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Abstract— While the practical coding scheme [1] has been
shown to be able to improve throughput of wireless networks, s, S,
there still lacks fundamental understanding on how the codig
scheme works under realistic settings, namely, when it opates
on a realistic physical layer and the medium access is contiled
by some random access methods. In this paper, we provide a for
mal analysis on the performance of the practical coding sclme D, D,
under such realistic settings. The key performance measurés
the encoding number, i.e., the number of packets that can be
encoded by a coding node in each transmission. We provide an
upper bound on the encoding number for the general coding
topology, and derive the average encoding number and system pig 1. Basic scenarios of XOR coding under idealized liokesluling.
throughput for a general class of random access mechanisms.
Based on the practical coding scheme, we also derive a tighte
upper bound on the throughput gain for a general wireless
network. Our results can be particularly useful for coding-related
MAC/Routing protocol design and analysis.
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number, the higher bandwidth efficiency and throughput can
be achieved. One fundamental questiowrgether there is an
I Introduction upper bound on the encoding number for a general coding

The practical XOR coding scheme proposed in [1] hafructure While former works ( [1], [5]) assume that there
been shown to be able to improve the throughput of wirelesgn be infinite nodes around the relay node such that the
networks. Consider an example in Fig.1(a), suppose rfyde encoding number is unbounded, we show that this number is
wants to transmit a packe?, to nodeD; via nodeC, while upper bounded by eonstantfor a general coding structure (in
node S, wants to transmifP, to D, via nodeC. The dashed Section Il). As we will show in later sections, the upper boun
arrows S; --» Dy and S, --» D, indicate thatD,, D; are of encoding number directly affects the highest throughput
within the transmission ranges 6f, S, respectively. There- gain by the coding scheme, as well as other performance
fore, D, D, can perform bpportunistic listening when S;  measures like throughput and packet loss ratio.
(S2) transmitsP; (P) to nodeC, nodeD, (D;) can overhear  Another important question that we addreshasv well the
the transmission of?; (P). Without network coding, node coding scheme works under random access link-scheduling
C needs to transmif’; and P, separately. However, whenmechanismsFor example, in Fig.1(a), if the link-scheduling
one uses the XOR coding scheme, n@de&an broadcast an is such that the transmitters always transmit following the
encoded packetP; @ P,) to both D; and D,, thenD; can cycle of Sq,S5,,C,--- (or S3,51,C,---), then nodeC' can
decodeP; by performingP, @ (P& P,), while D, can decode always encode two packets in each transmission and max-
P, by performingP; @ (P, ¢ P»). Therefore, nod€' delivers imize the total throughput. However, if the link-schedglin
two packets worth of information using a single transmissids Si,C, S2,C, S1,C, -- -, then nodeC cannot encode any
so thatl/4 of the bandwidth is saved. Another typical codingpackets. In practice, most of the wireless link-schedudityp-
scenario is shown in Fig.1(b), whene opportunistic listening rithms areprobabilistic(due to the random access mechanism)
is required because each of the two source nodes are asdnon-coding-oriented.e., the potential coding opportunity
destination nodes. Finally, Fig.1(c) showshgbrid form of may not be fully utilized. In Section Ill, we model how the
coding which combines the former two cases, namely, somendom accesaffects the encoding number in different coding
packets for decoding are obtained via opportunistic lisign structures. In particular, we formally characterize theriplay
while other packets are obtained by the fact that the nodeoikthroughput, buffer size and the random access mechanisms
the source of that packet. In this scenario, nétean at most used. Surprisingly, we find that the simpkgual access
encode four packets together and save three transmissionsnechanism outperforms other sophisticated mechanisms in

We use the ternencoding numbeto refer to the number of most cases. We then use the analysis in the coding structures
packets that can be encoded by a relay node (i.e., abde to provide an upper bound on throughput gain for a general
Fig.1) in each transmission. Intuitively, the higher theailing wireless network (in Section V).



In summary, the main contributions of this paper are:  “logical view of a coding structure in Fig. 2(a), wheretwo-

« We derive an upper bound on the encoding number f8PpP coding flows intersect at the coding nadeOne possible
general coding structures. This shows the contradicti@¥ysical representatidnof this logical coding structure is
to the assumption made in [1], [5]. shown in Fig. 2(b): there are nodes evenly spaced apart along
« We propose a methodok)gy to obtain thgerage en- a CirCle, the COding nod€ is at the center of the circle. Each
coding numbemnder a general class of random acced¥de along the circle, say nodehas its corresponding node
mechanisms. j, and the segmennt;| traverses nod€ (i.e.,|ij| is a diameter
« We compare the performance of different random acce@kthe circle). We assume that the transmission of nodan
mechanisms, and find the importance lnfffer sizeon be successfully received by all nodes along the circle excep
the coding performance. for nodej. Each source node chooses its corresponding node
« We formally prove the upper bound of throughput gai@s its destination, and all coding flows are relayed by node
by the practical XOR coding scheme fgeneral wireless C at the center. Therefore, in this symmetric structure, if we
networks let each source node along the circle transmit one packet to
The paper is organized as follows. In Section II, we charag®deC first, then node’” can encode all these packets and
terize the general coding structure, and provide an uppemdo broa(_jcast the encoc_jed_packet to all destination nodes alqng
on the encoding number in any possible coding structurd@® C|rcle._ Each destination r_10de can perform proper d_egod|
In Section Ill, we use a stochastic model to examine tHFCause it has already obtained the otherl packets, either

coding performance under various random access mechanigiy2PPortunistic listening or due to the fact that it is therse

In Section IV, we analytically derive the upper bound of' that packet. ,

throughput gain for general wireless networks. In Sectign V We assume th","t wireless r]odes operate at half-duplex mode,
we verify our analytical results by simulation. In Sectioh V and nodes that. mterfere Wlth each other share the common
ared tchannel bandwidth which is denoted . Clearly, all the
Hansmitters in a coding structure are within a single nter
ference range. The maximum total througHpiar the non-
coding schemandcoding-schemean be achieved, when the

Il. Coding Structure: Characterization and Properties  conditions described in the following lemmas are met.

