Note
that the average rate of a file transfer is computed over all
conditional state probabilities where at least one elastic user
is in the system. We callve the average utility generated by
each bit of elastic traffic transferred.

Similarly for inelastic users, we define the utility per unit
time, vi(r), as a normalizedarctanfunction that equals to
one when the allocation isα or higher, but drops quickly to
zero for lower allocated rates.

vi(r) =
{

1
π arctan(γ(r−βα))+ 1

2 r < α
1 r ≥ α

This function is monotonically increasing inr. When
r = βα , vi(r) rises to 1

2. So the parameterβ controls
the transition point from low to high utility values. The
parameterγ controls how sharp the transition is. For large
values ofγ, the function approaches a step function.

We assume that the utility of each inelastic flow isvi

summed (integrated) over the holding time. Thus the utility
of thehth user who has the holding timeTh is:

Ui(xh) = α
1
Th

∫

Th

vi(xh(t))dt. (6)

Here,α serves as a normalizing constant, chosen based
on the fact that an inelastic user uses up onlyα of the
bandwidth at most. Since we compare elastic and inelastic
utilities separately (as discussed in the last section), such
scaling does not affect our conclusions.

The total utility of inelastic flows over a long time
horizon can again be approximated by the product of the
arrival rate of inelastic flows,λi , with the non-blocking
probability,(1−B):

∑
h

Ui(xh) ≈ λi(1−B)α
1
µi

∑
n,m6=0

vi(ai(n,m))P(n,m|m 6= 0)

= (1−B)αρivi .

We call vi the average utility generated by each bit of
inelastic traffic.

In our following discussions, the default parameters
used areγ = 1000 and β = 0.9, unless noted otherwise.
The normalizedln() and arctan() functions with these
parameters are plotted in figure 3 for reference.
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Figure 3: Elastic (left) and inelastic (right) utility at
different rate

The decomposability of the utility function is a strong
assumption. It assumes the treatment received by different
bits are independent of each other. For example, one might
argue that if the service curve of an inelastic flow drops
below α often enough, then it becomes a more severe
negative factor. However, the adoption of this assumption
affords us much simplified analysis. While we lose some
generality of the utility functions, we gain in the ability to
study the robustness of parameters.

To summarize, our model consists of two separate parts.
One deals with the stochastic process of the elastic and
inelastic flows sharing a network, based on which we can
compute (or simulate) the state probabilitiesP(n,m). The
other part deals with the utility of elastic and inelastic flows.
Because of the decomposability assumption on the utility
functions, these two parts can be computed separately as
shown in Figure 4. Once the utilities are computed, we
can whether various control algorithms are TCP-friendly by
checking the conditions specified in equations (2), (3) and
(4).

4 Numerical Results

4.1 Summary of Parameters

We report our simulation results in this section. Table 2
summarizes the important parameters in our model.

In our model, the total offered load by elastic flows is

System parameter

λe, λi, µe, µi, α

Control parameter

ε

Markov

Chain
probabilities

Utility parameter

β, γ

Utility

Computation

System

utility

�

Figure 4: The parameters and processes of computing
utilities
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given by

ρe =
λe

µe
,

and the corresponding offered load by inelastic flows is

αρi =
αλi

µi
.

So, the total offered load is

ρ = ρe+αρi .

Symbol Parameter Explanation Default
λe arrival rate of elastic flows
λi arrival rate of inelastic flows
µe departure rate of elastic flows if bottleneck

bandwidth is used exclusively for its service
µi inverse of the average holding time for inelastic

flows
α desired throughput for inelastic flows (also known

as playback rate)
0.05

ε the minimum fraction of the bottleneck bandwidth
consumed by an elastic flow once it is started

0.001

γ a parameter that controls the steepness of the
inelastic flow’s utility function

1000

β a related (toγ) parameter invi() 0.9

Table 2: Model parameters and their default values

4.2 The Congested Regime

When the network is lightly loaded, i.e.,ρ ¿ 1, we expect
that it does not matter which control algorithm we use
for inelastic flows — they should all yield similar results.
Our interest is to evaluate the performance of the different
strategies in the congested regime.

First, it appears that the congested regime is whenρ
is close to but less than1. Upon closer examination, the
systems except UDP can still be stable5 whenρ is greater
than 1, as long asρe < 1. This is a direct result of how
inelastic flows are defined. Since the holding time,1/µi ,
remains the same even when the inelastic flows receive less
than their desired playback rate,α, the effective load due
to inelastic flows automatically adjusts downwards asρ
exceeds1 when TCP is used to control the inelastic flows.
When the admission control algorithms are adopted (with
non-zeroε for AC1), the system is also stable asρ exceeds
beyond1. Therefore, for the congested regime, we consider
cases whenρ well exceeds1.

4.3 Comparison for Different Offered Load

The first set of figures compares the average total elastic and
inelastic utility for increasing total offered loadρ . For this
experiment, the ratio of elastic and inelastic offered load is
1, i.e., each contributes 50% of the traffic load.

