
Characterizing the Performance and Stability Issues of the
AS Path Prepending Method: Taxonomy, Measurement Study

and Analysis∗

Hui Wang Rocky K.C. Chang Dah Ming Chiu John C.S. Lui

Abstract

We consider the autonomous system (AS) path prepending
(ASPP) approach to perform load-balancing on inbound
traffic for multihomed ASes. Although the ASPP approach
has been practiced by many AS operators for a long time,
it is surprising that there still lacks a systematic study of
the approach and understanding of its effects and perfor-
mance implications. The purpose of this paper is to pro-
vide such an analysis, which serves as a basis to further
improve the approach and to understand its limitations.
There are two parts to this study. The first one is based on
measurement and analysis of the Routeviews data, which
provides the fact of the “prevalence” of using ASPP ap-
proach in the current Internet and its possible impact on
Internet routes. In the second part we propose a model of
how ASes perform traffic engineering and we also present
some fundamental issues of decentralized traffic engineer-
ing in the Internet. In our model, each AS performs in-
bound load balancing so as to optimize its traffic engi-
neering goals. Some important questions that we address
are how these local actions affect the global network per-
formance and whether these ASPP actions interfere with
each other and induce instability. We provide some ex-
amples to illustrate the performance and stability issues
and suggest some guidelines that will help to avoid route
oscillations.

1 Introduction

One can view the global Internet as an interconnection
of ASes. In general, there are two types of AS, namely,
transist AS and stub AS. Transit AS provides Internet con-
nectivity to other ASes by forwarding all types of traffic
across its network. Stub AS, on the other hand, does not

∗Hui Wang and Dah Ming Chiu are with the Department of
Information Engineering, The Chinese University of Hong Kong.
Email:{hwang3,dmchiu}@ie.cuhk.edu.hk. Rocky K. C.
Chang is with the Department of Computing, The Hong Kong Poly-
technic University. E-mail: csrchang@comp.polyu.edu.hk.
John C. S. Lui is with the Department of Computer Science and
Engineering, The Chinese University of Hong Kong. E-mail:
cslui@cse.cuhk.edu.hk.

provide transit service for other ASes and only sends or
receives its own traffic. The interconnection of ASes can
also be described by business relationship. Major busi-
ness relationships include the provider-to-customer rela-
tionship and the peer-to-peer relationship. These business
relationships play a crucial role in shaping the structure
of the Internet and the end-to-end performance character-
istics [1]. From the point view of AS relationship, stub
ASes are the ASes which have no customer (or client AS),
while transit ASes are ASes which have customers. Tran-
sit ASes without provider are called ”tier-1” ASes. ASes
that have more than one provider are called multihomed
ASes. Except the tier-1 ASes, all transit ASes are always
multihomed so as to provide better connectivity and per-
formance.

Motivated by the need to improve network resilience
and performance, there is an increasing number of en-
terprise and campus networks connecting to the Internet
via multiple providers. These multihomed Autonomous
Systems (ASes), therefore, must undertake the task of en-
gineering the traffic flowing in and out of the network
through these multiple links. Using different inter-AS
traffic engineering approaches, ASes can distribute traf-
fic so as to satisfy their performance or cost constraints.
The focus of this paper is on the inter-AS inbound traffic
engineering problem, which is more difficult than the out-
bound traffic engineering problem because an AS gener-
ally cannot control the routing path for the inbound traffic.
Moreover, we restrict our attention to the ASPP approach
based on the Border Gateway Protocol (BGP), which is
the de-facto standard for inter-AS routing in the Internet.

There are three popular BGP-based approaches for per-
forming inbound inter-AS traffic engineering: selective
advertisements (SA), specific prefix advertisement (SPA),
and AS path prepending (ASPP) [2]. Unlike the SA and
the SPA approach, the ASPP does not introduce longer
prefixes, and at the same time takes the advantage of re-
silience protection from multihomed connections. Al-
though ASPP has been practised in the Internet for a
long time, there has been no systematic study on the phe-
nomenon and performance of this method. Also, based
on BGP routing tables from routers connected to the
AT&T backbone, it is reported that over 30% of the routes

1

has some amount of ASPP and this indicates that ASPP
has a significant impact on the current Internet routing
structure[3].

This paper attempts to fill these gaps. We motivate
our research through our measurement findings and then
point out that ASPP policies of different ASes may affect
each other. We also show ASPP does not always improve
the Internet’s global performance according to our per-
formance metrics. The contribution of this paper can be
summarized as follows:

• We present original findings about ASPP from the
measurement of Routeview data.

• We define various local and global performance met-
rics so as to study the influence of ASPP.

• We propose a formal model to study the performance
and implication of ASPP.

• We pinpoint the potential route oscillation problem if
the ASPP policies of different ASes affect each other.

• We present general guidelines in using ASPP so as
to avoid route oscillation.

The outline of the paper is as follows. In Section 2, we
describe the AS path prepending approach and present re-
sults from a measurement study. In Section 3, we present
our network model, performance measures as well as var-
ious complex interactions when ASes use the prepending
approach to perform their local optimization. Guidelines
are presented in Section 4 so as to avoid instability and
route oscillation. Related work is given in Section 5 and
Section 6 concludes.

2 Observations of ASPP in the In-
ternet

ASPP is an important BGP-based inbound traffic engi-
neering method. Under the BGP route advertisement, a
route has an AS path whose format is (ASi, ASj , . . . , ASk,
ASn). The semantics of the above route advertisement is
that there is a reachable path from ASi to ASn via ASj ,
. . ., ASk. The length of the AS path is denoted by |(AS i,
ASj , . . . , ASk, ASn)|. An AS can inflate the length of
an AS path by performing ASPP, i.e., ASi can insert its
AS number in this route again so it becomes (AS i, ASi,
ASj , . . . , ASk, ASn). When an AS receives this route ad-
vertisement from its neighbor ASi, this AS will think that
the length of this route is longer by one hop, as compare
to the original route advertisement, to reach ASn via ASi.
So this AS may want to select another route with a shorter
AS path so as to forward traffic to ASn.

2.1 The growth on the use of ASPP

To motivate our study on ASPP, we first report in Fig. 1
the trend on the numbers of all ASes, stub ASes, multi-
homed stub ASes, and transit ASes. First, we note that
there are several “dips” in this figure and others to be
presented later. These dips were caused by a significant
loss of routes due to an Internet-wide worm attack, e.g.,
the SQL Slammer Worm attack started on 25 Jan, 2003.
Therefore, these valleys should only be considered as ex-
ception cases.

The data shows that in recent years the number of stub
ASes comprises almost 85% of the total number of ASes.
Out of these stub ASes, the share of the multihomed stub
ASes increases from 40% in 1997 to 60% in 2004. Thus,
50% of the ASes today are multihomed stub ASes which
are the prime candidates of using ASPP to control the in-
bound traffic coming into their links.

