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Abstract— In unstructured P2P content distribution systems,
the most important algorithms to ensure optimal flow of
content along multiple dynamically created distribution trees
are piece selection algorithms and load balancing algorithms.
This paper models practical load balancing algorithms and
derive a number of insights.

I. INTRODUCTION

Peer-to-peer (P2P) content distribution, whether streaming
or file downloading, relies on one or more (explicit or
implicit) distribution trees from the source to all the receivers
(peers). By distributing the content via multiple trees, all
peers can contribute to the process which is the secret of why
P2P systems scale. Of course, this is based on the assumption
that the bottleneck of the distribution system is at the peers’
access links rather than in the transit network, a reasonable
assumption up to certain scale.

The difference between streaming and downloading is that
the former needs to achieve a given playback rate whereas
the latter means best-effort. In steaming, the content has
deadlines to meet, so the delivery system needs to take
that into consideration. Other than that, streaming is an
easier problem than downloading when the total bandwidth
capacity of the multiple distribution trees is abundant (or at
least adequate) compared to the playback rate. In this paper,
we focus on the P2P streaming problem.

Broadly speaking, there are two types of P2P systems:
structured versus unstructured. These refer to the two dif-
ferent approaches of building and maintaining the multiple
distribution trees from the source to all the peers. In the
structured approach, the trees are built explicitly - each
peer knows its role (or position) in each tree it belongs to.
Since peers come and go, maintaining these trees becomes
complicated. In the unstructured approach, trees are not built
explicitly, but rather from an on-demand basis. Each peer
keeps track of a subset of other peers as neighbors. At
any moment, each peer tries to stream a chunk of content
from a subset of neighbors who have this chunk. The local
peer can request different pieces of the chunk from different
neighbors at the same time. Thus, each piece travels through
potentially a different tree to reach all peers. While building
distribution trees in this manner seem rather chaotic, it
works incredulously well in many practical systems (such
as BitTorrent [1] and PPLive [3]).

Theoretically, the throughput limit of such multiple-tree
P2P content distribution systems can be established via fluid
approximation. Namely, the pieces are assumed to be small

so that each peer is doing cut-through forwarding, without
wasting any bandwidth in the process. If all peers form a full
mesh so that there is no constraint on what trees to build,
the throughput must be limited by

R ≤ min(C0,
n∑

i=0

Ci

n
)

where C0 is the uplink bandwidth of the source, and Ci, i >
0, is the uplink bandwidth of each peer respectively [7], [8].
When there are constraints to the distribution trees, e.g. when
the peers do not form a full mesh, or when there is degree
bounds to each node of the tree, the problem is addressed in
[15], [14].

In practice, the performance of a multiple-tree P2P con-
tent distribution system depends on the algorithms used to
implement tree construction and transmission scheduling.
Such algorithms are distributed, involving the following
subalgorithms at each peer:

1) find a set of neighbors, typically with the help of a
tracker server and some randomization;

2) determine a chunk to download, typically based on
knowledge of neighbors’ content and what is missing
locally;

3) request one or more neighbors for different pieces of
the selected chunk

These algorithms have already been engineered in various
P2P systems (such as BT, PPlive and others) through re-
peated experimentation and tuning. The question is, can we
build reasonably simple models of these algorithms to help
understand why they work and how to optimize them and
make them more robust.

Intuitively, optimal throughput can be achieved if the
subalgorithms can maintain these two invariants:

a) A peer’s neighbors have chunks the local peer needs
b) A peer’s neighbors have enough uplink bandwidth to

satisfy the local peer’s playback rate.
Roughly speaking, the first invariant is achieved by chunk
selection; whereas the second invariant achieved by load
balancing.

The chunk selection algorithm has been studied in [1],
[12], [13]. The key insight is to give sufficient priority to
distributing the rare chunks which are those that have not
propagated far along the multiple trees yet. In the streaming
case, chunks also have urgency, so the priority should be set
taking both rarity and urgency into consideration [12].



The objective of this paper is to study the performance of
the load balancing algorithm. This is the approach we take.
We first abstractly formulate the problem, as a centralized
optimization problem, which let us see the end result we are
trying to achieve. This is done in section 2. Then we describe
a number of distributed algorithms and study them using
event-driven simulation, in section 3 and 4. Some of these
algorithms are eventually abandoned; others are competitive
under different situations. By presenting them together, we
hope to illustrate the insights we gained. It is also our hope
that this simulation based study, with the insights we gained,
will lead to analytical derivations.