5The number of flows in the system stays bounded.
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Figure 5: Elastic (left) and inelastic (right) utility vs.ρ , with
ρe : αρi = 1 : 1
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Figure 6: Mean population of elastic (left) and inelastic
(right) flows vs.ρ, with ρe : αρi = 1 : 1

As shown in Figure 5, the general pattern is that the nor-
malized average utility generated by the system in steady
state increases with offered load until the offered load
reaches the network capacity (assumed to be1). When the
network is subjected to more than what it can handle, its
service starts to degrade, and results in reduced utilities.
First, let us observe the inelastic traffic. Forρ < 1, all
strategies perform roughly the same. Forρ > 0.95, if TCP
is used, the utility for elastic flows drops very sharply to
zero. This is because TCP would give these elastic flows
their fair share, and at such high offered load, the fair share
generates almost zero utility. For the UDP case, since it
does not yield at all to other traffic, the system becomes
unstable after the offered load reaches1. In the congested
regime (0.95< ρ < 1), the inelastic flows still achieve high
utility whereas the elastic flows get almost none.
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Figure 7: Blocking probability vs.ρ, with ρe : αρi = 1 : 1

Even when admission control is applied, the utility of the
inelastic flows drops steadily asρ increases beyond1, since
the steady state number of elastic flows grows and takes up
an increasing amount of bandwidth. The mean population
sizes for elastic users are plotted in Figure 6. The figure
shows that the population of elastic users in the AC1 case
rises much faster than that in the AC2 case. This leads to
similar blocking probabilities as plotted in Figure 7. The
Erlang-B blocking probability is also included in the figure
as a reference curve. The Erlang-B formula provides a good
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estimate for AC1 and AC2 whenρ ≤ 1. Whenρ > 1, the
blocking probability of both AC1 and AC2 depends on the
number of elastic users in the system.

For elastic flows, the population size increases drastically
whenρ > 0.95, especially for the UDP and AC1 cases (for
the UDP case, the network is unstable whenρ > 1). For
the TCP and AC1 cases, the service degradation is more
graceful. Particularly encouraging is the fact that AC1
(the considerate admission control) yields the best result
for elastic flows without sacrificing the services to inelastic
flows.

4.4 Comparison for Different Traffic Mix

In the next set of figures 8 and 9, we compare the different
strategies when the traffic mix (elastic versus inelastic) is
1:9 and 9:1.
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Figure 8: Elastic (left) and inelastic (right) utility vs.ρ, with
ρe : αρi = 1 : 9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

TCP
UDP
AC1
AC2

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

TCP
UDP
AC1
AC2

Figure 9: Elastic (left) and inelastic (right) utility vs.ρ, with
ρe : αρi = 9 : 1

The general pattern is the same, i.e., the utility for both
elastic flows and inelastic flows increases with the offered
load. The role of the elastic offered loadρe is further
illustrated. When90% of the load is elastic, the model
becomes unstable when the total offered loadρ reaches
beyond1, no matter which control strategy is used. On the
other hand, if only10% of the load is elastic, the network
can operate quite satisfactorily whenρ > 1. In particular,
the considerate admission control (AC2) is able to yield
very little service degradation forρ > 1. In contrast, TCP
results in graceful service degradation for elastic traffic,
but sharp degradation for inelastic traffic; AC1 results in
good performance for inelastic flows but sharp service
degradation for elastic traffic; UDP is similar to AC1 but
is worse since the network becomes unstable whenρ > 1.

The encouraging observation is that the considerate ad-
mission control has out-performed TCP in all the situations
so far.

4.5 Comparison for Different Playback Rate

It is understandable that, the biggest concern with exempt-
ing inelastic flows from applying congestion control is that
they might have a large playback rateα. A few “large”
inelastic flows may significantly impact the performance
of elastic flows. Our intuition is that, a suitably designed
admission control scheme would neutralize the damage by
blocking judiciously some of these large flows at the right
time.
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Figure 10: Elastic (left) and inelastic (right) utilities vs.α,
with ρ = 0.1
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Figure 11: Elastic (left) and inelastic (right) utilities vs.α,
with ρ = 0.5
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Figure 12: Elastic (left) and inelastic (right) utility vs.α,
with ρ = 0.95

Figures 10, 11, 12, and 13 compare the elastic and
inelastic utilities as we varyα for the light load (ρ = 0.1),
medium load (ρ = 0.5), heavy load (ρ = 0.95) and heavily
congested (ρ = 1.4) cases respectively.

For small values ofα, or when the offered load is low as
compared to the network capacity, the different strategies
give similar performance. This is expected. As we increase
α, for each of the load levels, the considerate admission
control (AC2) improves the elastic utility when compares
with TCP. For larger values ofα under light or medium
load (Figure 10 and 11), AC2 actually performs slightly
worse than TCP for inelastic utility. This is because when
the network can only accommodate a small number of
inelastic users (whenα is large), even at light load, there is
a small but significant probability that some inelastic flows
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Figure 13: Elastic (left) and inelastic (right) utility vs.α,
with ρ = 1.4

get blocked. We expect this problem can be minimized with
suitable tuning and added sophistication to AC2.

