
Adaptive Flow Aggregation - A New Solution for
Robust Flow Monitoring under Security Attacks

Yan Hu
Dept. of Information Engineering
Chinese University of Hong Kong

Email: yhu4@ie.cuhk.edu.hk

Dah-Ming Chiu
Dept. of Information Engineering
Chinese University of Hong Kong

Email: dmchiu@ie.cuhk.edu.hk

John C.S. Lui
Dept. of CSE

Chinese University of Hong Kong
Email: cslui@cse.cuhk.edu.hk

Abstract— Flow-level traffic measurement is required for a
wide range of applications including accounting, network plan-
ning and security management. A key design challenge is how
to gracefully deal with traffic surges that exhaust the resources
(memory, export bandwidth or CPU) of the flow monitor. A
standard solution is to do sampling (look at one out of every
n packets). This is implemented in Cisco’s Netflow, a popular
platform. Setting the sampling rate according to the normal
traffic, however, cannot avoid overrunning available memory for
flow records during abnormal situations, such as when there
is a DoS attack or other security breaches. Currently available
countermeasures have their own problems: (1) reject new flows
when the cache is full - some legitimate new flows will not be
counted; (2) export not-terminated flows to make room for new
ones - this will exhaust the export bandwidth; (3) adapt the
sampling rate to traffic rate - this will reduce the overall accuracy
of accounting, including legitimate flows.

In this paper, we propose a new counter-measure to deal with
abnormal traffic conditions - adaptive flow aggregation. Often the
reason for abnormal traffic conditions is due to security attacks.
Fortunately, such attacks usually have some common patterns.
For example, packets of DoS attacks have the same destination
IP address, while traffic for worm spreading has the same source
IP address. Our flow monitoring algorithm identifies these traffic
clusters in real-time and aggregates these large amount of short
flows into a few flows. Compared to currently available solutions,
our solution not only alleviates the problem in memory and
export bandwidth, but also guarantees the accuracy of legitimate
flows. In addition, it could provide network operators with some
useful information on potential security problems.

I. Introduction

Traffic measurement and monitoring are crucial to operating
IP networks, because network administrators need to have a
good understanding of how their networks are used. Especially,
flow-level measurement is widely used for a wide range of
applications. One example is network planning, which the
ISP needs to know how the traffic load is distributed in its
network. It relies on measuring the amount of traffic among
pairs of customers. Flow based traffic analysis can also be
used for accounting purposes, when clients are billed based
on their traffic volume. Other applications include security or
denial-of-service (DoS) analysis. It is also possible to see what
applications are using the network by looking at traffic flows
based on their port numbers.

NetFlow [1], first implemented in Cisco routers, is the
most widely used flow measurement solution today. Flows
are defined by seven keys: source and destination IP address,

protocol, source and destination port, type of service and input
interface. Routers running NetFlow maintain a “flow cache”
to keep active flows passing through it. When a packet arrives
at the router, the router determines if this packet belongs to
an active flow in the cache. If yes, relevant fields (number of
packets, number of bytes, timestamp of last packet, etc) of this
flow are updated. If not, the router inserts a new flow record
into the flow cache.

The router will terminate a flow in its cache if any one of
these criteria are met: 1) the interpacket time within the flow
exceeds the inactive timer (15 sec is the default); 2) this flow
record was created longer than the active timer (30 min is the
default); 3) observation of TCP flags (FIN or RST); 4) the
flow cache is full. For those terminated flows, their records
will be exported using UDP to collectors (i.e., computing
machines which have private processors and memory) for
future analysis.

When a packet arrives at the router, NetFlow needs to look
up the flow cache for an existing flow, update that entry or
create a new entry. For high speed interfaces, the processor
and the memory holding the flow cache can not keep up with
the packet rate, so Cisco introduced sampled NetFlow [2].
There are several types of sampling methods, deterministic
sampling involves random selection of one packet from the
first N packets, and selection of every N th packet thereafter.
Random sampling selects packet randomly with a fixed sam-
pling probability.

It is important to note that the sampling rate of Cisco Net-
Flow is usually set manually by network operators according
to the normal traffic volume in their network. When there is an
anomaly in the network, such as DoS attacks, worm spread,
aggressive port scans and flash crowds, which generates a large
number of small flows, the surge in the number of small flows
may overwhelm the router memory and the export bandwidth
to the collector.

Current countermeasures to the above problem include: 1)
Reject new flows when the cache is full. In this case, legitimate
new flows will not be accounted for and the operator will lose
the information; 2) When the cache is full, export the flow
records more aggressively for those non-terminated flows so
as to make room for new ones. The implication of this action is
that the export bandwidth demand will be very high and may
run into trouble at the collector or the way to the collector;

3) The authors in [3] propose a method of adapting the
sampling rate to traffic. They divide the NetFlow operation into
measurement bins. They do not terminate flow records during
the bin, but terminate all active flow records at the end of the
bin. They use a maximum sampling rate at the beginning of
each bin, which is determined by the router’s CPU capability.
During the measurement bin, they dynamically decrease the
sampling rate until it is low enough for the flow records to fit
into memory. This algorithm guarantees a stable flow cache
and export bandwidth even under severe DoS attacks. But
under DoS attacks the sampling rate will decrease to a very
low level, which results in poor overall accuracy in per flow
counting including legitimate flows.

Our solution is to implement adaptive flow aggregation
when the router is running low on memory resource. Note that
attacks usually have some common patterns: DoS attacks often
have the same destination IP address, while worm spreads
have the same source IP address. If we dynamically aggregate
the numerous number of such small flows into a few flows,
then we can alleviate the problem of memory shortage under
attacks. Compared to other countermeasures, our method has
several advantages:

• We do not need to decrease the sampling rate drastically
under attacks, neither would we reject new legitimate
flows because the cache is full. So we guarantee the
accuracy of legitimate flows.

• Without aggressively exporting the records of non-
terminated flows so as to make room for new ones, we
would not overwhelm the collector.

• Using the information from flow aggregation, we can
provide network administrators some useful information
to detect DoS attacks and worm spreads.

The rest of the paper is organized as follows. We describe
related work in Section II. In Section III, we describe our
solutions and we provide some analysis in Section IV. Exper-
imental evaluation based on the proposed method is presented
in Section V. Conclusion is given in Section VI.

II. Related work

One of NetFlow’s problems is the amount of data gen-
erated can be so large that it may overwhelm the collector
or its network connection. Cisco’s solution to this problem
is to implement router-based flow aggregation [4]. Different
aggregation schemes summarize NetFlow data on the router
before the data is exported to the collector, resulting in lower
bandwidth requirement. The IETF (Internet Engineering Task
Force) working group IPFIX (Internet Protocol Flow Informa-
tion eXport) also recommends aggregating similar flows into
one metaflow [5]. Compared to these predefined aggregation
schemes, our goal is to dynamically find flows which form a
large cluster and aggregate these flows in real time.