II. ABSTRACT MODEL

We formulate a more idealized problem than that described
in the previous section in order to get a high level understand-
ing of the problem we are dealing with. The key assumption
is that the first invariance is already met; in fact, we assume
each peer has all the content that any other peer may want.
So the problem is purely how to balance the load among
different peers. Under this assumption, the source (server) is
not even necessary, other than serving the role of a back-up
server when there is not even bandwidth among peers to help
each other.

Let there be n peers, each acting as a server with a service
rate of Ri, i = 1, . . . , N . Each peer, k, seeks service from
a randomly selected set of servers (other peers), Sk. Sk

is referred to as the neighbors of peer k. Let the service
obtained by k be denoted rkj where j ∈ Sk. The goal for
each peer is to make sure

∑
j∈Sk

rkj = R where R is the
playback rate. Without loss of generality, we assume R = 1.

The source serves as a back-up server (indexed by 0),
assumed to have infinite capacity, R0 = inf . If a peer k
cannot receive sufficient service rate from its neighbors Sk,
then the back-up server steps in to fill the gap. Let the
back-up server’s service rate for peer k be denoted by rk0.
Combine this with the above, we have

rk0 +
∑

j∈Sk

rkj = 1 ∀k

And the objective is to select the service rates for each peer’s
neighbor set to minimize the total service rate of the back-up
server,

r0 =
∑

k

rk0.

and the optimal solution is denoted r∗0 . This is a standard
linear programming problem.

So from a theoretical point of view, we know there exists a
solution, and there is a standard procedure to get the solution,
although it may take some time. From a practical point of
view, the interest would be on how to design a distributed
algorithm to find the optimal; how to reduce the time it takes
to converge to the solution, perhaps a good enough solution
if it takes too long to get the optimal.

III. SIMULATION MODEL
We develope a discrete-event simulation model to study

the algorithms, which captures more details than the abstract
model in the previous section.

In this model, the peer population is fixed, at N peers1,
and each peer randomly selects a constant number of K
neighbors. The peers may have different uplink bandwidths,
which determine the service rates of the peers. Each peer
requests service from other peers as well as provides service
when requested. The request service time depends only on
the uplink capacity of the servicing peer (which means the
network is not the bottleneck. These are the same as the
abstract model.

A major difference is that instead of rate-based control
in the abstract model, the algorithms will deal with discrete
pieces; so they can be thought of like window-based control,
similar to congestion control algorithms in transport layer
that we are familiar with. Each chunk of video is divided
into M pieces, and piece is the unit of request. Each peer
is assumed to have the content to serve any request. When
multiple requests arrive, a peer serves them using the FCFS
discipline as in standard queueing systems, the service time
depending upon the uplink bandwidth of the servicing peer.
Each requesting peer maintains a request window W , where
1 ≤ W ≤ M . The request window is the number of
simultaneously outstanding requests a peer makes. After a
requested piece is downloaded, a peer can issue another
request. Intuitively, larger M and W tend to help load
balancing, making the discrete model closer to the model
with fluid approximation. In practice, M cannot be too large
due to request overheads; and W is also limited since it tends
to increase error and loss rate at the receiver2.

We assume the playback rate is one chunk per unit time
(e.g. one second). For streaming, we assume each peer cannot
make requests so that the cumulative downloading rate
exceeds the playback rate, this is because we assume content
is made available at the playback rate. For this reason, our
performance metric is the average cumulative downloading
rate at all peers, and the speed this rate converges towards
the playback rate over time.

To reduce the complexity of the algorithms, we have
not included the source (back-up) server in the simulation
model3. If the cumulative rate cannot reach the playback rate,
the difference is assumed to be taken care of by the back-
up server. This assumption will not cause the throughput
to exceed the playback rate either, since the request rate is
limited to the playback rate.

Given this model, we know that a pre-condition for
achieving (close to) playback rate throughput is for the total
uplink bandwidth of all peers to meet the total demand, NR,
namely all peers achieving playback rate. When the total
bandwidth supply is abundant compared to the demand, it

1Dynamic peer behavior will be considered in future work.
2To deal with excessive incoming burst rate, we assume there is some

lower layer pacing and error correcting/recovery mechanism.
3When to send requests to this back-up server is non-trivial, and will be

considered in future studies.



is easy for many algorithms to perform well, as we will see
below. That’s why we choose to study a regime when the
supply equals demand, that is

∑N
1 Ri = NR.