We first define the terminology that will be used throughout . . , .
this paper. For the XOR coding, @ding nodeis the node -€Mma 1 Under the *non-coding scheme’, the maximum
which encodes packets for several flows, e.g., n6tlén total throughput is achieved when “flow rate conservation”

Fig.1(a) to 1(c) is a coding nodeCoding flowsare flows is ensured gt the relay node (i.e. no@%. In other words, the
that transmit via a coding node and their packets have tﬁ’éal bandW|d.th allocated to nod, ..., 5, Sh,OUId be. ‘?q“"?"
opportunity to be encoded (e.g., flafi— Dy and S5— D, in to the bandw[dth allocated to nodg. When this co_nd|t|on is
Fig. 1(a) and 1(b)). Acoding structureincludesone coding met, the maximum total throughput, denotedZs, is B/2.
node as well as thene-hop predecessor nodasd theone- proof: Let ), (i = 1,...,n) denote the draining rate of
hop successor nodes the associated coding flows. In generalygge §;, and let 4 denote the draining rate of node.
there can be > 2 coding flows within a coding structure.The total end-to-end throughput is equal o Obviously

Clearly the encoding numbeis at mostn in one coding e havey < 3", ;. Because all nodes are within single
structure. When a coding node decides to use the XOR codifigerference range, we have” , Ai + u < B. Thereforeu
1 1= = . 9

then we say that eoding schemes applied, otherwise, BON- s at mostB/2, wheny = ST B
coding schemés used. =

we introduce the potential applications of our results
future work. In Section VII, we present the related work an
Section VIII concludes.

Lemma 2 Under the “coding scheme”, the maximum total
throughput is achieved when: 1) the transmission schedule

follows some cyclic pattern lik&y, Ss,--- ,S,,,C, such that
the encoding number is maximized in each transmission; 2)
equal bandwidth allocation to alSy,...,S, and C. When

these conditions are met, the maximum total throughput,
denoted ag’f, isnB/(n + 1).

Proof: Let \; (¢ = 1,...,n) denote the draining rate of
node.S;, and lety denote the draining rate of node. The
(a) Logical view. (b) Physical topology. total end-to-end throughput is equal t@;, where T is the
Fig. 2. (a) Logical and (b) physical representation of a sgdstructure. 1please note that there can be other possible topologieshaeese this one

here only because it can cover the generat 2 cases.

) ) ) 2\We refer to “total throughput” as the sum of end-to-end tiyiqaut for all
For the ease of presentation and analysis, we first show toeing flows.



average encoding numbesf the coding node. Obviously where R is the distance such tha®(R) = 1/2, and j is

this number is at mosh. Similar to proof of Lemma 1, the power attenuation factor ranging between 2 and 6. We

we haverp < >°% A\ and > | \; + pu < B. Obviously illustrate P(x) in Fig.3(a) by settingR = 40 and 8 = 4.

the maximum total throughput is obtained when= n, One may choose = 30 andd§ = 20 in this example since

which means all nodes must have equal draining rate, aRd30) ~ 1.0 while P(30+20) ~ 0.0. Although the actual

the transmission schedule must follow the cyclic patteke li value ofr andd may vary for different physical layer models,

S1,59,--+,5,,C to let the coding node encodepackets in the key point is that the “gapd is not neglectableompared

each transmission. B to the transmission range which we need to consider in our
analysis.

Remark: One should note that while the optimal throughput

for non-coding schemis a constant, the optimal throughput

for coding schemés crucially dependent om, the number =
of coding flows in the coding structure, which is also the 5§
maximum encoding numbaer this coding structure. == 4 .
%‘” <r >3
A. The Upper Bound of Maximum Encoding Number go .
As discussed before,, the number of coding flows within Distanse beaveer ranamittes and receier Y 2r+d g

a coding structure, is the maximum encoding number and () P(x) is a continuous decreasing (b) Distance relationship for
directly affects the optimal throughput of the coding sckem  function of the distance between aeach group oV}, D; andD;.

In [1], [5], the authors assume thatcan bearbitrarily large. transmitter and a receiver.

However, we will show that under a realistic wireless sejtin Fig. 3. Characteristics of transmission range under a agading model.
n is indeed bounded. The main reason for this upper bound

is the geometrical constraintassociated with opportunistic o )
listening and two-hop relaying. Now we can focus on the determination of the maximum

Consider a coding structure with > 2 coding flows. value ofn as a function of the successful transmission range

There aren receivers located within the transmission range @nd the channel parameigrThe results are summarized in
of the coding node. For each receiver, say recelgrit has (he following theorem.

to decode its own packet from the XOR combinationrof

packets. In other words, it must have already obtained terot Theorem 1 The number of coding flows (or the maximum
n—1 packets either by (a) it has transmitted that packet or (bhcoding number). in any possible coding structure is upper
it has overheard that packet by opportunistic listeningteNobounded byO((r/4)?) in 2D space, and)((r/§)?) in 3D
that forn >2 coding flows, there must be some opportunistispace.

listening involved.