In [6], Estan et al describe a method of traffic characteri-
zation that automatically groups traffic into minimal clusters
of conspicuous consumption. Instead of using individual flows
or other predefined aggregates, they dynamically define multi-
dimensional traffic clusters, so that any meaningful aggregate

of individual flows is a traffic cluster. Their idea of finding
the most conspicuous clusters of underlying traffic is similar
to ours. The difference is that their objective is to present a
good traffic report to the network manager, and their system
can be considered as a “post-processing” system instead of a
real-time one.

In [7], Keys et al present a system that computes multiple
summaries of IP traffic in real time. They refer to sources or
destinations that send or receive many packets, bytes or flows
as “packet hogs”, “byte hogs” or “flow hogs”. This system
produces these hog reports keyed by source IP, destination IP,
source port and protocol, and destination port and protocol.
These summaries provide information of some kind of cluster
in real time, but their 12 hog reports are also predefined
clusters. Another important element which is different from
our solution is that their system only provides the summary
information, and it does not keep any original flow information
as Cisco NetFlow does.

In [8], Mahajan et al focus on network congestion caused
by aggregate. They state that in both flash crowds and DoS
attacks, the congestion is not due to a single flow, nor to a
general increase in traffic, but due to a subset of the traffic
which they call an aggregate. Their approach involves both
a local mechanism for detecting and controlling an aggregate
at a single router, and a cooperative pushback mechanism in
which a router can ask adjacent routers to control an aggregate
along its upstream path. The definition of an aggregate and the
detection of aggregate in this paper is similar to ours.

The authors in [9] present algorithms that automatically
identify large flows. [10] uses adaptive sampling to guarantee
that the variance introduced by the variability of packet sizes
does not exceed a pre-defined limit. [11] develops estimators
for flow length distributions.

III. Propose Solution

A. Defining clusters

Our mechanism intends to protect NetFlow from running
out of memory and high rate exporting due to rapid increases
in traffic from one or more traffic aggregates which we call
clusters. The first issue we have to address is how many
distinct fields are used in constructing traffic clusters? We
choose five fields typically used to define a flow: source IP
address, destination IP address, protocol, source port, and
destination port. For simplicity, we regard these five fields as
four keys, srcIP, dstIP, srcPort (and protocol), dstPort (and
protocol). Individual flows are defined by unique values for
each of these four keys, while clusters are defined by unique
values for some of these key values. In other words, values for
these keys can be a single value, or all possible value (we use
* to denote this). For example, a cluster with values (srcIP =
*, dstIP = 210.0.0.3, srcPort = *, dstPort = 80,TCP) represents
all web traffic to the server with IP address 210.0.0.3.

The justification for choosing these four keys to define
clusters is that these four keys are consistent with commonly
used keys to define a flow. Additionally, this definition is
sufficient for the existing NetFlow data applications such as

network planning and application monitoring. Among these
four keys, port and IP address have different sensitivity for the
aggregation process. The reason is as follows. First, almost
all DoS attacks, worm spread, port scan, and flash crowds
have either a common source or destination IP address, but
not always have a fixed port number. Second, some network
applications with a well-known port number such as web
traffic with port 80 are always big clusters in the network, but
we have no reason to aggregate them to a single flow because
they are normal traffic and we surely need to maintain a more
detailed information for the accounting purpose.

Clusters are flows with the same value in some combinations
of these four keys. We illustrate this using some examples. In
Smurf attack [12], the attacker sends a forged ICMP packet
to a broadcast address and all receivers respond with a reply
to the spoofed IP address (the victim). Cluster for this type of
traffic can be represented by ICMP packets to the same dstIP
(the victim). The MS-SQL server worm [13] exploits a vul-
nerability which allows for the execution of arbitrary code on
the SQL server computer due to a stack buffer overflow. Once
the worm compromises a machine, it will craft packets of 376-
bytes and send the packets (usually using the same srcPort)
to randomly chosen IP addresses on port 1434/UDP. A cluster
for this type of worm packets will have the same srcIP (the
infected computer) plus the same dstPort (1434/UDP) and the
same srcPort. One can find packets of DoS attacks often have a
common destination IP (sometimes with a common destination
port); Packets of worm spreads often have the same source IP
address (sometimes with a common destination port); Packets
of port scans usually have a common destination IP address
(sometimes with a common source IP address). Besides these
flooding attacks, another network behavior which may cause
NetFlow to run out of memory is flash crowds. It occurs
when a large number of users try to access the same server
simultaneously. While its intent is quite different from DoS
attacks, from the network operator’s perspective, these two
cases are quite similar. Similar to the DoS attack, a cluster
can be defined for packets with the same dstIP (and maybe
with the same dstPort).

Based on the above analysis, we regard source and desti-
nation IP address as more important than the other two keys.
So for defining clusters we only consider combinations which
at least contain the same source or destination IP address.
In other words, we would not consider a cluster which only
has the same source port, and/or the same destination port.
Among the 16 arbitrary combinations of four keys, we would
not consider a) clusters with no key, b) clusters with all
four keys, and we also ignore the cases like c) clusters that
only have srcPort, d) clusters that only have dstPort, and e)
clusters that only have srcPort plus dstPort. Finally, we get
11 combinations. These combinations and their corresponding
examples are shown in Table I.

This, however, is only one of many possible ways to define
and identify big clusters. Other definitions can be, for example,
based on srcIP/dstIP prefixes such as 210.0.0.0/24; or based
on a range of port numbers such as ports higher than 1024. Yet

combinations examples
srcIP most worms
dstIP smurf attack ([12])
srcIP + dstIP most portscans
srcIP + srcPort response from syn flooding victim;

response from flash crowds web server
srcIP + dstPort W32/Blaster worm ([14])
dstIP + srcPort N/A
dstIP + dstPort syn flooding attacks ([15]);

WWW flash crowds
srcIP + dstIP + srcPort response from non-IP-spoofing syn flooding
srcIP + dstIP + dstPort non-IP-spoofing syn flooding attacks
srcIP + srcPort + dstPort MS-SQL server worm ([13])
dstIP + srcPort + dstPort DNS flash crowds

TABLE I

COMBINATIONS OF FOUR KEYS

other clusters can be designed based on other attributes such
as Autonomous System numbers. Note that more complex
definitions would require more flexible algorithms and more
complicated data structures, which may impose too much
overhead to real-time flow aggregation. This would be a
subject of further research.