As shown in Fig. 2, the actual number of the multi-
homed stub ASes that use ASPP for inbound traffic con-
trol is around 33% in the most recent measurement. This
percentage exhibits an increasing trend in the last few
years, which supports the belief that the ASPP is a very
popular inbound traffic control method. On the other
hand, the number of transit ASes that use ASPP is also
on the rise in recent years. The share of such transit ASes
from the total number of transit ASes has been increased
from 22% in 1997 to 40% this year. Combining both tran-
sit and multihomed stub ASes, there are almost 25% of
ASes today that are using ASPP. If we discount those
singly-homed stub ASes, then there are more than one
third of the ASes that have multiple links for receiving
traffic are using the ASPP method.

11/97 6/98 2/99 10/99 6/00 2/01 10/01 6/02 2/03 10/03 6/04
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Time

N
o.

 o
f A

S
es

No. of ASes
No. of Stub ASes
No. of Multihomed Stub ASes
No. of Transit ASes

Figure 1: The trend on the numbers of stub ASes, multi-
homed stub ASes, and transit ASes.

2

11/97 6/98 2/99 10/99 6/00 2/01 10/01 6/02 2/03 10/03 6/04
0

5

10

15

20

25

30

35

40

45

50

Time

%

% of multihomed stub ASes that performed ASPP on their routes
% of transit ASes that performed ASPP on their routes

Figure 2: The percentages of multihomed stub ASes and
transit ASes that perform ASPP on their routes.

2.2 Distribution of prepending number and
length

Another metric of characterizing the growth of ASPP us-
age is based on the route statistics. We have shown in
Fig. 3 that the number of prepended routes, i.e., the routes
that have AS prependings, is also on the rise. Although the
total number of routes has been increasing in the Internet,
the percentage of prepended routes has been increasing
steadily. In 1997, the share of prepended routes was only
7% prepended routes but it has been increased to more
than 12% today.

11/97 6/98 2/99 10/99 6/00 2/01 10/01 6/02 2/03 10/03 6/04

10
5

10
6

10
7

Time

Lo
g

(N
o.

 o
f R

ou
te

s)

No. of routes
No. of prepended routes

Figure 3: The trend on the number of prepended routes.

It is useful to further examine several characteristics
about these prepended routes. For this purpose, we have
classified the prepending into two types: source prepend-
ing and intermediary prepending. Source prepending
is referred to those that are performed by the origin

ASes, while the intermediary prepending are performed
by non-origin ASes. For example, in the AS path
(1, 2, 2, 3, 4, 4, 4), AS4’s prepending is source prepend-
ing and AS2’s prepending is intermediary prepending. As
noted from this example, a route could have both types of
prepending or more than one intermediary prepending.

In Fig. 4, we show that more than 60% of the prepended
routes have source prepending. Moreover, more than
40% of the prepended routes have intermediary prepend-
ing. Note that these two percentages do not add up to
100%, because there are routes that have both, which
take up around 4% of the prepended routes. Clearly, if
we pick a prepended route randomly, most likely we will
see source prepending in the route. However, we caution
that the actual percentage for the third case (have both
types of prepending) could be much higher than those re-
ported here, because some of these routes could have been
filtered before reaching the Route View router due to a
longer AS path length in these routes.

11/97 6/98 2/99 10/99 6/00 2/01 10/01 6/02 2/03 10/03 6/04
0

10

20

30

40

50

60

70

80

Time

%

% of prepended routes that had source prepending
% of prepended routes that had intermediary prepending
% of prepended routes that had both

Figure 4: The percentages of source prepending, interme-
diary prepending, and mixed prepending in the prepended
routes.

Another important statistics about the prepended routes
is the distribution of the number of prependings in a route,
and the distribution of the prepending length, which are
shown in Fig. 5 and Fig. 6, respectively. The former
counts the number of prepending in a route. In the ex-
ample of (1, 2, 2, 3, 4, 4, 4), there are 2 prependings in this
route. The latter, on the other hand, measures the length of
a prepending. In the same example, the AS2’s prepending
has a length of 1, while the AS4’s prepending has a length
of 2.

Fig. 5 shows that around 95% of the prepended
routes have only one prepending and around 4% of the
prepended routes have 2 prependings. Once again, many
routes that have a higher number of prependings were
most likely not selected by the transit ASes and therefore

3

filtered out. Unless we analyze the data from more van-
tage points, we cannot accurately estimate the number of
such prepended routes.

As for the distribution on the prepending length, Fig. 6
shows some interesting trends. The prepending length of
1 is still most common. Moreover, after a careful exam-
ination on the trend for this case, we can detect a drastic
shift in the percentages. Between 1998 and late 2000, the
% of length equal to 1 is more or less ranged between 50%
and 65%. However, this range was dropped to 40% and
50% in the period between early 2001 and today. While
the exact cause for this drop is still a puzzle to us, it seems
that the prepending length of 1 is not sufficient for many
ASes to influence the incoming traffic. The case of length
equal to 2 is also observed to drop steadily in the recent
months, i.e., from 30% in late 2002 to 23% in June 2004.
On the other side, the share of longer prepending length is
getting higher. More noticeable cases are lengths longer
than 3.

11/97 6/98 2/99 10/99 6/00 2/01 10/01 6/02 2/03 10/03 6/04
0

10

20

30

40

50

60

70

80

90

100

Time

%
 o

f r
ou

te
s

% of prepended routes that had 1 prepending
% of prepended routes that had 2 prepending
% of prepended routes that had >2 prepending

Figure 5: Distribution of the number of prependings.

2.3 Prepending policies

Another important information found from the Route
View data is the prepending policy that an AS exercises.
Here we classify the policies into two broad classes: link-
based prepending and prefix-based prepending. An AS
is said to employ a link-based prepending policy if the
prepending length (including 0 for non-prepended routes)
is the same for all routes announced to a specific link.
However, the prepending length may be different across
the links, e.g., one link without prepending and the other
with a prepending length of 3. Otherwise, the AS is said
to employ a prefix-based prepending policy.

Fig. 7 shows the results for the percentage of ASes that
use the link-based prepending policy. All three cases in
the figure show a downward trend on the percentages of

11/97 6/98 2/99 10/99 6/00 2/01 10/01 6/02 2/03 10/03 6/04
0

10

20

30

40

50

60

70

80

Time

%

% of prependings with length of 1
% of prependings with length of 2
% of prependings with length of 3
% of prependings with length of 4
% of prependings with length of >4

Figure 6: Distribution of the prepending lengths.

the ASes concerned that use link-based prepending. Thus,
it is apparent that the prepending policies are becoming
more complex than a “lazy prepending” approach. Fig. 8
shows the results for the number of links. That is, we
count the links that a link-based prepending policy is ap-
plied to. Similar to the previous figure, the percentages
for all three cases show a downward trend.