When operating in a regime where total supply equals
total demand, it is hard to avoid that at some peers the
request rate is higher than the available bandwidth. So each
algorithm needs some mechanisms to prevent instability
(severe overloading). This can be done by setting a request
queue threshold at the servicing peer, beyond which all new
requests will be dropped. An alternative is to leave the
responsibility with the requesting peer, by implementing a
request timeout4. In practical systems, probably both mech-
anisms are implemented; but for the simulation model, we
include a default request timeout mechanism depending on
some multiple of the average round-trip time.

For the simulation study to compare different algorithms
in the next section, we use the following parameter values:
N=1000, K=30, M=8, W=4, Playback rate=1; unless speci-
fied otherwise.

IV. ALGORITHMS

A. Brief Summary

There are many possible algorithms one can consider.
Ultimately, the algorithms we considered belong to two
categories:
• load dependent algorithms
• randomized algorithms

In the former case, some mechanism is adopted for measure-
ment load at the targeting peers and a selection is made based
on load. In the latter case, since the number of neighbors K
is more than the number of outstanding requests allowed,
the M requests are sent to randomly selected peers. The
conclusion is that both type of algorithms can be tuned to
work. For the load dependent algorithms, it is important to
avoid oscillation. For the random algorithms, it is necessary
to deal with heterogeneous peers (with different uplink
bandwidths) where a simple random strategy does not work.

B. Best neighbor strategy

Intuitively, to achieve load balancing each peer should
get some sense of load at each neighbor and send the next
request to that neighbor. This can be considered as some
form of gradient method in solving the optimization problem
described in the abstract model.

A number of load measurement options have been consid-
ered. For example, the servicing peer can indicate its queue
size at the conclusion of uploading a piece of content. This
information needs to be combined with the uplink bandwidth
of this peer for it to reflect the loading, and a peer does not
automatically know its own uplink bandwidth. Alternatively,
there can be some central service for requesting peers to
query current load information. All schemes for load mea-
surement seem to have their own problem; the major issue
being the timeliness of the information versus the overhead
of acquiring such load information.

4Some form of request timeout is needed if peers can leave the system.

The scheme we picked for this study is based on mea-
suring roundtrip time at the requesting peer. This scheme
is relatively low cost and robust. For a given peer, we use
Ti, i = 1, 2, . . . , K to denote the roundtrip time of the
ith neighbor, the total time to download a piece from this
neighbor, including the propagation delay, transmission time
as well as the queueing delay.

In our best neighbor strategy, each peer initially sets Ti to
zero for all neighbors. After the completion of each request,
the roundtrip time to that neighbor is reset of the measured
value. The neighbor with the smallest roundtrip time is where
the next request is sent, ties are broken by randomization.
By trying all neighbors, it ensures no good neighbor will be
missed.

In the first experiment, we assume a homogeneous network
by setting the uplink bandwidth of all peers to be equal to the
playback rate. We also set the propagation roundtrip delay
to be 3% of the time to play one chunk. The performance of
the best neighbor algorithm, measured in average cumulative
rate is shown in Fig 1. At around 75% playback rate, the
performance is obviously very poor.
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Fig. 1. Average cumulative downloading rate for the best neighbor strategy
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Fig. 2. The average queue length of a first type peer

Without searching too hard, we find the problem. There
is severe oscillation, as is often the case with such simple-
minded load balancing algorithms. There are two typical
kinds of peers. For the first type, its incoming request queue
length oscillates wildly with time, as illustrated in Fig 2.
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Fig. 3. The average queue length of a second type peer

For the second type, its incoming request queue drops to
zero after awhile, as shown in Fig 3. In the latter case, the
request queue has a sharp jump before dropping to zero,
indicating the high roundtrip time reached instantaneously is
causing these type of peers to be abandoned by requesting
peers. Roughly 25% of the peers are of the second type,
explaining why only about 75% of best possible throughput
is achieved.

The next three strategies are chosen to overcome the
oscillation problem.

C. Best neighbor with smoothed load measurement

To avoid the big spike in roundtrip time, hence the second
type of wasted peers, one idea is to smooth the measured load
values. Exponential averaging can be applied to roundtrip
time in the obvious way:

τi = α ∗ τi + (1− α) ∗ Ti, 0 6 α < 1 (1)

where τi is the smoothed roundtrip time, whereas Ti is the
latest measured value. The value α is used to tune the relative
importance of the latest value compared to the average. When
α = 0, this is exactly the original best neighbor strategy; but
when α > 0, τi reflects an average performance of the ith
neighbor rather than a one-shot performance measurement.
We set α = 7/8 in our experiments. The number of
abandoned peers is reduced to about 10%, but oscillation is
still quite severe. A peer, while not abandoned, might be not
sought after for a long duration at a time. The improvement
from the original Best Neighbor is quite marginal, as shown
in Fig 4 together with some other strategies.