B. Data Structure

First we take fprobe [16] as an example to illustrate the data
structure in ordinary NetFlow process. Fprobe is a libpcap-
based tool that collects network traffic data and emits it as
NetFlow flow records towards the specified collector. It is
an open source software distributed under GNU GPL. The
data structure used to store active flows in this software is a
hash table, in which flows are indexed by hash values of their
flow ID. The number of flows is often larger than the length
of the hash table (in fprobe, there are two choices for the
length, 256 and 65536), so two or more flows can hash to the
same value. A linked list is used to store flows of this kind of
hash collisions. We assume flows are defined in terms of five
keys, source/destination IP address, source/destination port and
protocol. When a packet arrives, the system first computes a
hash value on its flow ID (five keys), and then looks it up
in the hash table. It looks at every flow in the list with this
hash value, to determine which flow this packet belongs to, or
creates a new flow entry if the packet does not belong to any
existing flow. The hash table is an appropriate data structure
for flow look up, so softwares that collect network traffic and
generate flow information usually use this data structure.

We need a new data structure for our flow aggregation,
which is a tradeoff. If we use a simple data structure like a hash
table with linked list as mentioned above, it will be inefficient
to aggregate flows in a cluster, which needs to traverse every
node in the hash table. We need to put flows which are more
likely to be aggregated later closer. On the other hand, if we
use a complicated data structure like the multi-dimensional
tree in [6], it will use excessive memory, and bring too much
overhead to normal flow operations like flow look up.

Our data structure is as shown in Figure 1, which is a two-
dimensional hash table. One dimension of the hash table is

0 65535...130...1 2

0

...

2

1

...

115

655
35

srcIP: 137.8.6.5

dstIP: 120.0.0.1

srcIP: 210.70.1.4

srcIP: 202.75.1.7

dstIP: 210.0.0.3dstIP: 138.0.0.2

A

TSR

DCB

X Y

Fig. 1. data structure

the hash value based on a flow’s source IP (the left table
of hash number from 0 to 65535 in Figure 1), the other is
the hash value based on a flow’s destination IP (the top table
of hash number from 0 to 65535 in Figure 1). Take source
IP as an example, the hash value of a packet is computed
based only on its source IP, instead of its flow ID of five keys.
Packets with the same source IP will definitely be mapped to
the same hash value, on the other hand, packets with a different
source IP may be mapped to the same hash value because
of hash collision. Each hash value node has a linked list,
which consists of all source IP mapped to this hash value. For
instance, in Figure 1, source IP of 137.8.6.5, 202.75.1.7 and
210.70.1.4 are all mapped to hash value 115. In addition, every
source IP node has a linked list, which consists of all flows
having this source IP address. The destination IP dimension
of the hash table has a similar structure. The hash value of
a packet is computed based on its destination IP. Each hash
value node has a linked list, which consists of all destination IP
addresses mapped to this hash value. For example, in Figure 1,
destination IP of 120.0.0.1, 138.0.0.2, and 210.0.0.3 are all
mapped to value 130. And every destination IP node has a
list, which consists of all flows with this destination IP.

Every flow ID node has two parents, one is the previous
node in the source IP list, the other is the previous node in
the destination IP list. For example, in Figure 1, flow S has a
parent of flow R in the source IP list of 202.75.1.7, and has
a parent of flow B in the destination IP list of 120.0.0.1. We
only consider clusters containing a fixed source or destination
IP, so we compute the hash value based on these two fields.
In the source/destination IP list, we put flow ID nodes sorted
by destination/source IP. This data structure lets us find flows
in one cluster more easily. First, all flows in one cluster of
the same source or destination IP are in one list. Second,
flow ID nodes in source/destination IP list are sorted by
destination/source IP, so it’s easy to aggregate flows in one
cluster of the same srcIP plus the same dstIP.

C. Three levels of clusters

In the data structure, every IP node has a counter to indicate
the number of flow nodes with this IP address. For example,
in Figure 1, source IP node 137.8.6.5 has a counter of 4
to indicate there are a total of 4 flows from this source IP.
With this counter, we can easily get a top list for source

and destination IP address. Entries in the top list have a
flow counter and a pointer pointing to the corresponding IP
address node. Now the problem is that the top list is only
for source/destination IP address, not for all combinations. In
addition, different combinations have different priorities to be
aggregated. For example, a combination of dstIP plus dstPort
has a higher priority to be aggregated than a combination of
only dstIP because it keeps more information.

Cluster A
srcIP = 137.8.6.5

 N = 100

Cluster B
srcIP = 137.8.6.5
dstIP = 138.0.0.2

N = 30

Cluster C
srcIP = 137.8.6.5

dstport = 80
N = 40

Cluster E
srcIP = 137.8.6.5
dstIP = 210.0.0.3

dstport = 80
N = 15

Cluster D
srcIP = 137.8.6.5
dstIP = 138.0.0.2

dstport = 80
N = 20

Fig. 2. three levels of clusters

Our method is to divide different clusters into three levels.
There is only one global top list, so it is a mixture of source
and destination IP address. Take a source IP top list node as an
example, we divide different combinations with this source IP
into three levels. 1) The lowest level is L1, flows in L1 cluster
only have the same srcIP. 2) L2 cluster is about combinations
of two keys, flows in L2 cluster can have a) the same srcIP
plus destIP, b) the same srcIP plus srcPort, or c) the same
srcIP plus destPort. 3) L3 cluster is about combinations of
three keys, flows in L3 cluster can have a) the same srcIP
plus destIP plus srcPort, b) the same srcIP plus destIP plus
destPort, or c) the same srcIP plus srcPort plus dstPort.

For example, in Figure 2, the largest ellipse is a L1 cluster
of flows with the same srcIP of 137.8.6.5 (We define it as
cluster A). Flows in this L1 cluster also form two narrower
L2 clusters: cluster B has the same srcIP of 137.8.6.5 plus
the same dstIP of 138.0.0.2; cluster C has the same srcIP
of 137.8.6.5 plus the same dstPort of 80. There are even
two L3 clusters: cluster D and cluster E both have the same
srcIP plus dstIP plus dstPort. Our definition of clusters allows
clusters to overlap. If there exists a L3 cluster, there must
be corresponding L2 cluster(s) and L1 cluster(s). Actually,
L3 cluster ⊆ L2 cluster ⊆ L1 cluster. This example
has several subset relationships including: D ⊂ B ⊂ A,
D ⊂ C ⊂ A, and E ⊂ C ⊂ A. In addition, higher level
clusters have higher priority to be aggregated, because they
keep more information after aggregation. In this example,
when we perform aggregation, cluster D and E have the
highest priority, cluster B and C have the middle priority, and
cluster A has the lowest priority.

D. Algorithm for identifying clusters

Next we illustrate the algorithm to identify appropriate
clusters. The objectives of this algorithm are, first, flow entries

freed during aggregating these clusters should satisfy the
memory’s requirement, second, the level of clusters being
aggregated should be as high as possible. We first define
several parameters and variables:

• P : the number of all IP nodes in the top list
• mmax: the memory usage that triggers aggregation
• mdes: the expected memory usage after aggregation
• T : the number of entries the aggregation tries to free, i.e.