Suppose receiveD; gets packet’; (which is destined to Proof: We first consider the 2D case. Based on the above
receiver D;) by opportunistic listening. Let/; denote the discussion, for each group dff, D; and D;, we have the
transmitter for this opportunistic listening, theh;, must be distance relationship as shown in Fig. 3(b) (the relatignsh
within the transmission range of whereasD; must be is a result of the triangular inequality). Obviously, evéno
outside the transmission range Bf. Having this in mind, receiversD; andD; must be at least apart from each other.
let |AB| denote the distance between nodeand B, then Equivalently, each circle with radiug/2 centered at a receiver
we must have|VjiDi| < r and |V;'Dj| > r+ 4§, where must bedisjoint with each other. Meanwhile, each receiver
r is the reliable transmission rang®f node V7, and § is D: must be located within the successful transmission range
a positive constant characterizing thestance gapbetween (denoted byr) of the coding node&”. We show such scenario
“reliable transmission” and “unreliable transmissioni.dther in Fig. 4(a). The question is how many small circles with
words, we say that ifAB| < r then nodeB can successfully radiusd/2 can we pack in a big circle with radius This
receive nodeA’s transmissionwith high probability while number is upper bounded b9 ((r/4)?), which is also the
if |[AB| > r + 6 then nodeB can only receive nodel’s upper bound forn, the maximum encoding number in a

transmissiorwith a very low probability coding structure. For 3D case, the circles become spheres
Let us illustrate the concept ofands in wireless networks. and we can carry similar analysis to show the upper bound is
In [8], the authors derived the successful reception pribbab O((r/5)?). L

(P) as a function of distancer] between a transmitter and

a receiver under the log normal shadow fading model. fRemark: The bound in Theorem 1 applies &l possible
particular, P(x) can be approximated as: coding structures. It does not require every transmittératoe

the same transmission range, and also does not assume the
P 1-((%)*)/2 = <R, transmitter for opportunistic listening to be within onlye-
(@) = (BE=2)28)/2 2 >R hop from the coding node. Therefore, the upper bound is



pem el A. Key Intuition

s g’,l Before delving into the analysis, let us first present the
/ q{ high-level intuition that underlies the results in the rest
Noor this section. Consider a coding structure witlcoding flows

) operating under the coding scheme. The number of packets
\ ! encoded by the coding node is closely related to number of
% its bufferedpackets at the instant right before the transmission.
NS b If we classify packets in coding node’s buffer intogroups,
T ) ) e each containing only the packets of one coding flow, then the
(a) Packing circles in a circle. gT) 2IZ()tl):itance relationship in encoding number is exactly the numberrafn-empty groups
9500 at the instant right before coding node transmits. In other
Fig. 4. Geometrical constraints that bound the number ofngptiows . words, higher packet diversity in the buffer will result iigher
encoding humber.
Two main factors that affect the number of buffered packets
very general. For the representative coding structure sho@ the coding node argraffic volumeand random access
in Fig.2(b), one can further provide a tighter bound. mechanismWe discuss the effect of traffic volume first. If
there is only light traffic across the coding structure, theiog
node will have lots of opportunities to transmit its packets
Theore_m 2 For the coding structure in_Fig.Z(b), the r_lumberbefore accumulating a IaFr)ge number rdin-empty grou%sin
of coding flows (or maximum encoding number) is UPPES puffer. On the other hand, if the coding structure is hyear
bounded byr/arccos (r/(r+9)). saturated, packets in the coding node’s buffer will accuateul
Proof: For the coding structure in Fig. 2(b), we show th gnd have moreon-em_pty groupsn shor_t, the effec_t of coding
ecomes more prominent as the traffic volume increases. We

dllstance relatlonsr_np in Fig. 4(b). Clearly.there 1S a MM~ hould also emphasize here that the encoding number tends
sized arc separating every; and D;, which holds for any ) .

. 4 o . to be larger when the traffic rates of the coding flows are
two receivers along the circle. Accordingly, the size of the

minimum central angled(in Fig. 4(b)) separating any two comparableto each other.

receivers is2 arccos (r/(r + 6)), and the maximum number ﬁThte tllr:wk-levelb ran?gmﬁ aczess Lnet:chgnls_m talso C(;“C""?”y
of coding flows in this structure is/ arccos (r/(r + 4)). afrects the number ot butléred packets. For instance, densi

using the basic DCF of 802.11 under heavy traffic. Because
éhe coding node has equal channel access opportunity &s all i

Remark: The following table shows the bound in Theorem Zontenders (i.e., other source nades), packets may acatenul
for different values ofr/(r + J). Surprisingly, the maximum ~~. N ST P nay
uickly in its buffer, resulting in a high encoding number.

number of coding flows (or encoding number) is quite sma@)n the other hand, if we try to assign a higher channel