D. Random strategy

Another alternative is to remove load dependency, and try
to balance load based on randomization. Each peer picks
W neighbors randomly and sticks to these neighbors for
service5. This simple strategy is surprisingly effective as
shown also in Fig 4. As will be shown later, however,
the simple random strategy runs into problems when the
(heterogeneous) peers have different uplink bandwidths.

5Note, picking random peers for each request does not give better
performance, but can yield worse performance in the heterogeneous case
when peers have different uplink bandwidths.

E. Weighted random strategy

To prepare for heterogeneous peers, we modify the random
strategy by applying weights to each neighbor according to
its estimated load. Load estimation can be based on smoothed
roundtrip time, as defined in Equation 1. Instead of picking
the best neighbor, each neighbor now has a probability to be
picked. Specifically, the probability neighbor i is selected is
given below:

Pi =
( 1

τi
)2

∑K
j=1(

1
τj

)2
, i = 1, 2, ...K (2)

The intuitive meaning of Equation 2 is to choose neighbors
with small τi with a higher probability; thus balancing
the load by downloading more pieces from the less busy
neighbors. Those neighbors with a large τi will still be
selected with a lower probability. We simulated the weighted
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Fig. 4. The performance comparison between different strategies

random strategy with α = 0 and α = 7/8. The result is also
shown in Fig 4 for comparison.

The performance of the weighted random strategy is
similar to that of the random strategy, around 90% of the
playback rate (Fig 4). But the purpose of the weighted
random strategy, as will be shown later, is to deal with the
heterogeneous case. Another property worth noting is that
when α = 0, the performance of weighted random is better
than when α = 7/8. This is the opposite of the result with
the best neighbor strategy which performs better with α > 0.
When α is close to zero, the newly measured roundtrip
time plays a more important role and, as discussed before,
becomes a cause for oscillation. For the same reason, this less
smoothed roundtrip time is also more helpful in detecting the
less loaded neighbors. Since the weighted random strategy is
already able to avoid oscillations through randomization, so
it works better with the most currently measured roundtrip
time (τ when α = 0) to improve load balancing.

To help visualize the degree of balancing the load, we
compute the time to completion for each peer, and plot the
standard deviation of this quantity for each of the algorithms,
see Fig 5. The time to completion of a peer is the waiting
time for the last request in the current queue, and is a
good measure of the current loading of a given peer. The
smaller the standard deviation clearly indicates better load
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Fig. 5. The STD of the time to completion of three strategies

balancing. The random strategy has the lowest standard
deviation, and it explains why it also achieved the best
cumulative downloading rate.

V. FURTHER EXPERIMENTATION

In this section, we describe the results of further ex-
perimentation of the algorithms, to tune them for better
performance and to study their robustness.

A. Timeout and retry

Originally, a timeout mechanism is built in to all algo-
rithms to ensure we don’t wait indefinitely for departed, or
for extremely overloaded peers. Through more careful tuning
of the timeout value, it is also possible to use this mechanism
to avoid big oscillation and even directly shift load by retries.

The main idea is to estimate the queuing time for a request
at each neighbor, assuming the system reaches such a steady
state, and set a timer accordingly. If it takes significantly
longer than the normal queueing time, you should give
up and try sending the request to a different neighbor.
Optionally, you can send a message to cancel the original
request.

The queuing time at the ith neighbor, Qi, can be measured
as the amount of time between when the peer sends out a
request to a neighbor and when the peer receives the first
data byte from that neighbor. The smoothed version of the
queueing time can be tracked as below:

θi = β ∗ θi + (1− β) ∗Qi, 0 6 β < 1, i = 1, 2, ...K (3)

where Qi denotes the newest measured value and θi the
exponentially average queueing time.

Besides tracking the average of Qi, it is also necessary to
keep track of the variability of Qi, Di. It is computed by the
following equation:

Di = γ ∗Di + (1− γ) ∗ |θi −Qi|, 0 6 γ < 1 (4)

When a request is sent to the ith neighbor, a timeout
threshold, Ti, is set to:

Zi = θi + C ∗Di, C > 0 (5)

This is the same as how timers are set in transport protocols
such as TCP.