T = (mmax − mdes)/sizeof(a flow entry)
• r: the smallest size of clusters the algorithm identifies
• Ni(IPj): the number of flow entries which will be freed

if we aggregate all level i clusters with the IP address of
node j

The algorithm identifies large clusters based on values T , r
and the information in the top list. The first step is to compute
N1(IPj), N2(IPj), and N3(IPj) for every node in the top list.
N1(IPj) is the number of flow entries which will be freed if
we aggregate all L1 clusters with the IP address of node j,
so it equals to counter of node j minus 1. For example, in
Figure 2, N1 of this IP node is 99, because if we merge all
flows in the L1 cluster - all flows with the same srcIP of
137.8.6.5 - into one flow, we can free 99 flow entries.

For a fixed source IP address, there are three kinds of L2
clusters. To compute N2, we need to compute the following
three values corresponding to three kinds of L2 clusters:

• n21: number of flows which will be freed if we aggregate
all srcIP plus dstIP clusters with this IP address

• n22: number of flows which will be freed if we aggregate
all srcIP plus srcPort clusters with this IP address

• n23: number of flows which will be freed if we aggregate
all srcIP plus dstPort clusters with this IP address

Take n21 as an example, we traverse flows in the list of this
srcIP to find clusters with the same dstIP. n21 is the number of
flows which will be freed if we aggregate all these srcIP plus
dstIP clusters. We can get N2 by N2 = max(n21, n22, n23).
Because flow nodes in srcIP list are sorted by dstIP, finding
clusters with the same dstIP in a srcIP list only needs a counter.
On the other hand, finding clusters with the same srcPort or
dstPort in a srcIP list needs some temporary arrays. Computing
N3 is similar to computing N2.

After getting Ni(IPj) (1 ≤ i ≤ 3 , 1 ≤ j ≤ P) for the IP
nodes in the top list, the second step is to determine to which
level we aggregate. If

∑
j Ni(IPj) < T ≤ ∑

j Ni−1(IPj), we
will aggregate to Level (i−1). For example, if

∑
j N3(IPj) <

T ≤ ∑
j N2(IPj), then we will aggregate to Level 2. If we

aggregate L3 clusters for all IP nodes, the sum of all N3 is still
less than T , which can not satisfy our needs. But aggregating
L2 clusters for all IP nodes can satisfy our needs, so we choose
to aggregate to Level 2. It is important to note that the level
of clusters being aggregated should be as high as possible. So
aggregating to Level (i − 1) means we aggregate Level i
clusters for as many IP nodes as possible, and aggregate
Level (i − 1) clusters for the remaining IP nodes.

The third step is to determine which IP nodes to be
aggregated in Level i and which IP nodes to be aggregated

in Level (i − 1). Note that L3 cluster ⊆ L2 cluster ⊆
L1 cluster, and N3(IPj) ≤ N2(IPj) ≤ N1(IPj). Assume
aggregating to Level 2, our objective in this step is to choose
as many IP nodes as possible to aggregate their L3 clusters.
So those IP nodes whose N2 is closer to N3 should be chosen.

This part is implemented by Algorithm 1. First we compute
di(IPj), which is the difference of Ni−1(IPj) and Ni(IPj),
then sort these di(IPj) to di(IPj′) such that di(IPj′) is
ascending. After that we choose the smallest di(IPj′), the
corresponding Ni(IPj′) is the closest to Ni−1(IPj′). If∑

j Ni−1(IPj′) − di(IPj′) is still no smaller than T , we can
choose Level i cluster for IPj′ and Level (i− 1) cluster for
other IP nodes. Then we look at the second smallest di(IPj′),
and so on, until the difference is less than T . Through this
algorithm, we get result t. For {di(IPj′)|1 ≤ j′ ≤ t − 1},
we choose Level i clusters for the corresponding IPj′ , and
choose Level (i − 1) clusters for other IP nodes.

Algorithm 1 clusters selection algorithm

for j = 1 to P
di(IPj) = Ni−1(IPj) − Ni(IPj)

endfor
sort {di(IPj)|j = 1, ..., P} to {di(IPj′)|j′ = 1, ..., P} ,
such that di(IPj′) is ascending.
T ′ =

∑
j Ni−1(IPj)

for j′ = 1 to P
T ′ = T ′ − di(IPj′)
if T ′ < T break;

endfor
t = j′

One possibility is
∑

j N1(IPj) < T , then even if we aggre-
gate all L1 clusters, the memory freed still can not satisfy the
requirement. In this situation, the increase in number of flows
is not caused by a few dominated clusters, so flow aggregation
can not deal with the memory exhaustion completely.

E. Flow aggregation and export

For every node in the top list, we have decided if we should
do aggregation on clusters of this IP address. We have also
calculated the level of clusters and the kind of combinations
(eg, srcIP plus dstIP, or srcIP plus srcPort, or srcIP plus dstPort
for L2 clusters). After that, we find the list of flows of this
IP address, merge them in selected clusters to one metaflow.
Information of the metaflow comes from information of flows
in this cluster. For example, if the cluster is srcIP plus dstIP,
then srcIP and dstIP of the metaflow are the exact values, but
its srcPort and dstPort are changed to *, denoting all possible
values. Other information of this metaflow is similar to those
defined in [5], number of packets/bytes is the sum of number
of packets/bytes of all aggregated flows, time stamp of first
seen packet (create time of the metaflow) is the minimum of
this time stamp of all aggregated flows, and time stamp of last
seen packet (modify time of the metaflow) is the maximum of
this time stamp of all aggregated flows. The number of flows

can not be counted directly, it might be estimated using other
techniques.

When a packet arrives, the system determines if this packet
belongs to an active flow. For a metaflow, only fields of an
exact value are compared with corresponding fields of the
packet. For example, if a metaflow is (srcIP = *, dstIP =
210.0.0.3, srcPort = *, dstPort = 80,TCP), then all following
packets of web traffic to the server with IP address of 210.0.0.3
will be regarded as belonging to this metaflow. The metaflow
will be terminated and exported as other normal flows when
those termination criteria are met, including inactive timer
and active timer. Note that criteria of observation of certain
TCP flags would not be used, because these flags indicate
the termination of only one flow but not the metaflow. After
a metaflow is terminated and exported, flows belonging to
this cluster are not aggregated to one metaflow any more. So
deaggregation is done automatically based on the underlying
traffic.

IV. Analysis

In this section, we analyze our algorithm (adaptive flow
aggregation), and compare it with other solutions including, 1)
NetFlow without memory constraint (basic NetFlow), 2) Net-
Flow which rejects new flows when the cache is full (rejecting
NetFlow), 3) NetFlow which exports more aggressively when
the cache is full (exporting NetFlow), and 4) adaptive NetFlow
proposed in [3]. We take the implementation of fprobe as an
example of NetFlow, because the implementation of Cisco
NetFlow is not documented in detail.