This explains why the encoding number observed by t%%cess riority to the coding node (since it is most likel
authors of [1] is at mos§, and in most cases, only 2 to 4. priority ng ! 't el

the bottleneck node), as suggested bylhekward pressufe
| r/(r+9) | 06 | 07 | 08 [ 09 | scheme proposed in[9], then the coding node can clear out the
[ max encoding nol[ 3.3879 [ 3.9497 | 4.8820 | 6.9654 | buffered packets faster such that the encoding number will b
smaller. We should note that thackward pressurés clearly
[1l. Coding Performance under Random Access a good choice fomon-coding schemebecause it reduces
Link-Scheduling the self-interference between upstream and downstreaesnod
. . ) along the flow. However, when @ding schemé employed,
In previous section, we derived the upper bound of magye may prefer &igher buffer occupatioat the coding node

imum encoding number for any possible coding structure§, 5s to increase the coding opportunity.
Note that the maximum encoding number is achieved by the

optimal conditions stated in Lemma 2. Now for a given codin
structure withn coding flows, we examine thaverage en-
coding numbewhen the link-scheduling uses generic random Based on the above discussion, we use the following
access mechanism. We will first assume that the coding natlechastic model to capture the dynamics of the coding sode’
never delays transmissiphe., it competes for channel accesbuffer by taking the traffic volume and random access mech-
whenever it has packets to send and encodes as many pacgkeigms into consideration. For simplicity of derivatione w
as possible. At the later part of this section, we will relaist assume aseparate buffer structurat the coding node: the
assumption and analyze the performance when a coding neég@ding node maintains a separate buffer for each coding flow.
uses delaying strategies. We will show later (in Section V) that the analytical results

g. Calculating the Average Encoding Number

3Similarly, this bound can be extended to a 3D case, by chgntie 4Whenever the downstream node has packets to send, it withieghe
“minimum arc” into the “minimum area” on the sphere. transmission of upstream node.



from separate buffer structure matches well even when onéMe can express the total effective throughput, denoted by
uses a single buffer structure. T, as
Let M denote the buffer size for each coding flow at the T = E[Q|P. (4)

coding node. Consider the buffer for one specific coding flow, . , . .
say flow S,—C—D; (following the notations in Fig. 2(a)). We and the effective throughput for thé&" coding flow is simply

use an embedded Markov chain to represent the dynamic 6¢h Kile.

this tagged buffer at the coding node and it is illustrated in e remaining issues are to derive the transmission proba-

Fig. 5. The embedded points are right before each success LIJ'FeS P; and .., which are determined by teaffic volume

o . ndrandom access mechaniskve use the ¢ontending prob-
packet transmission by a source node or the coding node,. ", o
. . ability”, p; or p., to denote the probability that nodg or
and we call the interval between two consecutive obsematio

) . : ) : nodeC' competes for channel access at each glptand p,.
points aslot Given certain traffic loading at the source nodes, : o

) . : . ve the following relation:

the slot time is a random variable relating to the back-o

mechanism and collision probability. For the rest of thipgra

n

the throughput is expressed in the unit of “packet/slotd tre pe=1- H(l - ). ®)

total bandwidth for any random access mechanism is clearly =t

1 packet/slot. Now we model the effect ofandom accessWe are par-
ticularly interested in two generic classes of random atces

1-P-P, 1-Pi-P, mechanisms: 1) equal access (e.g., DCF in 802.11), and 2)
higher priority for the relay (coding) node (e.g., backward
pressure in [9]).
Equal Access:When all competing nodes have equal channel
access probability, then the probability that ndfjetransmits
in a slot, conditioned that it is the contender for this slet,
1/(pe+>_,4 pj+1), and the probability that the coding node
transmits conditioned that it contendslig(1 + >_, p;). We

Now we consider the state transitions of this embeddedn express; and P, as:
Markov chain. LetP; (: = 1,...,n) denote the probability P 1 P 1
that the source node; transmits in the corresponding slot, and i = Pi ‘ 5 c=PecT T~ -
let P, denote the probability that the coding node transmits pet Ljpabi T 1 L+ 2
in the corresponding slot. LeV;(t) be the random variable K-Priority: Assume the relay (coding) node has *priority”
representing the number of buffered packets at the codidg n®Ver its upstream nodes, namely, the coding node f§efmes
for the i-th flow at slott, then we have the following events(KX > 1) of the opportunity that another competing source
at each state transition: node transmits. The®; and P. can be expressed as:

o If S; transmits, therV, (t+1) = N;(t)+1 if N;(t) < M, P 1 P K
ﬁngNi(td‘!' 1):évi(t):MOthhedr;LVi(se' )= Ni(t) l_pZKPc‘FZj;éipj"‘l’ c_pcK"‘ZiPi.
« If the coding node transmits, the¥;(t+ 1) = N;(¢) — 1 .
if N;(t) >0, andN;(t+ 1) = N;(t) = 0 otherwise. C. Case Studies
o If S; (for j # i) transmits, thenV, (¢ + 1) = N;(t). We conduct several case studies to gain the important
(Lﬁn}sights on the effect of traffic volume and random access.

Fig. 5. Embedded Markov chain for the tagged buffer.

(6)

()

Let 7 denote the steady state probability that the tagg ase 1—Saturation Throughput: We first examine theat-

buffer (for ﬂOW 1) has j packets. Solving this embedde uration throughputof both “equal accessand “K-priority”
Markov chain, we have . .
mechanisms. By saturation, we mean tkath source node
N 1—ay 01 M 1 always has backlogged packets to transroinder such con-
= (@) 1— (ag)M+1 | J=00 @) dition, we havep; = 1 for all + = 1,...,n. Combining Eq.

- ~(2)(5)(6)(7), we have the following fixed-point equation:
where«; = P;/P.. The probability that the tagged buffer is

not empty denoted as:;, is _ l-a !
Py | pe=1- (W) (8)
i o — (ag)MH
ki=1—my= T (o)1 (2) where
_ . . (1+in) (for Equal Access)
Define ; as a random variable such th@ = 1 if the o= et (for Ic-priority) 9)
tagged buffer isnot empty and2; = 0 otherwise. Then the Kpe(Kpetn) P y
average encoding numbeer slot can be expressed as Based on the above equation, one can findsing iterative
n n method, and then calculate the average encoding number and
E[Q] = ZE[Qi] _ Z“i' ©) throughput using Eq. (3)(4). In particular, we find that for

= | the “equal accessmechanism,p, = 1 is a good enough



approximation for alln > 1 and M > 1 cases. Therefore, theinto Eq. (6) or (7) and gefp;} | p.. The desired bandwidth
average encoding number of equal access under satur&iorallocation isfeasibleonly if 0 < p; <1 Vi and0 < p. < 1.