When the timeout event occurs, besides canceling the
request and selecting another neighbor for the request, the
local peer also needs to update the roundtrip time τi and
queueing time θi because old values are apparently under-
estimated. Let C1 and C2 be the factors for increasing the
values of τi and θi respectively. In our experiments, the
default value we use are: β = 7/8, γ = 3/4, C = 2, C1 =
1.5, C2 = 2.

Once the timeout mechanism detects longer than expected
queueing, it considers this to be due to oscillation (rightly
or wrongly), and retries the request with another peer.
This comes at a cost - the requester sends two additional
messages: one to cancel the original request, and the other
to initiate the new request. The retry ratio, ρ, is defined as
the number of timeout events divided by the total number of
finished pieces. The value of ρ measures the overhead of the
timeout and retry mechanism.
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Fig. 6. The performance of strategies with timeout mechanism
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We add this timeout and retry mechanism to all the strate-
gies introduced in the previous section: the best neighbor
strategy with α = 0 and α = 7/8, the random strategy, and
the weighted random strategy with α = 0 and α = 7/8.
The average cumulative downloading rate, the completion
time STD and the retry ratio ρ are shown in the Fig 6,
Fig 7 and Table I respectively. In steady state, the timeout
and rety mechanism is able to improve the performance
of all the strategies, while keeping the retry cost below



TABLE I
THE RETRY RATIO OF DIFFERENT STRATEGIES

Retry ratio: ρ
B.N. W.R. Random

α=0 α=7/8 α=0 α=7/8 -
0.0559 0.0284 0.093 0.0859 0.0086

10%. The best neighbor strategy (especially with α = 7/8)
makes the most improvement, achieving nearly 95% of the
playback rate, and the lowest completion time STD, of
around 0.1. In comparison, the random strategies do not see
as much difference. The reason is because the best neighbor
strategy had more overloaded peers due to oscillations and
the more aggressive timeout and retry strategy is able to
correct that problem. Nonetheless, the convergence speed of
Best Neighbor is rather slow. Another observation is that
the retry ratio ρ always increases when α = 0 compared to
when α = 7/8. This is because any strategy relying on the
instantaneous load information (roundtrip time) always tends
to generate more load variations (oscillations), hence results
in more timeouts.

In the timeout mechanism, it is important to choose the
right timeout threshold. If this threshold is too large, then the
mechanism does not avoid long queueing times. On the other
hand, if it is too small, each peer becomes impatient and
the retry ratio increases, incurring more overheads. Recall
that the timeout threshold is computed using Equation 5, in
which the first part is the approximate queuing time and the
second part is the approximate variation of the queuing time.
In the following experiments, we adjust C (of the second
part) from 0 to 4 to observe the effect of different timeout
thresholds. The performance of the different strategies is
shown in Fig 8, and the corresponding retry ratio ρ is shown
in Fig 9. Roughly speaking, when C decreases, no matter
which strategy is used, the performance is improved while
the retry ratio increases.
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Fig. 8. The impact of different thresholds on the performance

B. Heterogeneous peers

In practice, the uplink capacity of peers can vary quite
a lot, between ADSL versus Ethernet based access tech-
nologies. We expect this to affect the Random strategy,
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Fig. 9. The impact of different thresholds on the retry ratio

and that is the raison d’etre for the Weighted Random.
We experimented with two heterogeneous networks, each
with three type of peers with equal proportion. In the first
network, the three types of peers had uplink bandwidths
of (0.5, 1, 1.5) relative to the playback rate; in the second
network, the uplink bandwidths are (0.2, 0.4, 2.4). In both
cases, the average uplink capacity still equal to the playback
rate, as in the homogeneous network case. As shown in
Fig 10, the Random strategy has poorer performance in the
heterogeneous case compared to the homogeneous case, as
expect. The Weighted Random strategy, however, fares quite
well in both cases, as is evident from Fig 11. From Fig 12, we
can see that the heterogeneous networks also cause trouble
for the Best Neighbor strategy. This is because the peers with
small uplink bandwidth are more likely to be abandoned by
requesting peers.
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Fig. 10. The performance of the random strategy in different networks

C. Request window size

Another important parameter is the request window size
W . Increasing the request window size has at least the
following two effects:

1) increasing the load
2) increasing the number of neighbors serving each peer

The first effect can be controlled - we can decrease the size of
a piece at the same rate of increasing W so outstanding load
does not increase. This way of keeping the load constant is at
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Fig. 11. The performance of the weighted random strategy in different
networks
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Fig. 12. The performance of the best neighbor strategy in different networks

the expense of some additional overheads. The second effect
(of increasing W ) has clear implication for load balancing.