A. Resource requirement

First we analyze the resources required by the algorithms.
The key resource measures include the size of flow memory,
the size of export bandwidth, and CPU utilization.

1) Flow memory: Because of our modified data structure,
our algorithm uses a bit more memory than basic NetFlow.
Assume Sf is the size of a flow entry, Sip is the size of an IP
Node in Figure 1. Considering the worst case, every flow entry
has different source IP and destination IP, then our algorithm
uses (Sf + 2 ∗ Sip + 4)/Sf times memory of basic NetFlow.
4 denotes we use one more pointer in the flow entry. Sf is
around 64 bytes, Sip is around 10 bytes (two pointers and one
counter). So our data structure uses 1.4 times the memory of
basic NetFlow in the worst case.

Adaptive NetFlow may also use more memory than basic
NetFlow. The algorithm divides the NetFlow operation into
measurement bins. They do not terminate flow records during
the measurement bin, but terminate all active flow records at
the end of the measurement bin. A fixed size of the measure-
ment bin is a problem, because its optimal size depends on the
traffic mix. If the measurement bin is too large, it keeps many
short flows unnecessarily long in the memory cache, and uses
more memory than necessary. If the memory is bounded, then
the adaptive algorithm decreases the sampling rate lower than
necessary, and sacrifices the accuracy of all flows. On the other
hand, if the measurement bin is too small, it splits many long

flows to several flows, hence increases the export bandwidth
and burdens the collector. Once adaptive NetFlow fixes the
size of the measurement bin, how much memory that it uses
more than basic NetFlow depends on the traffic mix, while
our algorithm uses a fixed amount of additional memory.

2) Export bandwidth: Besides memory, another main re-
source constraint is export bandwidth. Our adaptive flow
aggregation uses either the same or less export bandwidth
than basic NetFlow. Its export bandwidth is the same as basic
NetFlow when the system does not aggregate flows, and less
than basic NetFlow when it performs aggregation. Exporting
NetFlow may use a very high export bandwidth, and may
flood the collector. In adaptive NetFlow, a router operator
specifies the reported number of flow records M desired for
each measurement bin, the algorithm guarantees this fixed
export bandwidth by decreasing the sampling rate.

3) CPU utilization: Because our algorithm intends to per-
form all these operations - keeping flow information, exporting
flow and aggregation - in real time, it must not bring too much
overhead. We will first describe the overhead to normal flow
operations, that is, update the flow cache when new packets
come in and periodically check the flow cache looking for
expired flows. In extreme conditions, if a large part of flows
have the same source or destination IP address, then the corre-
sponding IP node list will be so long that it would slow down
flow lookup. Actually, we can define a threshold, length of IP
node list reaches this threshold triggers aggregation. Another
overhead to normal flow operations is that our algorithm needs
to maintain a top list. Every time we create or delete a flow
entry, we need to update the top list. However, the maximum
number of the top list is not large (20 or even less is enough),
and under normal conditions the number of top list entries is
often less than the maximum number. So this part of overhead
is not large.

We need some extra processing for performing aggregation.
First, we need to traverse lists of all IP nodes in the top list to
compute N2, which is the number of flow entries that will be
freed if we aggregate all Level 2 clusters with this IP address.
If there are Level 3 clusters with this IP address, we also need
to traverse this list again to get N3. After that, we need one
more traversal to do aggregation for those IP nodes which
need aggregation. Assume the number of all IP nodes in the
top list is P , the maximum length of IP node lists is Lm, then
the running time of the aggregation operation is bounded by
3 ∗ P ∗ Lm.

For finding the right sampling rate, adaptive NetFlow also
need to maintain a histogram by performing one more addition
and one subtraction for each processed packet. This histogram
is the sizes of the packet counters, that is, how many flow
entries have 1 packet, and how many flow entries have 2
packets, and so on. When decreasing the sampling rate, it first
computes the right sampling rate using this histogram and then
renormalizes all existing flow entries. While we only need to
perform aggregation on flows in the lists of those IP nodes in
the top list, which is a small part of the existing flow entries.

B. Accuracy

When there is an anomaly in the network, the number of
flows generated would exceed the resource constraints. All
kinds of countermeasures would affect the accuracy of the
result. Rejecting NetFlow rejects all new flows when the cache
is full. For exporting NetFlow, even if the system can process
all packets and export all flow records, there are still two ways
which bring inaccuracy. First, routers export NetFlow records
to the collector using UDP. So flow records may be lost during
periods of congestion. [17] showed the errors introduced by
lost NetFlow records. Second, many post-processing analysis
and visualization tools can not process this avalanche of flows.
FlowScan [18] is a package used for visualizing network
traffic. The author admits that its near real-time processing
can not catch up when processing flows produced during most
Denial-of-Service attacks. For adaptive NetFlow, it would
automatically choose a lower sampling rate during a DoS
attack, which affects accuracy of all flows. Results of our
adaptive flow aggregation also lose information, because our
solution reduces resolution for some clusters.

Comparison of lower resolution with lower sampling rate
of adaptive NetFlow is hard to quantify. Lower sampling rates
will affect the accuracy of all flows with equal probability, so
inaccuracy for all kinds of aggregates (by ports, IP address, AS
numbers etc.) is probabilistically equivalent. [3] presents the
relative standard deviation for the number of packets and the
number of bytes when estimating the traffic of any aggregate
amounting to a fraction of the total traffic. On the other hand,
our adaptive flow aggregation uses a lower resolution only
for some, but not all clusters, so inaccuracy for different
aggregates is quite different.

There are many analysis and visualization tools. Flowscan
[18] uses NetFlow data to give detailed information about the
traffic, while CoralReef [19] produces breakdowns of traffic
based on packet traces instead of NetFlow data. AutoFocus [6]
analyzes traffic along dynamically defined multi-dimensional
clusters. These tools extract, record and help us understand
the flows. They measure the traffic in the number or rate of
packets, bytes and flows by breaking it down in a number
of ways: by the IP protocol; by well-known services or
applications; by hosts; by IP prefixes associated with networks;
or by ASes and countries. These keys (protocol, applications,
hosts etc.) can be predefined such as finding out how much
web traffic on a link, or the top N entries such as finding hosts
generating the most traffic.

We will present some examples to show the inaccuracy for
different aggregates. The first example is that we aggregate L2
clusters of srcIP plus dstIP. Then we would get some errors
if we are interested in breakdowns by the IP protocol and by
applications, but we would get accurate results if we were
interested in breakdowns by hosts, by IP prefixes associated
with networks, or by ASes and countries. We would note that
for accurate results we only mean the number of packets and
bytes, because the number of flows are not counted after we
merge flows in one cluster to a metaflow. Another example is

that we aggregate L2 clusters of dstIP plus dstPort. Assume
this large cluster is caused by a busy web server (produced by
flash crowds) instead of a DDoS victim, such that the srcIP
is meaningful. Then we get accurate results for protocol and
application breakdowns. However, if the network operators are
interested in the source of this web traffic, we would lose this
kind of information.