M We formulate theoptimal bandwidth allocatiorproblem
EQ] = U yaneE (10)  as follows: given a desired proportional bandwidth allarat
) ) among the source nodes, i.8y,,...,7, such thatP;, : P, :
and the corresponding total throughput is i P, = 49 - : v, determine the value oP. so
n M as to maximize the total end-to-end throughput. To solve the
T =EQF = (n + 1) (M + 1) : (11)  problem, we can express as
Nonetheless, for theX -priority” mechanismp, = 1 is no P (=P
longer a good approximation especially whEnis relatively Qi = P P, =1...,n, (12)

large. The main reason behind is that the coding node now
clears its buffer faster such that it is less likely to havekats and combine with Eq. (2)(3)(4) to express the total throuwghp
for transmission. as a function ofP.. In particular, given the number of coding

For instance, we set = 4 (i.e., 4 coding flows), and flowsn and the buffer sizé/, one can show that the maximum
find p. (and hence average encoding number and throughpi@ial end-to-end throughput is achieved when all sourceesod
for different values of buffer size \{) and priority () getequalbandwidth share, i.eq; =--- = y,.
using iterative method. We illustrate the interplay of etiog For instance, whem = 4, v; = v2 = 3 = -4, We obtain
number, throughput and buffer for different values igfin the optimal P} and throughputl™ for different values of
Fig. 6, which shows that higher priorityk() results in both buffer size M. Furthermore, we obtain theptimal values of
lower encoding number and lower throughput in most cases. A such that the corresponding optimal bandwidth allocation
particular, when the coding node has a very high prioritg.(e. is feasiblefor the random access mechanisms. The results are
K = 10), nearly all the coding opportunities are diminishedummarized in the following table. One can observe that with
such that the throughput of coding scheme is only around OtBgher buffer size /), the optimal bandwidth share of the
the optimal throughput of thaon-coding scheme coding node is lower while both the throughput and average
Remark: We have observed the advantage efjtial access encoding number is higher. Thedual access(i.e., K = 1)
over "K-priority” especially with relatively large buffer size tends to becloser to the optimalvith larger buffer size.

(.,e., M > 5). Recall from Lemma 2 that the optimal
throughput for the coding schemend3/(n + 1) with B =1 | i 2 [ 5 | 7 [ 10 | 20 |
packet/slot here. Now we can see thatdélqeial random access

adds a fraction ofM /(M + 1) onto the optimal encoding L 0.296| 0.251]| 0.239| 0.229| 0.215
number as well as the throughput! A large buffer size (say T i 0.576] 0.696 | 0.723| 0.745] 0.772
M > 10) can alleviate the performance degradation, but w{ll&v8: €ncoding # 1.95 | 2.77 | 3.03 | 3.26 | 3.58
induce longer queuing time at the coding node and hence K 132 ] 119 ] 115 111 | 1.06

longer delay. This illustrates an importaimadeoff between case 3—Performance under Adequate Buffer SizeWe
throughput and delay at the coding node. have seen that a large buffer size dssentialin utilizing
the coding opportunities, and it is with large buffer sizatth

g4 08  ioooe “equal accessoutperforms “K-priority”. To further explore
§ o7 e the reason behind, let us assuméequate buffer sizésay
g?* 206 /, | M > 10) and consider a general case where the coding flows
g 3 05 SRy may haveasymmetridraffic rates. From Eq. (1), one can show
o A7 L F 2 that the packet loss ratiofor flow ¢ at the coding node is
g °4 o equal tor},. With adequate buffer size, the prerequisite for
<1 5 0 15 20 5 0 15 20 low packet loss is only’, > P, Vi. In other words, the coding
Buffer size Buffer size node only needs to get tlsame bandwidtlas allocated to the
(a) Average encoding number. (b) Total throughput. source node with théighest load. We let P, = max;{P;}
Fig. 6. Interplay of buffer size Xf), encoding numberXK -priority and @nd examine whether such bandwidth allocatiorfeigsible
throughput under saturation. for “equal accessor “ K-priority”. From Eq. (6) and (7),

we can see that such allocation is feasible fequal access
Case 2—Feasible and Optimal Bandwidth Allocation:The by simply letting p. = max;{p;}, while “K-priority” fails
transmission probabilitie®;, P. essentially reflect théand- to provide a feasible solution even with small valuesrof
width shareamong the source nodes (i = 1,...,n) and (e.g.,K=2). This explains whyrandom accesss particularly
the coding node. Based on Eq. (6) and (7), we can examig@itable for coding scheme with adequate buffer size.
the feasible bandwidth allocationf both “equal accessand

‘K- P”'C’”ty" as follows: given a desired set of bandwidth syynen such condition is met, the packet loss ratio will noteextl /(M +
allocation { P;} | P., we can put the values oP, and P, 1) for all flows.