As expected, both AC1 and UDP produce improvements
for inelastic flows, but more degradation to elastic flows in
comparison to TCP, which does not meet our requirements
for TCP-friendliness. In Figure 13, UDP is not shown since
it is not stable forρ > 1.

Finally, we also did some experiments to look at the
sensitivity to α when the traffic mix is unbalanced. As
shown in Figure 14 and 15, when the traffic ratio is9 : 1
or 1 : 9 (elastic vs. inelastic), the AC2 strategy still out-
performs TCP for both elastic and inelastic utilities.
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Figure 14: Elastic (left) and inelastic (right) utility vs.α
with ρ = 0.95, ρe : αρi = 1 : 9
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Figure 15: Elastic (left) and inelastic (right) utility vs.α
with ρ = 0.95, ρe : αρi = 9 : 1

4.6 Sensitivity to Other Parameters

Could it be that the positive results work only for the
specific pair of utility functions which we choose?

The normalizedln() function that we use for the elastic
flow is fixed. Thearctan() function that we use for the
inelastic flow has a couple of parameters (γ and β ) that
control the shape of the function. We have repeated our
experiments by tryingγ = 100andβ = 0.7. Although the
curves moved a little, the relative behaviors did not change
much.

We also try to vary the ratio ofλe to λi andµe to µi , while
keeping the values ofρe andρi to be the same. The results
for most cases are very similar as before, indicating that
the performance metrics are mostly dependent onρe and
ρi rather than their components. This indicates that there
are likely simpler formulas (either closed-form solutions or
performance bounds) that depend onρe andρi only. The
exception is the TCP case, where the results vary slightly
as we change the ratios. The solution for this case may
be more complicated. In any event, none of those results
changes any of the conclusion in the last few subsections.

5 Discussion of Related Work

Network fairness is always an issue when discussing re-
source allocation and congestion control [8, 9]. Kelly et
al [6] linked fairness to network utility optimization, and it
was further generalized in [10].

The Internet community, and IETF especially has always
been interested in this topic, more from the view point of
Internet operations and architecture [11, 12]. It is in this
context the ”TCP-friendly” notion is fostered.

There is a large volume of work on various TCP-friendly
congestion control ideas, for example [13, 14, 15, 16], to
cite just a few. The purpose of this paper is really to
point out a different way to define TCP-friendliness and to
explore more ways for heterogeneous applications to co-
exist on the Internet. The large body of work on the whole
TCP-friendly congestion control approach is therefore only
indirectly related.

Over the last few years, Roberts, Massoulie, Key, Kelly
and others have made several important contributions to the
analysis of bandwidth allocation for elastic and inelastic
traffic [5, 7, 17, 18, 19, 20]. This is very close to what we
are exploring. However, there are some differences. First,
we seek to redefine the notion of TCP-friendly bandwidth
sharing. Therefore, we need to establish the utility functions
and the methodology for justifying that a control algorithm
is fair. This aspect is not covered by the above body of
work. Second, we model the inelastic flows in a slightly
different way. Namely, the inelastic flows consume at most
the playback rate and no more of the bottleneck bandwidth.

6 Conclusion and Future Work

In this paper, we propose a new direction in thinking about
the fairness, and the notion of “TCP-friendliness” for a
network with both elastic and inelastic flows. It is our hope
that this new definition will lead to new distributed traffic
control strategies that will allow both kinds of traffic to
better co-exist.

We then use our new definition and methodology to
study the suitability of using (distributed) admission control
instead of congestion control for inelastic traffic. Although
the results are preliminary (mostly based on simulation),
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they are very encouraging, suggesting that our new ap-
proach is very promising.

We think this is just the beginning of potentially many
new efforts along this line of thinking. Some ideas for
future work are listed below:

• How about applying admission control to elastic flows
as well? As seen in Figure 5, and 9, the network
utility drops sharply (or the network simply becomes
unstable) asρe increases and whenρ > 1. Admission
control, when applied to elastic flows in some suitable
manner, may also improve the situation under high
offered load.

• In this study, the results are entirely generated by
simulation. Although we consider a large number of
cases (of different system parameters), we may not
have considered all cases of interest. We plan to
simulate some additional cases which we have not
considered.

• We plan to derive performance bounds (and closed-
form solutions in selected cases) to further consolidate
the results. This helps to avoid simulations for all
cases.

• In this study, we consider the case where the network is
a single bottleneck link. We would like to extend the
results to flows sharing works with arbitrary topolo-
gies.

• We use two different functions to represent the utilities
of elastic and inelastic flows. We expect that it should
be possible to use a single function with different
parameters to represent the utility of the different
type of users. In this way, we can more readily
study the sensitivity in comparing different strategies
to variations in the utility functions.

• We plan to implement the new control strategies as
an extended socket interface and experiment with real
applications.
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