11/97 6/98 2/99 10/99 6/00 2/01 10/01 6/02 2/03 10/03 6/04
0

10

20

30

40

50

60

70

80

90

100

Time

%

% of multihomed stub ASes that performed prepending based on link−based policy
% of transit ASes that performed prepending based on link−based policy
% of all multihomed stub and transit ASes that performed prepending based on link−based policy

Figure 7: The percentages of ASes that employ the link-
based prepending policy.

3 Analysis of AS Load Balancing
Using ASPP

AS path prepending is basically an approach to selectively
adjust the cost of links between ASes (for paths towards
selected destinations) so as to influence the amount of
traffic passing through these links. AS path prepending
has both local and global effects. Locally, a multi-homed

4

11/97 6/98 2/99 10/99 6/00 2/01 10/01 6/02 2/03 10/03 6/04
60

65

70

75

80

85

90

95

100

Time

%

% of links on the multihomed stub ASes which link−based prepending was performed
% of links on the transit ASes which link−based prepending was performed
% of links on all multihomed stub and transit ASes which link−based prepending was performed

Figure 8: The percentages of links that are involved in the
link-based prepending policy.

AS can better balance the traffic on incoming links from
different providers. Globally, this may increase the to-
tal amount of inter-AS resource consumption in the net-
work since traffic no longer follow shortest AS paths. On
the other hand, a more interesting global effect is the de-
gree that traffic is shifted from congested links to under-
utilized links on a network-wide basis. In other words, lo-
cal traffic load balancing may globally lead to a network
that appears to have higher capacity, that is, able to sup-
port more users or traffic. In the following, we first define
the terminologies and define suitable performance metrics
to study these effects.

In order to gain some understanding and discover the
fundamental principles of AS path prepending, we de-
velop a ASPP toolkit and carry out performance evalua-
tion so as to observe the local and global effect of route
prepending. We will give a brief overview of our toolkit
in later subsection.

We report our observations mainly in two steps. First,
we consider a single multi-homed AS carrying out ASPP
to achieve its local load balancing. We also analyze dif-
ferent approaches ASPP can be applied, and the local and
global effects resulting from the action of a single AS.
Next, we consider all ASes performing prepending and
they all try to perform load balancing at the same time.
Our analysis in the first step becomes handy for model-
ing each AS’s algorithm of optimizing its local load bal-
ancing objectives. In this case, the interesting questions
are whether this decentralized optimization process con-
verges, and if it does, whether it converges to a desirable
global state.

3.1 Terminology and Performance Metrics

Let a connected graph G = (V, E) represents the inter-
domain network topology. Each node v ∈ V represents
an entire AS; and each link e ∈ E connects two ASes. For
each link e ∈ E, let B(e) define the business relationship
between the two ASes for which e connects. For sim-
plicity, we consider two specific relationships: “provider-
customer” and “peering”. Fig. 9 illustrates a network of
7 ASes with links that convey different relationships. In
particular, a provider-customer relationship is represented
by a directed edge wherein the pointed node represents the
customer. Whereas a peering relationship between two
ASes is represented by a doubled-arrow link. Therefore,
AS4 is a provider for AS3, AS5 and AS6 while AS2 and
AS4 are customers of AS0. There is one peering relation-
ship in the figure and it is between AS0 and AS1.

AS5

AS2
AS4

AS1AS0

AS3

AS6

R0,6 = {(0,2,3,6),
 (0,4,3,6),
 (0,4,6)}
R*(R0,6) = (0,4,6)
L(R*(R0,6)) = 3

Provider-customer
relationship:

Peering relationship:

Figure 9: An example of 7 ASes with different relation-
ships.

BGP is a policy-based routing protocol. In [4], au-
thors illustrate two basic policies for route selection: (a)
the typical local preference policy and (b) the selective
announcement export policy. Under the typical local
preference policy, an AS prefers to use a customer link
than a peering link to forward a packet, and it prefers
to use a peering link than a provider link to forward a
packet, provided that these links can reach the destina-
tion AS. In other words, a customer link has a higher
priority for selection than a peering link, while a peer-
ing link has a higher priority for selection than a provider
link. Under the selective announcement export policy,
an AS does not provide transit service for its providers.
To illustrate, consider the routing selection in Fig. 9
wherein AS5 is the source node and AS6 is the des-
tination node. Routes (5, 4, 6) and (5, 1, 4, 6) are con-
sidered legal or valid routes. On the other hand, route
(5, 1, 0, 4, 6) will not be announced because its violates
the typical preference since AS1 uses the peering link,
rather than a customer link, for packet forwarding. Also,
route (5, 1, 4, 0, 2, 3, 6) will not be announced because it
violates the selective export policy since AS4 provides
transit service for its providers AS0 and AS1.

BGP is also a path vector protocol. Among two equiva-
lent routes based on business relationship, a BGP router
picks the route with the shorter AS Path. Under BGP

5

convention, AS paths are represented by a sequence of
AS numbers, and a prepended AS path is an AS path
that has some duplicated AS numbers that appear con-
secutively. For convenience, we also represent an AS
path as a sequence of links it traverses. For a prepended
AS path, the corresponding links are prepended. For
example, ((0, 4), (4, 6)) is equivalent to (0, 4, 6); and
((0, 4), (4, 6), (4, 6)) is equivalent to (0, 4, 6, 6) (when it
is announced by AS6 to AS4. In this case, we say link
(4, 6) is prepended.”

A route r is a sequence of links (e1, e2, ..., em). The
length of a route r is denoted by L(r) and it is equal to
m + 1, the number of AS along the path. Given a source
and destination pair (s, d), for s, d∈V , let Rs,d be a set
that denotes all routes from s to d allowed by business
relationships B(); and R∗(Rs,d) to denote the set of all
shortest routes. So

L(R∗(Rs,d)) ≤ L(r) ∀r ∈ Rs,d.

To illustrate, consider again the graph in Figure 9 with
the source node being AS0 and the destination node be-
ing AS6. There are three valid routes in R0,6, they
are R0,6 = {(0, 2, 3, 6), (0, 4, 3, 6), (0, 4, 6)}. The short-
est path in this example is R∗(R0,6) = (0, 4, 6) and
it has a length of L(R∗(R0,6)) = 3. Consider that
AS6 tries to reduce the amount of traffic on its incom-
ing link from AS4 by prepending it twice on this in-
coming link. After the prepending operation, we have
R0,6 = {(0, 2, 3, 6), (0, 4, 3, 6), (0, 4, 6, 6, 6)}. The set
of shortest path from AS0 to AS6 is now R∗(R0,6) =
{(0, 2, 3, 6), (0, 4, 3, 6)} and L(R∗(R0,6)) = 4.

When the shortest route R∗(Rs,d) consists of a set of
paths, we assume traffic from s to d is evenly divided on
these paths. This assumption tends to balance traffic auto-
matically. We are interested in studying how load balanc-
ing works even under this more favorable assumption.