D. Will Delaying Strategy at the Coding Node Help? One should note that the coding scheme and non-coding

In the above analysis, we assume the coding node Compégggme may uséifferent routes to achieve. their respective
for channel access whenever it has packets in the buffer. NBy@ximum throughput. However, the following lemma states
we discuss the delaying strategies of the coding node. We dhgt to obtain the upper bound gf, we only need to consider
such strategies aswait-for-X”, namely, letting the coding @ Smaller feasible space.
nodehold transmission until it can encode at leastpackets ) )

By such scheme, the average encoding number is at Jéast-€mma 3 For a general wireless network, the maximum

Although it seems to be promising at the first glance, it hd&roughput gainG* is upper bounded by the maximum
the following drawbacks. throughput gain when both coding and non-coding schemes

First of all, the effect of “Wait-forX” on increasing the operate under the same routes, over all feasible routing

encoding number is only significant whe¥ is large enough Pelicies.
(e.9.,X > M/(M + 1) with symmetric flow rates), and in pygof: please refer to Appendix . B
many cases, only wheX = n. However, a largeX means

the coding node may hold back its transmission for a longernogw we consider the impact to single coding structure
time, which will significantly increase the packet 10ss @ati \yhen there is interference from otheon-codingflows. One
unless the coding node also has a very highpriority”.  important observation is that non-coding flows that interfe

~ Secondly, “Wait-forX™ increases encoding number signifyyith the coding node can also benefit from the coding scheme,
icantly only when the network is far from saturation and thgecause the coding node can send out the same amount
buffer size is relatively small. However, trying to have @i ¢ jnformation by consuming less bandwidth, thus leaving
encoding number when there is only light traffic load hatlitt ,ore pandwidth for other competing nodes, including the
benefit on the throughput because the network can sustain r%?l-coding flows. In case that there exists non-coding flows
traffic even without network coding at all. When the traffigpring the bandwidth with coding flows, the following lemma

intensity increases, the encoding number cantdmatically rovides an upper bound on throughput gain by the coding
increase due to higher buffer occupancy. We have shown tg@ﬁeme within asingle coding structure.

when the network is operating close to saturation, theual

acces$ with a moderate buffer size at the coding node isemma 4 For a single coding structure with possibly non-
sufficient to utilize most of the coding opportunity. ~ coding flows interfering with the coding node, the maximum

Last but not least, when the coding flows hasymmetric throughput gain for both the coding flows and non-coding
traffic rates, “Wait-forX™ will easily lead to buffer overflow fiows is upper bounded B/(n + 1) when the buffer siza/
because it takes more time to accumulate enough packetsgpthe coding node approaches infinity, and this upper bound
encoding compared to the symmetric case. can be approximated an/ (n + MJ\J{I)'

IV. Fundamental Limits of the Coding Scheme Proof: Please refer to Appendix II. B

In previous two sections, we have characterized the basic
coding structure and examined its performance under vauriou Another key insight that enables us to get the upper bound
random access mechanisms. Now we provide an upper botimd a general wireless network is that the coding scheme
on the throughput gain for general wireless networki.e., only bringslocal improvementin particular, coding scheme
a network with any possible topology and traffic demandnly increases the bandwidth efficiency of the coding node.
In such setting, there are two main differences from th@onsider the two cases shown in Fig. 7, where there are
single coding structure case: 1) there may exist severahgodnon-coding flowsinterfering with eitherS;, S, (Fig. 7(a))
structures in the network; 2) there may existoh-coding or the coding nodeC' (Fig. 7(b)). In such cases, there is
flows), i.e., flows that are not relevant to any coding procesapt much room left for the coding flows to improve their
and these non-coding flows may evaterferewith the coding throughput, and the overall throughput gain is diminished.
flows. Moreover, if a coding flow traverses several coding struegur

Let us first define the throughput for a general networks end-to-end throughput is upper bounded by the bottlkenec
Given a set of traffic demand$D;}, each containing a coding structure: its throughput improvement is bounded by
source node, a destination node, and a traffic value denoted throughput gain in one of the traversed coding strusture
as ), the throughput scale-up of the network is a positiwhich gives it the least improvement. Therefore, we have the
real numberk such that the set of flow ratefgc);} can be following result.
supported by the network. We usg and k. to denote
the maximum throughput scale-uachieved by the coding Theorem 3 For a general wireless network, the end-to-end
and non-coding schemes respectively. Theoughput gain throughput gaing by using the XOR coding is upper bounded
denoted ag, is equal tok* /£ ., and themaximum throughput by 2n/(n + 1) when the buffer sizé/ at the coding node
gain, denoted ag;*, is the maximum value ofj over all approaches infinity, and this bound can be approximated as
possible network topologies, traffic demands, link-sctiedu 2n/ (n+ L) wheren is the maximum encoding number in

M+1
and routing algorithms. one of its coding structures.



Proof: We have shown that each coding structure in thexperiment 1 (Performance of “Equal Access”): Fig. 8

network, say coding structurgé, can provide a maximum shows the performance with = 4 coding flows under

throughput gairen; /(n, + 1). Because we ensure the sameaturated condition. Each flow has a traffic load equal to

throughput gain by all flows, the maximum throughput gaithe total bandwidth to saturate the system, and we vary the

is limited by one of the coding structures that provides thger flow buffer size at the coding node between 1 and 20.

least throughput gain. Therefore, we have the this theoremle depict the results by both the separate buffer structure
B and the single buffer structure, and compare them with the

analytical results. By the analysis, the saturated thrpugand

Remark: 1) Compared to the bound provided in [3], our boungacket loss ratio can be approximatedT—gjs[ML+1 and ﬁ

is tighter and holds for any possible topologies. 2) Our defespectively. One can see that the analytical results migh

inition of throughput gain provides an analytical justifioa closely to the simulation results. Note that for then-coding

for the “coding gain” defined in [1]. Note that authors of [1lscheme, the throughput and packet loss are not sensitive to

also define a “coding+MAC gain” that can even approach buffer size.