From the above examples and analysis, we get the following
conclusions. The inaccuracy that adaptive flow aggregation
would bring depends on both what kind of aggregation we
perform and what kind of information that network operators
need. The aggregation is based on five dimensions, and the
information that network operators are interested in is also
about these five dimensions, because other information such
as IP prefix, ASes or countries would be kept if we keep the
dimension of IP address. If the dimensions that we discard
during aggregation are included in the dimensions network
operators are interested, then the result would be inaccurate,
otherwise, it would be accurate.

In practice, keeping or discarding which dimensions is
dynamically decided based on the underlying traffic. First,
we choose the clusters at the highest level to keep more
dimensions. Second, flow aggregation is usually triggered
by a network anomaly, so the dimensions we discard are
often less important, for example, large amount of spoofed
source IP addresses in DoS/DDoS attacks, randomly chosen
destination IP addresses in worm spreading, and randomly
chosen destination ports in port scans.

C. Implementation issues

Often the reason for abnormal traffic conditions is due to
security attacks and such attacks often have some common
patterns. So our algorithm can relieve the resource overload by
identifying these traffic clusters in real-time and aggregating
these large amounts of short flows into a few flows. Some-
times, the overload may be caused by undifferentiated traffic
not dominated by any particular cluster, e.g., a shift in load
caused by link failure or routing change. In this situation, even
if we aggregated all L1 clusters, the memory which will be
freed may still not satisfy the requirement. In other words, our
solution can not deal with this case. From this point of view,
our solution should be considered as a way to complement
other current solutions, rather than completely replace them.
If our algorithm fails to find appropriate clusters, we conclude
that the traffic is undifferentiated and take other actions such as
in Rejecting NetFlow, exporting NetFlow or adaptive NetFlow.

The recent rise in the use of peer-to-peer applications may
also cause overload of NetFlow, because one host would open
many connections to its peers and thus lead to the increase in
numbers of active flows. Although unlike flows of DoS attacks
and worm spreading traffic, which could be aggregated to one
or a few flows, aggregating the flows originating from the same
host also could mitigate the resource problem.

There are links in the network that are dominated by
particular clusters, in the normal case. Network operators can
use policy if they want to protect such clusters, resulting in the

λ τ n T Description
A 10s 1s [900, 1200] [0, 5400s]
B 10s 5s [180, 240] [0, 5400s]
C 10s 1s [180, 240] [0, 5400s]
D 10s 5s [36, 48] [0, 5400s]
E 0.1s 0.1s [2, 20] [2700s, 3700s] DoS attack
F 0.1s 0.1s [2, 20] [2000s, 4000s] worm spreading
G 10s 1s [180, 240] [0, 5400s] web traffic

TABLE II

FLOW INFORMATION

algorithm looking for other clusters or perform aggregation
only when they exceed their policy defined limits. Another
threshold that network operators can set is r, which is the
smallest number of flows in an identified cluster.

V. Experimental evaluation

In this section, we evaluate different solutions by running
them on synthetic and real trace files. These solutions in-
clude basic NetFlow, rejecting NetFlow, exporting NetFlow,
adaptive NetFlow, and our adaptive flow aggregation. We first
present our experimental setup, and then give out evaluation
results on different trace files.

A. Experimental setup

We first present our metrics and experimental datasets. The
metrics we use to evaluate these solutions are:

• memory usage - memory used at the observation point
• export bandwidth - flows exported during the past 2

minutes
• run time - time spent by the entire process
• relative error - average error for byte, packet, or flow

estimates:

relerr =
1
n

√√√√ 1
N

N∑
i=1

(n̂i − n)2 (1)

In Equation 1, we repeat the experiment for N times, n̂i

is the estimated value for number of bytes, packets or
flows in the ith experiment, n is its accurate value.

The data sets that we measure different solutions are:

• “Synthetic” - a synthetic trace file generated by CSIM
• “DarpaIDE” - the training data of the 1998 DARPA

Intrusion Detection Evaluation

B. Resource evaluation on synthetic trace file

We use CSIM to generate a synthetic trace file. During the
observation time of 5400s, there are seven types (A, B, C,
D, E, F, G) of flows. Flows of each type arrive as a Poisson
process, and the inter flow time is exponentially distributed
with mean λi. In every flow, the packet arrival is also Poisson,
and inter packet time is exponentially distributed with mean
τi. The number of packets for every type of flow is a uniform
distribution of ni. The characteristics of these seven types of
flows are shown in Table II. Flow E is a simulated DoS attack,
all flows of type E have the same dstIP and dstPort. It does

not last during the whole duration of 5400s, but starts at 2700s
and ends at around 3700s. Flow F is a simulated worm spread,
all flows of type F have the same srcIP. It starts at 2000s, and
ends at around 4000s. Flow A, B ,C, D and G are simulated
normal traffic, they last during the whole duration. λ, µ and n
are different for each type, so they have different characteristic,
long-lived or short-lived, dense or sparse. But compared with
flow E and F, their λ and µ are longer, and n is larger. Their IP
address and port are randomly generated except that all flows
of type G are web traffic to the same dstIP.

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6
x 10

4

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

exporting NetFlow

basic NetFlow
exporting NetFlow

Fig. 3. memory usage for exporting NetFlow

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6
x 10

4

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive NetFlow

basic NetFlow
adaptive NetFlow

Fig. 4. memory usage for adaptive NetFlow

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6
x 10

4

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive flow aggregation

basic NetFlow
flow aggregation

Fig. 5. memory usage for adaptive flow aggregation

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

systime (sec)

ex
po

rt
ba

nd
w

id
th

export bandwidth

basic NetFlow
exporting NetFlow
adaptive NetFlow
flow aggregation

Fig. 6. export bandwidth for different solutions

2100 2120 2140 2160 2180 2200 2220 2240 2260 2280
0

1

2

3

4

x 10
4

systime (sec)

adaptive NetFlow

m
em

or
y

us
ag

e

2100 2120 2140 2160 2180 2200 2220 2240 2260 2280

0.02

0.05

0.1

0.2

0.5

1

sa
m

pl
in

g
ra

te

sampling rate

Fig. 7. memory usage and sampling rate in several measurement bins

For calculating the memory usage, we only count memory
allocated for storing the active flows and record the memory
usage every 10 seconds. Figure 3, Figure 4, and Figure 5 are
memory usages of exporting NetFlow, adaptive NetFlow, and
adaptive flow aggregation respectively. The solid lines with
circle marker in these three figures are memory usage of basic
NetFlow, which serves as the benchmark. We record export
bandwidth every 2 minutes, which is defined as the number
of flows exported during the past 2 minutes. Figure 6 is the
export bandwidth for these solutions.