Let Vc ⊂ V be the subset of ASes that are multi-
homed (i.e. ASes which have multiple providers), and
for v ∈ Vc, let E(v) be those links connecting v to its
providers. ASPP is performed by a multi-homed v on its
links E(v). In order to define the action of ASPP, we de-
fine the following supersets of routes:

R∗,d =
⋃
s∈V

Rs,d; R∗,∗ =
⋃

d∈V

R∗,d.

In other words, R∗,d denote all possible routes from any
AS source to destination ASd while R∗,∗ denote all pos-
sible routes in the network G.

We consider two types of prepending actions, P , a
multi-homed AS can take:

• Destination-specific prepending: An ASv repeats a
link e ∈ E(v) for all routes in R∗,d that traverse

link e and destine for ASd. Generally, destination-
specific prepending is a special case of the prefix-
based prepending because it assumes that ASv per-
forms prepending for all prefixes of one AS in the
same way. In our model, these two terminologies
are interchangeable since we assume that every AS
has only one prefix. An AS can obviously perform
prepending for itself, i.e., when ASv = ASd, or an
ASv can perform prepending for its customer or de-
scendant customer ASd. We represent this action by
P = e/d. The set of routes after this prepending
action is represented by R∗,d(e).

• Link-based prepending: An ASv repeats a link e ∈
E(v) for all routes in R∗,∗ that traverse e. We rep-
resent this action by P = e/∗, or simply P = e.
The set of routes after this prepending action is rep-
resented by R∗,∗(e).

A sequence of prepending actions is represented by
concatenating these actions as a set wherein the ordering
of concatenation is not important. For example, in Fig-
ure 1, if AS6 has three prepending actions: prepends link
(4,6) once and (3,6) twice, then the sequence of prepend-
ing actions can be represented as

P6 = ((4, 6), (3, 6)2)

where the subscript of Pi represents the set of prepend-
ing actions by ASi. Similarly, the prepending actions of
different ASes can be combined as well.

Furthermore, we use the notation R[s, d] to represent
the subset of routesR that has source ASs and destination
ASd. Similarly, R[s] is used to denote the projection of R
to its subset with ASs being the source node. Note, there
is a subtle difference between Rs,d and R[s, d]. Rs,d is
always used to reference possible routes without prepend-
ing while R[s, d] can be any set of routes, some may be
prepended. Therefore, the projection R[s, d] may contain
prepended routes. In other words, R∗,∗(P)[s, d] is gener-
ally not the same as Rs,d.

Let T denote the relative traffic matrix. where T ij rep-
resents the relative end-to-end traffic demand between the
source node i∈V and the destination node j∈V . The ra-
tionale of not defining a traffic matrix as real traffic de-
mands is because we are not doing capacity planning in
deciding how much bandwidth we need. Rather, we want
to carry out scalability analysis and we use the traffic ma-
trix to represent a logical unit of traffic and study what
network routes will carry the maximum number of units
of traffic.

We are now in the position to define various perfor-
mance measures that we are interested in. They are:

1) Traffic on a link e, where e ∈ E: The traffic on each
link e, before any prepending action, is simply the sum of

6

traffic, using the shortest path route allowed by the busi-
ness relationships, that traverse link e. That is:

xe =
∑
s∈V

∑
d∈V

∑
r∈r∗(R∗,∗(P)[s,d])

1
k

TsdIe∈r. (1)

where I is an indicating function with value of either 0 or
1 and k = |R∗(R∗,∗(P)[s, d])|, which is the number of
shortest paths in the set.

2) Local load balancing index Ilb: Consider a single
multi-homed ASv , Ilb(v) measures the degree of load
balancing of incoming traffic on providers’ links E(v). If
an AS has two providers, the answer is quite straightfor-
ward since it is intuitive that a traffic ratio of 2:3 is better
than a traffic ratio of 1:4. If an AS has more than two
providers, then one has to define the degree of load bal-
ancing carefully. Let say ASv has n provider links (i.e.,
|E(v)| = n), we have the traffic vector x = (x1, . . . , xn)
where xi is the amount of traffic on link i, for i ∈ E(v).
The local load balancing index Ilb(v) is a measure of the
degree of load balancing among these n links:

Ilb(v) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x2
i

.

This index was first proposed for measuring the fairness
of bandwidth allocation [5], but it also serves our purpose
in this work. When the provider links have different band-
widths, then it is reasonable to balance the percentage
loading on these links. Let bi be the bandwidth for link
i ∈ E(v). Let

y =
(

x1

b1
,
x2

b2
, ...,

xn

bn

)

represents the fraction of loading on different provider
links, then

Ilb(v) =
(
∑n

i=1 xi/bi)
2

n
∑n

i=1 (xi/bi)2
. (2)

Note that Ilb(v) ∈ (0, 1]. When Ilbv is close to 0,
it implies the traffic loading on E(v) is very skewed.
When Ilbv is close to 1, it implies the loading of E(v) is
closely balanced. Without loss of generality, we assume
all provider links have the same bandwidth unless we state
otherwise.

3) Aggregated resource consumption A: Aggregated re-
source consumption, A, is simply the sum of traffic on all
links. We have:

A =
∑
e∈E

xe (3)

where xe is given above. In other words, A measures
the total amount of resource consumption. Note that for
a given graph G, the value A can be different after a
prepending action.

4) Global bottleneck traffic B: This measures the
amount of traffic on the worse link in the network G:

B = max
e∈E

xe

be
. (4)

5) Global load balancing index Glb: Like the local load
balancing index, the global load balancing index also
measures the closeness of traffic load on different links:

Glb =

(∑
e∈E xe/be

)2

|E|∑e∈E (xe/bi)
2 . (5)

Again, Glb ∈ (0, 1] and when the traffic on all links in
the network is closely balanced (or highly skewed), G lb is
close to 1 (or 0).

As alluded to earlier, one of the interesting global ef-
fects we want to study is how much local prepending ac-
tions are able to relieve congested links so that the net-
work as a whole can accommodate more users or traffic.
Both the global bottleneck traffic and global load balanc-
ing index metrics can be used towards this end.

The global bottleneck traffic gives the “hard” limit of
how many logical units of the traffic matrix the network
can support. Further scaling up of the traffic will cause
the global bottleneck link to first exceed its capacity. The
global load balancing index, on the other hand, specifies a
“soft” objective that tries to make sure traffic is as evenly
spread as possible so that no link will be a specially bad
bottleneck. Maximizing this latter index is more robust
against uncertainties in the traffic matrix. So to maxi-
mize the effective network capacity for a certain traffic
matrix, we can either minimize the global bottleneck traf-
fic or maximize the global load balancing index.