However, the “coding+MAC gain” compares theaturation

throughputof both coding and non-coding schemes, whic

is not a “fair” comparison because the saturation throughp 5°

of non-coding scheme is much lower than the maximufgo.é

0.6| —©-analysis

—&-simulation, separate queue
——simulation, single queue
——non-coding scheme

throughput it can achieve. ol 0z
? 10 15 20 5 10 15
Buffer size per flow Buffer size per flow

(a) Total throughput. (b) Packet loss ratio.

Des, o

Fig. 8. Results withn = 4 coding flows under saturation and equal access.

D D .
: _ '. _ To further observe the performance wietlequate buffer
(@) Excessive contention at  (b) Non-coding flow size we set the per flow buffer sizél{) to 20 and vary traffic
node S, Sa. interferes withC'. . . .
load of the source nodes. In Fig. 9(a), we keep increasing the
Fig. 7. Two scenarios that limit the throughput gain by cgdin symmetric offered load and observe the total throughput

Based on the analysis, the optimal bandwidth allocation for
o ] achieving maximum throughput 8 ~ 0.22, P ~ 0.19 and
V. Verification of the Analysis the optimal throughput is aboQt77. One can see that through-
The goal of this section is to verify the analytical resultput of the coding scheme does approach maximum when the
in Section Ill. We implement a discrete-event simulatort tharaffic load approaches 0.19, and the maximum throughput by
approximates the random access mechanisms including Eqe@lial access is very close to the optimal. Furthermore, the
Access, K-Priority” and “Wait-for-X" discussed in Section throughput remains stable as the load increases. Nons$hele
[ll. Note that we do not simulate the general wireless nekwofor the non-codingscheme, the saturation throughput (about
because such scenario is already studied in [1], [6], [1,2)is much lower than the maximum throughput (about 0.48)
and their results are consistent with the bound we give that the system can achieve.

Section IV. Instead, we conduct extensive simulatiosingle In Fig. 9(b), we illustrate the total throughput with asym-
coding structureto verify the correctness and precision of thenetric flow rates. We fix the traffic load of three existing flows
methodology used in Section . to be 0.05,0.1 and0.15, and keep increasing the load of an

For the coding scheme, we use two types of buffer structuircoming flow. We depict both the total throughput and the
separate structure (i.e., independently maintaining &éebiédgr throughput for the incoming flow. Not surprisingly, the tota
each coding flow) and single structure (i.e., maintaining onhroughput remains stable at aroufidi5 when the arrival
large buffer for all coding flows) at the coding nodé For rate of the incoming flow exceeds33. One can check that
the single buffer structure, the buffer size is equalntd/, the optimal bandwidth share for the incoming flow is indeed
wheren is the number of coding flows, andl/ is the per around0.33 while the optimal total throughput is aroufds5.
flow buffer size. We present the simulation results in tw®his justifies thaequal access with adequate buffer sitees
main perspectives: 1) performance with fixed traffic load ardad to close-to-optimal throughput.
varying buffer size; 2) performance with adequate buffee si Experiment 2 (Performance of “K-priority” and “Wait-

(M = 20) and varying traffic load. We normalize the channdbr-X"): Let us first study the performance of th& “priority”
bandwidthB = 1 and the main parameters are(number mechanism. We set=4 coding flows, each with the offered
of coding flows),M (buffer size per flow), values oK (K- load of 0.2, the theoretically optimal bandwidth share stated
Priority) and X (Wait-for-X). Note that, although our resultsby Lemma 2. We compare the total throughput and packet
hold for any givenn in general, we choose = 4 in the loss ratio of different values ok (K = 1 is simply the equal
following experiments for consistency of presentation. access). One can see that the simulation results in Fig) 10(a



o

of equal accessnechanisms and characterized the importance
of buffer size These insights can be particularly valuable for
designing coding-efficient link-schedulers.
2) Deriving per-flow throughput under coding scheme:The
effective sending rate of the coding node is simply the pebdu
of average encoding number and the physical bandwidth it
(a) Symmetric flow rate. (b) Asymmetric flow rate @05 + consumes. In general, the throughput in unit of “packet per
0.140.15 + z). second” can be derived as long as the average slot time is
Fig. 9. Throughput withn =4 and M = 20 under equal access. calculated based on the random access mechanism used.
3) Designing algorithms for coding-aware routing: In [6],
[7], the authors proposed tlwding-aware routingThe main
eason for incorporating coding considerations into it

The th hout perf f rand toerfol ilgorithm is that the coding opportunity are crucially de-
€ throughput performance of random access outperto mspafndent on traffic pattern, which in turns is affected by the

:);herSK’;lpnortﬁy lsct;?(meg vythe_ndthedbuffer S'tZM ISI greatelr( éouting decision. If using throughput capacity as the nodor
ano. INonethelessis -priority indeed guarantees low packe valuating a new path, our throughput analysis in the coding

loss at the relay (coding) node. structure can be useful for determining the throughput ciapa
of a new path with potential coding opportunity.
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matches well with the analytical results shown in Fig. 6(b
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Lo gos T (e VII. Related Works
g 203 &K=
ge° % o o The concept of network coding is first proposed in [2].
Fos g“”\\\w Since then, the potential benefit of network coding has been
od T owiy PR | studied in various settings. For the wired case, [4], [Spptes
Bufer size per flow Bufer size per flow various bounds on the throughput gain for single multicast,
(@) Throughput. (b) Packet loss ratio. single/multiple unicast and single broadcast cases. Mere r

cently, for multiple unicast sessions in wireless netwpfR$
shows that the throughput gain is upper boundedl—%
_ in 1D random networks, and upper bounded?by/%% in