We experimented with different values of request window
size for both homogeneous and heterogeneous networks. In
the homogeneous case, as we increase W from 4 to 8, there
is noticeable improvement for both Random and Weighted
Random, as shown in Fig 13. For Best Neighbor however,
there is not a significant effect. In the heterogeneous case
where Random normally has a problem, the effect of a larger
request window is dramatic: it lets Random achieve about
the same performance as Weighted Random, as shown in
Fig 14 for the second heterogeneous network. By distributing
load to more neighbors, a larger request window size tends
to equalize the average uplink bandwidth of the neighbors
requested by a peer, hence more balanced load.

In Fig 15, we show the performance of the three strategies,
setting the request window size to maximum. This time, we
consider both the cumulative downloading rate as well as
the convergence time, which can be an important metric in
more dynamic networks. We can see that the simple Random
strategy with large W is quite competitive.

D. Performance with adequate capacity

In all the experiments so far, we considered only cases
when the average uplink capacity is equal to the playback
rate. This is deliberate to see how different algorithms fare
under rather stressful situations. If the operator of the P2P
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Fig. 13. The impact of window size to the performance in homogeneous
network
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Fig. 14. The impact of window size to the performance in heterogeneous
network

network is willing to set the playback rate to a level below
the average uplink capacity, we would expect all robust
algorithms to achieve the playback rate on a cumulative basis.
For the homogeneous network, we set the uplink capacity (of
each peer) to 1.2; in the heterogeneous case, we set the uplink
capacity of the three types of peers to be (0.5, 1, 2.1) respec-
tively (with average of 1.2 as well). For performance metrics,
we consider both the average cumulative downloading rate
(vertical axis), as well as the convergence speed (horizontal
axis). So the perfect performance is the point (0, 1). The
result is shown in Fig 16. Overall, the Weighted Random
seems more stable all-rounded. The Random strategy does
not fare its best because in this comparison W = 4 is
used. The Best Neighbor is a little disappointing in the
heterogeneous case. It does not achieve the playback rate
because the peers with low bandwidth (0.5) tend to be
abandoned.

VI. DISCUSSIONS AND CONCLUSIONS

A. Related Works

The load balancing problem studied in this paper arises in
unstructured P2P content distribution systems, which is very
popular in recent years due to success deployment of many
large-scale systems such as BitTorrent [1], CoolStreaming[2],
PPLive[3],SopCast[4],and TVants[5]. There is already a body
of literature in modeling and analysis of such systems. On the
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one hand, a number of papers are devoted to understanding
the theoretical capacity and other properties of such systems,
such as [6], [9],[10], [14] and [11]. On the other hand, other
papers try to model the algorithms in realizing such P2P
systems. There are two important types of algorithms for
unstructured P2P systems. The first type ensures peers have
content so that they can help each other, which is often
referred to as piece selection algorithms. For example, [13]
and [12] are examples of modeling such algorithms and
mechanisms. The other type of algorithms deal with load
balancing, and are often referred to as request scheduling or
load balancing algorithms, which is the subject of this paper.
Finally, various paper also give a general description of
these algorithms, for example, [1] for p2p file downloading
systems; [2] for p2p streaming systems; and [16] for p2p
Video-on-Demand systems.

Load balancing is not a new topic, and it has been studied
in many contexts. For example, an elegant analysis is found
in [17] for studying algorithms for balancing the load on
different servers in client server systems based on the ball-
and-bin model. In a p2p system, the load balancing problem
is more distributed in nature and deserves new attention.

B. Conclusions and future directions

We feel that the load balancing algorithm is a generic and
important component of unstructured p2p content distribu-

tion systems. In this paper, we have presented a preliminary
study of some basic strategies for approaching this problem.
Primarily through simulations, we are able to derive impor-
tant insights. For example, knowledge about load may not
always lead to better performance and robustness; and ran-
domization can often lead to simple and effective algorithms.
Our exploration considers many practical mechanisms, such
as how to use timeout and try, and window of outstanding
requests to improve the algorithms.

For future studies, we would like to derive analytical
results for some of the conclusions. Also, we want to look
into the dynamic population case and load balancing for file
downloading.
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