Although we do not specifically try to optimize the ag-
gregated resource consumption metric A, it is a useful
gauge to check how much efficiency is lost due to load
balancing. Note that in general, prepending will increase
the value of A since ASes are selecting a longer AS path
for routing.

All these local and global metrics are a function of the
routing, hence influenced by the prepending policies. The
interesting questions to explore are:

• What prependings are good for optimizing the global
indexes?

• If each ASv tries to choose its local prependings
based on its local load balancing objective, will it
generally lead to optimal (or good) routing based on
global metrics?

3.2 ASPP Toolkit

Since the problem at hand is quite involved and one can-
not carry out controlled experiments in the Internet, we

7

choose to develop a toolkit to study various scenarios. For
small topologies, this toolkit can be used to visualize the
network topology, business relationships between ASes,
the routes for different destination (or source/destination
pairs), optimal routes, and display various performance
metrics as one carry out prepending operations. This is a
pleasant alternative to manually examining various exam-
ples. Fig. 10 shows a screen shot of the GUI of this tool.

Figure 10: Screen shot of the GUI of ASPP toolkit.

The toolkit is an object-oriented toolkit with various
objects performing a specific function. Some of the im-
portant objects (or modules) are:

• Topology Generator: The module generates various
topologies based on different rules (i.e., power-law).
It also allows a user to input or draw small scale
topologies for testing and visualization.

• Traffic Generator: Given the topology, this module
outputs the traffic generator T . Currently, user can
specify various rules for traffic generation such as
uniform, random or specific input traffic for testing.

• Route Selection: This modules implements the route
selection under the BGP setting. In particular, differ-
ent policies can be supplied such as the typical pref-
erence policy and selective export policy we men-
tioned above.

• Prepending algorithms: User can select different
prepending algorithms (to be discussed in the follow-
ing sub-sections). The tool can simulate the process
of every ASes doing prepending in a synchronous
manner and can evaluate different performance mea-
sures for different topologies and traffic matrices.

• Statistic Gathering: This module is to gather various
traffic across all links and compute various perfor-
mance measures mentioned above.

• Visualization : This module not only can display the
topology under testing but also display various in-
formation for debugging. Some useful information
include:

– Display all paths from a specific source to a
specific destination.

– Display the set of shortest path from a specific
source to a specific destination, either before or
after a prepending operation.

– Display the traffic on each link in the given
topology.

– Display various performance measures (i.e.,
load balancing index, aggregated resource con-
sumption A, global bottleneck link, . . .) before
or after a prepending operation.

In the following two subsections, we describe some ex-
ample scenarios we studied using this toolkit, as well as
some important observation we made. We believe these
observation are crucial to understand the stability and con-
vergence issues of distributed AS prepending.

3.3 Single AS Load Balancing Case

We first consider the case of a single multi-homed AS try-
ing to do its local load balancing.

If a multi-homed AS has no customer of its own, it is
known to as a stub AS; else a transit AS. We also refer to
an AS with no provider of its own a backbone AS. In the
earlier subsection, we defined link-based prepending and
destination-specific prepending. For stub ASes, the only
incoming traffic over the provider links are destined for
the stub AS, hence we make the following observation:

Observation 1 For a stub AS, destination-specific
prepending is the same as indiscriminate link-based
prepending.

The above observation is intuitive since a stub AS does
not provide transit service.

When would an AS perform destination-specific
prepending? The answer is when its customer requests
for it. There is a BGP attribute called community. A
provider may be asked by its customer (or descendant cus-
tomers) to implement destination-specific prepending for
traffic destined for the customer using a specific commu-
nity value.

Observation 2 Using destination-specific prepending, a
provider can shift a “subset” of traffic which a stub AS
can shift, when that stub AS performs local prepending on
that provider’s incoming link.

The implication of the above observation is that a provider
AS can provide a “finer” granularity of load balancing
on behalf of its customers. This can be illustrated by the
example in Fig. 11. The only traffic in the network are
from AS4 to AS0 and AS5 to AS0 with intensity of 40

8

2AS

0AS

3AS

1AS

5AS

4AS

Figure 11: Example of provider doing ASPP for a cus-
tomer

and 10 units of traffic respectively. The set of shortest
paths from AS4 to AS0 is {(4, 1, 0), (4, 2, 0)}. The short-
est path from AS5 to AS0 is {(5, 1, 0)}. Based on the
route selection, the amount of traffic on the link (1, 0) is
30, the amount of traffic on the link (2, 0) is 20, which is
shown in the second row in Table 1.

PP
Config-
uration

traffic
on
(1,0)

traffic
on
(2,0)

Ilb(0) Shifted
traffic
volumn

A

∅ 30 20 0.96 - 100

(1,0) 5 45 0.60 25 105
(1, 0)2 0 50 0.50 30 110
(1, 0)3 0 50 0.50 30 110

(5,1)/0 25 25 1.00 5 105
(5, 1)2/0 20 30 0.96 10 110
(5, 1)3/0 20 30 0.96 10 110

(2,1)/0 30 20 0.96 0 100
(2, 1)2/0 30 20 0.96 0 100
(2, 1)3/0 30 20 0.96 0 100

Table 1: Effect of prepending by AS0, or AS1 on behalf
of AS0 on different links.

Because the load is not balanced, AS0 considers
prepending on link (1, 0). The next three rows in Table 1
show the results when AS0 performs prepending one, two
or three times respectively on link (1, 0), which are all
worse than without prepending since Ild(0) has a lower
value. The next six rows in Table 1 show the result of
AS1 helping its customer AS0 to balance its load by doing
destination-specific prepending on link (5, 1) and (2, 1)
(i.e., by prepending once, twice or three times). As we
can observe, performing prepending at the provider may
achieve a better local load balancing for AS0 since Ilb(0)
improves.

Most often an AS would simply do link-based prepend-
ing, since this is easier to configure and implement. So in

the rest of the paper, we drop the word ”link-based” when
we say prepending.

The next question is, how does an AS find the prepend-
ing action that optimizes its local load balancing index? It
can certainly do a search by enumeration, trying all com-
bination of prepending values on all provider links up to
some limit for each link. A more systematic algorithm is
as follows.

Greedy Prepending Algorithm:
for a multi-homed AS v with links E(v)

1. termination flag = FALSE;
2. Compute the local load balancing index I lb(v) for

traffic on all provider links E(v);
3. Find the link e∗ ∈ E(v) such that it is the most

heavily loaded;
4. While (termination flag == FALSE) {

/* loop till no improvement.*/
5. Evaluate the new traffic pattern if link e∗ is

prepended by 1;
6. If (new local load balancing index I lb(v)

does not improve)
7. termination flag = TRUE;
8. Else Perform prepending on link e;
9. }

This algorithm assumes an AS can perform traffic mea-
surements and based on the collected statistics predict
the resulting load distribution for different prepending ac-
tions. This is a reasonable assumption, as [6] described ef-
ficient techniques for such measurements and predictions.