In these experiments, we define mmax = 40000, and
mdes = 30000. When memory usage reaches mmax, the
system performs some operations to reduce memory usage
to mdes. In exporting NetFlow, the operation is to export
some oldest flows. In adaptive NetFlow, the operation is to
decrease the sampling rate as described in [3]. In adaptive flow
aggregation, the operation is to find some large clusters and
aggregate flows in these clusters. Packet processing is stopped
during these operations, because input to the system is a trace
file. In practice, these operations need to proceed in parallel
with the processing of new packets.

For exporting NetFlow, before reaching mmax, its memory
usage and export bandwidth are the same as that of basic
NetFlow. After exceeding mmax, its memory usage is bounded
by mmax, but the export bandwidth is much higher than that
of basic NetFlow.

For adaptive NetFlow, we use the measurement bin of 1

minute. Before reaching mmax, memory usage of adaptive
NetFlow is a little greater than that of basic NetFlow, due to
the unnecessarily long time that adaptive NetFlow keeps short
flows in the memory, as we mentioned in section IV-A.1. On
the other hand, export bandwidth of adaptive NetFlow is also
greater than that of basic NetFlow. The reason is that many
flows we generated are much longer than the measurement
bin of 1 minute, so they are split into several flows. After
exceeding mmax, its memory usage is bounded by mmax and
the export bandwidth is stable. For more detail, its memory
usage and sampling rate in several measurement bins are
shown in Figure 7. At the beginning of one measurement bin,
the sampling rate is equal to 1 (process every packet). When
the memory usage reaches mmax, adaptive NetFlow decreases
its sampling rate. At the end of one measurement bin, all active
flows in the cache memory are exported and the sampling rate
is reset to 1. In this experiment, the sampling rate decreases
to a low value of around 1/30 (as shown in Figure 7).

For adaptive flow aggregation, before reaching mmax, its
memory usage is larger than that of basic NetFlow, due to the
overloads caused by the new data structure, as we analyzed
in section IV-A.1. Its export bandwidth is the same as that of
basic NetFlow. At around 2000 sec, the memory usage exceeds
mmax. The algorithm identifies the cluster of the simulated
worm spread (with the same srcIP) and aggregates flows in
this cluster. Both the memory usage and export bandwidth are
much lower than those of basic NetFlow. At around 2700 sec,
the simulated DoS attack is generated, so the memory usage
exceeds mmax again, which triggers the second aggregation.
The third aggregation occurs at around 3800 sec. The reason
is that we use an active timer of 30 minutes, so the metaflow
generated from aggregation at 2000 sec is terminated and
exported at 3800 sec. But because packets in this worm spread
have not stopped, many new generated flows make the memory
usage reach mmax again and trigger the third aggregation.
Except flow E and F, the arrival of other flows is stable. The
system aggregates all flows in type E and F to one or two
flows, so export bandwidth is stable after the initial phase.
The increase at the end of the observation duration is because
we flush out all active flows at the end of the program.

Finally, another metric is the run time of these different
processes. We find from multiple runs of these experiments
that the run time of our adaptive flow aggregation is similar
to that of basic NetFlow. The run time of adaptive NetFlow
is even shorter than that of basic NetFlow. The reason is that
other solutions check all flows in memory to look for expired
flows every 2 sec (fprobe checks memory every 5 sec), while
adaptive NetFlow only terminates all flows in memory every
1 min (we use 1 min as the size of the measurement bin).

C. Resource evaluation on “DarpaIDE” dataset

From the above section, the evaluation results on the syn-
thetic trace file are quite consistent with what we expect. In
this section, we will show results from experiments on traces
of actual traffic. The dataset we use is part of the training
data of the 1998 DARPA Intrusion Detection Evaluation [20],

0 1 2 3 4 5 6 7 8

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

basic NetFlow

Fig. 8. memory usage of basic NetFlow

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive NetFlow

basic NetFlow
adaptive NetFlow

Fig. 9. memory usage of adaptive NetFlow

which contained a wide variety of simulated intrusions. We
choose Wednesday data of week 1 as our experiment data,
because it contains DoS attacks such as smurf and neptune.
Figure 8 is the memory usage of basic NetFlow. The peak
memory usage is caused by the smurf attack (ICMP packets
to the same desIP). Figure 9, 10, and 11 are memory usage
and export bandwidth of adaptive NetFlow and adaptive flow
aggregation. In this experiment, we record memory usage
every 60 sec, which is the maximum memory usage during
the past 60 sec instead of memory usage at the observation
point.

In this experiment, we use mmax = 30000, and mdes

= 20000. From Figure 9 and 10, one can find that the
memory usage of basic NetFlow only exceeds mmax at around
1000 sec. However, both adaptive NetFlow and adaptive flow
aggregation may use more memory than basic NetFlow and
their memory usage may exceed mmax at other points besides
at around 1000 sec, so they decrease the sampling rate or
perform aggregation more than once.

For adaptive NetFlow, before reaching mmax, its memory
usage is often greater than that of basic NetFlow, even greater
than that of adaptive flow aggregation most of the time. The
reason is that many of the flows in this data set are shorter than
the measurement bin of 1 min and are kept in memory longer
than necessary. Its export bandwidth is similar to or less than
(when decreasing the sampling rate) that of basic NetFlow.
Figure 12 depicts its memory usage and sampling rate when

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive flow aggregation

basic NetFlow
flow aggregation

Fig. 10. memory usage of adaptive flow aggregation

0 1000 2000 3000 4000 5000 6000
0

200

400

600

800

1000

1200

1400

1600

systime (sec)

ex
po

rt
ba

nd
w

id
th

export bandwidth

basic NetFlow
adaptive NetFlow
flow aggregation

Fig. 11. export bandwidth of adaptive NetFlow & adaptive flow aggregation

the DoS attack occurred. When the smurf attack occurred at
1010 sec, the memory usage quickly reached mmax. To keep
the memory usage bounded by mmax, the sampling rate was
decreased once and again, with the lowest value of less than
1/100. The attack stopped at time 1046 sec, but the sampling
rate would not be increased until the beginning of the next
measurement bin of 1070 sec.

For adaptive flow aggregation, the memory usage is a
little higher than that of basic NetFlow. Its export bandwidth
is the same as or less than (when performing aggregation)
that of basic NetFlow, as expected. Figure 13 is its memory
usage when the DoS attack occurred. When its memory usage
reached mmax, the cluster of ICMP packets to the victim
was identified and flows in this cluster were merged to one
metaflow. After that, the memory usage would not increase
any more because all following attack packets belonged to
this metaflow.

D. Accuracy evaluation on “DarpaIDE” dataset

To compare the accuracy of adaptive NetFlow and adaptive
flow aggregation, we perform post-processing on the flow
records exported from adaptive NetFlow, adaptive flow aggre-
gation and basic NetFlow. We perform three post-processing
steps based on the applications used by most analysis and
visualization tools.