In '_:'g‘ _11(a), we compare the tqtal throughput of severgb random networks, wherA is a parameter characterizing
combinations of K -priority” and “Wait-for-X" schemes. The intensity of interference, and= max{2, VAZ + 2A}. It
offered load of eac;h flow is set to 02 As we have d'scusseqsaconjectured in [3] that the throughput gain is also upper
large valqe ofX with K.: 1 results in the“lowgst ,throughpmbounded by 2 in 2D random networks. In [1], authors propose
_and the hlghe_st IOS_S ratio. Even When_ ﬂle Wait-fofscheme e - gistributed XOR coding scheme and demonstrate the
IS acc_ompan_|ed_ ‘_N'th a propeK“—prlo_nty (K =10,X =4), throughput gain via implementation and measurement. Based
there. is no significant performance improvement comparedaﬂ the XOR coding scheme, [6], [7] introduce the coding-
the simple & =1, K’ = 1) pair. aware routing and formulate the max-flow LP with coding
considerations, however, they do not incorporate the efiec
random access by assuming an optimal link-scheduling for
the coding scheme, further study is also necessary on how to
realize the coding-aware routing in practice.

Comparing with former works, we analytically examine the

s A is coding performance undeandom accessand shows that

* Buflersizeperfion” ® Buffersize per flow the maximum encoding number (which was assumed to be
(a) Throughput. (b) Packet loss ratio. unbounded before) is upper bounded bgomstant Focusing
on the coding scheme proposed in [1], we obtain a tighter
bound on throughput gain for general wireless networks.

Fig. 10. Performance ofK -priority” mechanism.
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Fig. 11. Performance of combinations aK*priority” and “Wait-for-X".

VIIl. Conclusion

VI. Potential Applications In this paper, we provide an analysis of the practical coding
We now briefly introduce the potential research directiorscheme under realistic physical layer and random access. Th
where our analysis can be useful: key performance measure is teacoding numbeiWe derive

1) Designing coding-efficient link-schedulers:A coding- an upper bound on the encoding number in any possible coding
efficient link-scheduler should utilize most of the codingr 0 structures. By calculating thaverage encoding numhewe
portunities to improve throughput. In Section Ill, we exama examine the performance of a general class of random access
general class of random access mechanisms that can be useddiohanisms. We also provide a tighter upper bound on the
a coding structure. In particular, we have found the adggntathroughput gain by the practical coding scheme. Our arglysi



can be useful for future coding-related protocol design and
analysis.
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competing nodes. Clearl. is a function of\¢ (: = 1,...,n),
APPENDIX | AS and XS, For instance, in Fig. 12, flow — 2 — 3 has two
PROOF OFLEMMA 3 nodes interfering with nod€’, so the amount of bandwidth

Given the network topology and the set of traffic demandiéécomribUteS inB_ is equal to two times of its throughput.
we useR to denote set of routes chosen for the flows. We u enerally, we can expreds; as

k:(R) (k;.(R)) to denote the maximum throughput scale-up L .

when using the routeR for coding (non-coding) scheme. Let Be = Z Vidi + Ac + Vol (14)
R} and R} denote theoptimal routesfor coding and non- =l

coding schemes respectively. Then we have wherev; > 1 for all i andv, > 1.

Similarly, for thenon-coding schemeave have
g ke k(B _ RA(RO) .
khe  Kne(Rye) = ko (RE) Bre =Y Ui+ AL+ voAne (15)
which says that the general maximum throughput gain is upper i=1
bounded by themaximum throughput gaionditioned on  The following observation relateB,. and B,
the same routing for both coding and non-coding schemeSbservation 1: We haveB. < B,,., when both coding and
Therefore, to examine the maximum throughput gain, we cann-coding schemes are maximizing their throughput (based
only consider the case when both schemes choose the samethe same routing). We can prove this observation by
routes for all flows, such that tteame coding structuresxist contradiction: if B. > B,,., then there is clearly some “free”
in both schemes. bandwidth (which can increase throughput) thatas utilized
by the non-coding scheme. However, we assume that the non-
coding scheme is maximizing the throughput. This shows the
) ) ) ) contradiction.
Fig. 12 illustrates the scenario that a coding structure mayRecall the results in Section 11l and Lemma 1, we have the
encounter in a general wireless network. The coding ﬂo"Y&llowing observation:
can be longer than two hops, and there can be non-codifservation 2: When both coding and non-coding scheme
flows (e.g., flowl — 2 — 3, ¢ — 4 and5 — 6in Fig. 12) are maximizing their throughput, we have: 1) =
interfering with the coding nodé'. max; {\¢} with infinite buffer size and approximately\¢ =
For thecoding schemewe useX{ (i =1, ...,n) to denote M+l ax,{\¢} with adequate buffer size2) A =
the throughput of coding flow, and use); to denote the *h ync ¢
total throughputof all non-coding flowghat interfere with the \l/\:/|1th Zinfinite buffer size combining Eq. (14)(15) and the
coding node. In addition, we us€ to denote thebandwidth 4p0ye observations, we have
consumed by the coding node for all the coding flows n
Similarly, for the non-coding schemewe use\}“ (i = Zgui/\?#—gmax{)\?c} + GUoA™ < B (16)
1,...,n) to denote the throughput of the flow that travels @

(13)
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i=1



Therefore, we have
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With adequate buffer sizave have
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