3AS

2AS

1AS

0AS

S1

S2 AS

AS

Figure 12: Example network for studying prepending al-
gorithm convergence

We illustrate the Greedy Prepending Algorithm using
the network in Fig. 12. There are four nodes, represent-
ing four ASes: AS0, AS1, AS2 and AS3. There are other

9

nodes solely for the purpose of generating and forward-
ing traffic. In particular, S1 and S2 are nodes which will
generate traffic to AS0 and AS1. Note that in the next sub-
section, we will use the same network to illustrate the con-
vergence issue when multiple ASes are doing prepending.
For our purposes here, assume only AS1 is doing load bal-
ancing via the Greedy Prepending Algorithm. Since there
is no other traffic in this example, the traffic matrix T can
be simply represented by a two by two matrix, specifying
the relative traffic intensity from S1 to AS0 and AS1, and
S2 to AS0 and AS1 respectively. Consider the following
traffic matrix:

T =
(

140 10
0 10

)
.

The operation of the Greedy Prepending Algorithm is
summarized in the Table1 2:

PP Conf. traffic
on
(2,1)

traffic
on
(3,1)

Ilb(1) A

∅ 10 56 0.67 454
(3,1) 16 3 0.68 464
(2,1) 10 10 1.00 460

Table 2: Result of executing the Greedy Prepending Al-
gorithm by AS1.

When there is no prepending, the amount of traffic on
link (2, 1) is 10 and on link (3, 1) is 56. Note that some of
the traffic on link (3, 1) are destined for AS0. When AS1

uses the Greedy Prepending Algorithm, it first chooses
link (3, 1) to prepend. It then executes the algorithm again
and prepend on link (2, 1). After this prepend operation,
no further prepending is necessary since these two links
are balanced and Ilb(1) = 1.

In the following, we describe the global effect when
multiple ASes are doing prepending.

3.4 Multiple AS Load Balancing Case

When multiple ASes are performing prepending actions
at the same time, the situation becomes less predictable.
First, we observe that under certain scenarios, one AS’s
local prepending actions will not affect or interfere with
other’s ASes local balancing index.

Observation 3 If only stub ASes are performing prepend-
ing so as to balance traffic on their local provider links,
then there is no interference in the network.

1For the ease of presentation, we only indicate the integer part of the
traffic.

This is clearly true because for a stub AS, say d, only links
E(d) are involved and no provider links of any other stub
AS are part of the routes to d, R∗,d.

When a customer and its provider (or ancestor provider)
are both doing ASPP at the same time, there can definitely
be interference in the network. To study this phenomenon,
we need to be more specific about the notion of “doing
ASPP at the same time”. In here, we assume all partici-
pating multi-homed ASes start running some local algo-
rithm in lock steps. In other words, at time interval t, they
all start doing traffic measurements first; then at the end of
the interval, they all run an algorithm such as the Greedy
Prepending Algorithm described in the last subsection and
decide their prepending decisions. The overall prepend-
ing actions will be P (t) =

⋃
v∈Vc

Pv(t). All these ASes
will then go back to do traffic measurement at time inter-
val t + 1 and execute the prepending algorithm again, ad
nausea.

If an AS v decides not to do any prepending in time
interval t, then Pv(t) = ∅ (the empty set). If for some
t = tlast, P (tlast + 1) = ∅ for all ASes, then P (t) =
∅ for all t ≥ tlast (assuming the network topology and
traffic matrix are stationary). If this is true, we say the
prepending algorithm has converged for the given network
topology and traffic matrix.

Observation 4 The Greedy Prepending Algorithm intro-
duced in Section 3.3 does not always converge.

We illustrate this observation by example. Consider the
network in Figure 12 introduced in the last subsection. In
this case, both AS0 and AS1 are performing prepending.
We show that the convergence of the Greedy Prepending
Algorithm actually depends on the traffic matrix.

1) Traffic matrix example 1: Consider this traffic matrix:

T1 =
(

20 20
40 30

)
.

Let us go over the state transitions when multiple ASes are
performing the Greedy Prepending Algorithm, as summa-
rized in Table 3. The initial load (i.e., without prepending)
on each link2 are computed in the second row, based on
applying Equation (1) to the shortest paths from sources
to destinations before prepending. The ensuing prediction
step shows the local evaluation by AS0 and AS1 of what
will happen if a prepending action is taken. The subse-
quent update step shows what prepending actually took
place - only AS0 decided to prepend link (2, 0). This ac-
tion led to new traffic load on the various links which may
be different than the prediction if someone else also took
a prepending action (e.g. in AS1’s case). Then the two
ASes perform prediction again, and this time neither finds

2Note, (2,0), (1,0) are provider links for AS0; (2,1) and (3,1) are
provider links for AS1; (3,2) is a provider link for AS2 but AS2 is not
doing load balancing since it has a single provider link.

10

any reason to prepend again. Both the global load balance
index and bottleneck traffic improved slightly, at a moder-
ate increase of total resource consumption A (from 126 to
150). This is a desirable situation, as it shows the decen-
tralized local load balancing actions converged resulting
in a reasonable global state.3

PP C.
AS0 AS1 AS2 A Glb B

(1,0) (2,0) Ilb(0) (2,1) (3,1) Ilb(1) (3,2)
∅ 6 52 0.61 30 26 0.99 6 126 0.33 52
Prediction:
(2,0) 40 20 0.90
(2,1) 15 41 0.82
Update
(2,0) 40 20 0.90 50 40 0.98 0 150 0.36 50
Prediction:
(1,0) 6 52 0.61
(2,1) 15 55 0.75

No more prepending based on local predictions ⇒ convergence

Table 3: Example showing the Greedy Prepending Algo-
rithm will converge

2) Traffic matrix example 2: We show that a slight
change in the traffic matrix can lead to a very different
behavior. Consider

T2 =
(

20 30
40 10

)
.

In this case, the results are shown in Table 4, in a more
condensed form (only showing the traffic on key links
before and after prepending steps, without the predic-
tion steps). This time, we have a problem. The Greedy

PP C.
AS0 AS1 AS2

(1,0) (2,0) Ilb(0) (2,1) (3,1) Ilb(1) (3,2)
∅ 6 52 0.61 10 36 0.75 6
(2,0)
(3,1)

32 28 0.99 58 14 0.72 18

(2,1) 6 52 0.61 10 36 0.75 6
Back to the initial state! ⇒ oscillation

Table 4: Example showing the Greedy Prepending Algo-
rithm does not converge

Prepending Algorithm results in a repeating pattern of
prepending actions.4

Note that the Greedy Prepending Algorithm was de-
fined when considering a single AS doing prepending.
Now we observe that when multiple ASes are running the
Greedy Prepending Algorithm, it may not converge. At
first, there seems to be a simple fix. Consider this varia-
tion to the algorithm:

3In this example, as well as the rest of examples based on the same
network, we compute the global metrics based on only the four ASes and
links between them. We ignore S1, S2 and the other ASes introduced
solely for sourcing traffic.

4In real life, if this happens, there is probably a limit beyond which
prepending would be stopped.

Decrease-first Greedy Prepending Algorithm:
For a multi-homed AS v with links E(v)

1. Compute local load balancing index I lb(v) for
traffic on all provider links E(v);

2. Let e∗ be the most lightly loaded link;
3. If (reduce prepending on e∗ can improve load index)
4. reduce the number of prepending on e ∗ by 1;
5. Else
6. execute the Greedy Prepending Algorithm;

The Decrease-first Greedy Prepending Algorithm is de-
signed to prevent perpetual increasing levels of prepend-
ing by first trying to remove prepending to help balancing
the load. This algorithm solves the problem for the above
example. This time, it results in the following prepend-
ing steps: Note, we use the notation “−e” to indicate the

PP C.
AS0 AS1 AS2

(1,0) (2,0) Ilb(0) (2,1) (3,1) Ilb(1) (3,2)
∅ 6 52 0.61 10 36 0.75 6
(2,0)
(3,1)

32 28 0.99 58 14 0.72 18

-(3,1) 40 20 0.90 30 50 0.94 0
The network reached a new stable state.

Table 5: Example showing that the Decrease-first Greedy
Prepending Algorithm converges

removal of a previous prepending action on link e. In
this example, after both AS0 and AS1 prepended, AS1 re-
moved its earlier prepending; and after that neither ASes
finds it profitable to prepend any more. After conver-
gence, the resultant global metrics are in Table 6:

PP C. A Glb B
∅ 116 0.29 52
(2,0)
(3,1)

168 0.39 58

-(3,1) 140 0.36 50

Table 6: Global performance metrics after the Decrease-
first Prepending Algorithm converges.

To appreciate what is going on, we define a network
cut as a set of links when removed will partition the net-
work into two halves. Further, if each link5 in the cut is
prepended by the same number of times, then we call this
a uniform cut prepending.

Observation 5 Let Ecut represent a cut of the network
graph G, and P = E∗

cut be a uniform cut prepending.
Then r∗(R(P)[s, d]) = r∗(R) for all s and d. In other
words, a uniform cut prepending has no effect on routing.

5strictly speaking, unidirectional link going toward the same half of
the network.

11

What happens when the original Greedy Prepending
Algorithm is applied to the second traffic matrix T2 is
that the consecutive prepending actions by AS0 and AS1

form a uniform cut, which keeps leading the routing back
to the initial state. The Decrease-first Greedy Prepending
Algorithm is able to explore more states. By removing
a prepending action, it can sometimes break out of the
repetitive cycle.

3) Traffic matrix example 3: Consider a third example:

T3 =
(

20 30
10 80

)

This case results in the following sequences of prepend-
ing actions by the Greedy Prepending Algorithm and
Decrease-first Greedy Prepending Algorithm. The

PP C.
AS0 AS1 AS2

(1,0) (2,0) Ilb(0) (2,1) (3,1) Ilb(1) (3,2)
∅ 6 22 0.75 80 36 0.87 6
(2,1) 6 22 0.75 40 76 0.91 6
(2,0) 20 10 0.90 40 90 0.87 0
(3,1) 6 22 0.75 80 36 0.87 6

Back to the initial state! ⇒ oscillation

Table 7: Another example when the Greedy Prepending
Algorithm does not converge.

Greedy Prepending Algorithm still does not converge
since the prepending actions on links (2, 1), (2, 0) and
(3, 1) by AS1, AS0 and AS1 respectively are considered
a uniform cut preprending. Furthermore, the Decrease-
first Greedy Prepending Algorithm does not converge ei-
ther. In this case, the prepending actions on links (2, 1)

PP C.
AS0 AS1 AS2

(1,0) (2,0) Ilb(0) (2,1) (3,1) Ilb(1) (3,2)
∅ 6 22 0.75 80 36 0.87 6
(2,1) 6 22 0.75 40 76 0.91 6
(2,0) 20 10 0.90 40 90 0.87 0
-(2,1) 25 5 0.69 85 50 0.93 0
-(2,0) 6 22 0.75 80 36 0.87 6

Back to the initial state! ⇒ oscillation

Table 8: The Decrease-first Greedy Prepending Algorithm
fails to converge too.

and (2, 0) are nullified which lead the network back to the
original routing. In summary, the Decrease-first Greedy
Prepending Algorithm explores more routing than the
Greedy Prepending Algorithm; but it may also fail to con-
verge.

Observation 6 Both the Greedy Prepending Algorithm
and Decrease-first Greedy Prepending Algorithm may
converge to a worse global state than before prepending.

4) Traffic matrix example 4: Finally, we observe that
the decentralized prepending actions may actually lead to

a “worse” global state. Consider the following:

T4 =
(

40 20
40 50

)
.

In this case, AS0 sees load balancing can help balance its
unbalanced traffic on links (1, 0) and (2, 0). After imple-
menting this, we observe all the global metrics are slight
worse off, as shown in Table 9.

PP C. AS0 AS1 AS2 A Glb B
(1,0) (2,0) Ilb(0) (2,1) (3,1) Ilb(1) (3,2)

∅ 13 66 0.68 50 33 0.95 13 188 0.36 66
(2,0) 60 20 0.80 70 60 0.99 0 210 0.35 70

Neither AS0 nor AS1 has reason to further prepend.

Table 9: Convergence to worse global state

In this case, AS0’s prepending action lead to better lo-
cal load balance for both AS0 and AS1, yet globally, the
metrics B and Glb are slightly worse off. The reason is
that the link (3, 2) carries no traffic after the prepending;
hence globally, the balance of link utilization is a little
worse off. In this example, the global state is not much
worse off than before, but the important lesson is that it
can get worse than local prepending started.

4 Guidelines

In this section, we present some guidelines for AS opera-
tors so as to prevent the route oscillation problem.

Guideline 1 If only stub ASes are performing prepending
actions so as to balance the traffic on their local provider
links, then these prepending actions will not result in route
oscillations.

Proof: This has been stated as Observation 3.
Note that this guideline does not allow transit ASes to per-
form any prepending, hence it is quite restrictive. A less
restrictive guideline is as follows:

Guideline 2 If no AS performs prepending except on the
routes originated by itself, then these prepending actions
will not result in route oscillations.

Proof: In order to prove guideline 2 works, we want to
put all ASes in different ”levels”. Let us classify all ASes
into different “levels”. Let V0 be the lowest level such
that it contains all stub ASes only. Let V1, V2, . . . be the
successively higher levels. An AS v belongs to Vi if all its
customers come from levels Vj , where j < i.

Under guideline 2, prepending actions of an AS can
only affect traffic destined to itself. This traffic will not
traverse any inbound provider links of a lower or same
level AS because all AS paths should be ”valley free”
based on the selective announcement export policy[1].
Therefore, any prepending by an AS will not affect the
prepending decision (based on load balancing) of another

12

AS at the same level or a lower level. Let us call this
property 1.

Now we can prove the convergence by induction. Sup-
pose at some time ti, all ASes in levels from 0 to i have
completed their prependings and will not do any more
prepending. Therefore, ASes in level (i + 1) will do their
prependings without being affected by any prepending ac-
tions from these lower level ASes. Based on property
1, we know prepending actions from ASes at the same
or higher level cannot affect the prepending decisions of
ASes in this level i + 1 either. So there must exist some
time ti+1 so that all ASes in levels from 0 to i + 1 will
have completed their prependings and will not change any
more.

Again from property 1, we know ASes in level 0
cannot be affected by any prepending actions of ASes
from the same or higher level. Therefore, there must exist
a time t0 that they complete their prepending without
further change. Since there are finite number of levels
in the Internet, the whole process must converge. This
completes our proof by induction.

5 Related Work

Based on BGP routing tables from routers connected to
the AT&T backbone, Feamster et al reported that over
30% of the routes had some amount of ASPP, and most
of these paths were prepended with one or two ASes
[3]. However, Broido et al reported that only 6.5% of
the routes in the November 2001 Route Views data had
ASPP [7]. This significant difference shows that it is im-
portant to observe the ASPP on different levels of the In-
ternet routing hierarchy.

Swinnen et al used computer simulation to evaluate the
ASPP method [8]. In the simulation model, each stub
AS connected to two different transit ASes. When each
stub AS prepended one AS to one of the route announce-
ments, their simulation results showed that the distribu-
tion of the inter-domain paths changed for almost all stub
ASes. Moreover, the impact of the ASPP was different
for each stub AS. With a prepending length of 2, almost
all the inter-domain paths were shifted to the nonprepend-
ing link. Beijnum studied the impact of ASPP on a doubly
homed stub AS under two different scenarios [9]. The first
one was when the stub AS was doubly homed to similar
ISPs in the sense that the ISPs directly peered with each
other via the same network access point. The second case
was when the stub AS was doubly homed to dissimilar
ISPs that did not directly peer with each other. He used
a simple example to show that applying the ASPP to the
second case had a more gradual effect on the change of
the incoming traffic distribution.

Motivated by a lack of systematic procedure to tune the

ASPP, Chang and Lo proposed a procedure to predict the
traffic change before effecting it. They implemented and
tested the procedure in an operational, doubly homed AS
which was connected to two regional ISPs [6]. The mea-
surement results showed that the prediction algorithm was
fairly accurate. Moreover, the traffic shift peaked when
the prepending length was changed from 2 to 3, and al-
most 60% of the routes were affected.

Given the AS relationship, Wang and Gao inferred BGP
router’s import and export routing policies [4]. For the
import policies, they inferred on the local preferences
that is usually the first metric used for selecting the best
route. Their measurement study confirmed that the routes
learned from customers are preferred over those from
peers and providers. For the export policies, they have
observed a large percentage of selective announced pre-
fixes from some ASes. Furthermore, they showed that the
cause for this came from selective announcement which
was practiced by multihomed ASes to balance the in-
bound traffic.

Various kinds of BGP route oscillation problems have
been studied in the past. Varadhan et al [10] studied per-
sistent route oscillation in general whenever ASes do in-
dependent route selection under local policies. Route os-
cillation problems with using the MED attribute have been
studied by [11][12]. In [13], Gao and Rexford proposed
a set of guidelines for an AS to follow in setting its local
policies to avoid route oscillations. But none of the previ-
ous work considered route oscillation caused by ASPP.

6 Conclusion

We have made several contributions towards using BGP’s
ASPP approach to do inbound traffic engineering. First,
through careful analysis of the Routeviews data, we re-
port a trend of increasing level of multi-homing and use
of ASPP in BGP, which means a lot of network opera-
tors are doing load balancing. Our subsequent modeling
and analysis take a systematic look at the fundamental is-
sues: (a)how is AS path prepending done locally? (b)
what are important global metrics? (c) does this decen-
tralized ASPP process converge? (d) If it does, does it
improve global metrics? We characterized when there is
no interference between local load balancing (when only
stub ASes do load balancing), and exposed some prob-
lems (convergence, optimality) when providers are also
doing load balancing. Lastly, We also provide guidelines
so that AS operators can avoid instability and route oscil-
lation.

References
[1] L. Gao, “On inferring autonomous system relationships in the in-

ternet,” in Proc. IEEE Global Internet Symposium, Nov. 2000.

13

[2] B. Quoitin, et al, “Interdomain traffic engineering with BGP,”
IEEE Commun. Mag., vol. 9, no. 3, pp. 280–292, May 2003.

[3] N. Feamster, J. Borkenhagen, and J. Rexford, “Controlling the im-
pact of BGP policy changes on IP traffic,” AT&T Research, Tech.
Rep. 011106-02, Nov. 2001.

[4] F. Wang and L. Gao, “On inferring and characterizing Internet
routing policies,” in Proc. ACM SIGCOMM Internet Measurement
Workshop, Oct. 2003.

[5] R. Jain, D. M. Chiu, and W. Hawe, “A Quantitative Measure of
Fairness and Discrimination for Resource Allocation in Shared
Systems,” Digital Equipment Corp, Tech. Rep. TR301, 1984.

[6] R. Chang and M. Lo, “Inbound traffic engineering for multihomed
ASes using AS path prepending,” in Proc. IEEE/IFIP Network Op-
erations and Management Symp., Apr. 2004.

[7] A. Broido, et al, “Internet expansion, refinement and churn,” Eu-
ropean Trans. Telecommun., Jan. 2002.

[8] L. Swinnen, “An evaluation of BGP-based traf-
fic engineering techniques,” available from
http://www.info.ucl.ac.be/people/OBO/biblio.html.

[9] I. Beijnum, BGP. O’Reilly, 2002.

[10] K. Varadhan, et al, “Persistent route oscillations in inter-domain
routing,” Computer Networks, vol. Vol.32, no. No.1, pp. 1–16,
2000.

[11] A. Basu, et al, “Route oscillations in IBGP with route reflection.”
Pittsburgh, Pennsylvania, USA: SIGCOMM, August 2002.

[12] T. Griffin and G. Wilfong, “Analysis of the MED oscillation prob-
lem in BGP.” Paris, France: 10th IEEE International Conference
on Network Protocols (ICNP’02), November 2002.

[13] L. Gao and J. Rexford, “Stable Internet Routing Without Global
Coordination,” IEEE/ACM Trans. Networking, vol. 9, no. 6, pp.
681–692, Dec. 2001.

14