The first post-processing step is protocol breakdown. For
these solutions, protocol breakdown counts the number of

1000 1010 1020 1030 1040 1050 1060 1070 1080
0

2

x 10
4

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive NetFlow

1000 1010 1020 1030 1040 1050 1060 1070 1080

0.01

0.02

0.05

0.1

0.2

0.5

1

sa
m

pl
in

g
ra

te

sampling rate

Fig. 12. memory usage of adaptive NetFlow under DoS attack

950 1000 1050 1100 1150
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

systime (sec)

m
em

or
y

us
ag

e
(b

yt
e)

adaptive flow aggregation

basic NetFlow
flow aggregation

Fig. 13. memory usage of adaptive flow aggregation under DoS attack

bytes, packets and flows for TCP, UDP and ICMP. We repeat
each experiment for 5 times, and get relerr using Equation 1.
The configuration for these experiments is the same as in
section V-C: mmax = 30000, mdes = 20000, and the size
of measurement bin for adaptive NetFlow is 1 min. Relerr
results for adaptive NetFlow and adaptive flow aggregation
are shown in Table III.

The second post-processing step is port breakdown, which
counts the number of bytes, packets and flows for different
ports. For adaptive NetFlow and adaptive flow aggregation, we
calculate relerr for the top 10 source/destination ports sorted
by the number of bytes, packets and flows. For brevity, we only
show relerr of the top 10 source ports sorted by the number
of bytes of adaptive NetFlow and adaptive flow aggregation
in Table IV, and omit the other five relerr tables.

The third post-processing step is to find the top 10 hosts by
bytes, packets or flows of traffic generated/received. We get
six tables similar to port breakdown. Relerr results of top 10
source IP addresses sorted by bytes of adaptive NetFlow and
adaptive flow aggregation are shown in Table V.

From these relerr results, we conclude that our adaptive
flow aggregation provides better accuracy for legitimate flows
than adaptive NetFlow. Its measurement for the number of
bytes and packets are all accurate in these scenarios, and
its relerr for the number of flows is also lower than that
of adaptive NetFlow. Its only relerr which is greater than
that of adaptive NetFlow is flow error for ICMP, because the

adaptive NetFlow
protocol % of total byte error packet error flow error

TCP 85.2 0.002147 0.002827 0.151821
UDP 0.6 0.009679 0.007714 0.331545
ICMP 14.2 0.212056 0.210449 0.369882

adaptive flow aggregation
protocol % of total byte error packet error flow error

TCP 85.2 0.000000 0.000000 0.007840
UDP 0.6 0.000000 0.000000 0.059900
ICMP 14.2 0.000000 0.000000 0.663537

TABLE III

RELATIVE ERROR OF PROTOCOL BREAKDOWN

adaptive NetFlow
srcPort % of total byte error packet error flow error
80 , tcp 66.54 0.003118 0.003229 0.166314
20 , tcp 11.45 0.002629 0.002636 0.083098
25 , tcp 0.58 0.006846 0.003628 0.029989
53 , udp 0.52 0.017324 0.012561 0.266825
21 , tcp 0.075 0.012907 0.004036 0.213127
23 , tcp 0.072 0.020535 0.012695 0.161913

123 , udp 0.069 0.029045 0.029045 0.379118
11306 , tcp 0.019 0.000000 0.000000 0.000000
11360 , tcp 0.019 0.000000 0.000000 0.000000
11304 , tcp 0.019 0.000000 0.000000 0.000000

adaptive flow aggregation
srcPort % of total byte error packet error flow error
80 , tcp 66.54 0.000000 0.000000 0.006993
20 , tcp 11.45 0.000000 0.000000 0.000000
25 , tcp 0.58 0.000000 0.000000 0.000000
53 , udp 0.52 0.000000 0.000000 0.000000
21 , tcp 0.075 0.000000 0.000000 0.000000
23 , tcp 0.072 0.000000 0.000000 0.000000

123 , udp 0.069 0.000000 0.000000 0.000000
11306 , tcp 0.019 0.000000 0.000000 0.000000
11360 , tcp 0.019 0.000000 0.000000 0.000000
11304 , tcp 0.019 0.000000 0.000000 0.000000

TABLE IV

RELATIVE ERROR OF PORT BREAKDOWN

algorithm aggregates those ICMP flows in the smurf attack.
The aggregation can keep the number of bytes and packets
accurate, but can not count the number of flows directly.

E. Adjusting parameters

These solutions have some parameters including, the size
of the measurement bin for adaptive NetFlow, r for adaptive
flow aggregation and mmax, mdes for both of them. We set
mmax = 30000, 35000, 40000, 45000, and mdes = mmax −
10000. We choose 10s, 30s, 60s and 90s for the size of the
measurement bin, and 2,4,5,10 for r. For brevity, we only give
some conclusions here:

• When the size of measurement bin is small, adaptive
NetFlow uses less memory but more export bandwidth,
and the relerr is low.

• The values we chose for r have little impact on memory
usage, export bandwidth, and the relerr. This is because
the sizes of all clusters identified are greater than these
r.

• When mmax is large, relerr is low.

adaptive NetFlow
srcIP % of total byte error packet error flow error

197.218.177.69 6.16 0.004704 0.009845 0.050996
172.16.114.148 4.95 0.010789 0.012045 0.193561

208.134.241.210 3.79 0.008269 0.010362 0.166214
207.25.71.143 3.09 0.015963 0.017205 0.206470
207.25.71.29 2.79 0.039143 0.021262 0.174608
167.8.29.15 2.46 0.008376 0.008679 0.139553

207.46.130.138 2.09 0.015371 0.033316 0.267461
199.95.74.90 2.01 0.016042 0.029919 0.230012
192.168.1.10 1.25 0.008386 0.027705 0.368439

205.181.112.65 1.14 0.025910 0.022647 0.271724
adaptive flow aggregation

srcIP % of total byte error packet error flow error
197.218.177.69 6.16 0.000000 0.000000 0.000000
172.16.114.148 4.95 0.000000 0.000000 0.033207

208.134.241.210 3.79 0.000000 0.000000 0.000000
207.25.71.143 3.09 0.000000 0.000000 0.000000
207.25.71.29 2.79 0.000000 0.000000 0.000000
167.8.29.15 2.46 0.000000 0.000000 0.000000

207.46.130.138 2.09 0.000000 0.000000 0.000000
199.95.74.90 2.01 0.000000 0.000000 0.081798
192.168.1.10 1.25 0.000000 0.000000 0.000000

205.181.112.65 1.14 0.000000 0.000000 0.000000

TABLE V

RELATIVE ERROR OF IP BREAKDOWN

VI. Conclusion

NetFlow is the traffic measurement solution most widely
used by ISPs to determine the composition of the traffic
mix in their networks. However, NetFlow has the problem
of overrunning available memory for flow records during
abnormal situations. Currently available countermeasures have
their own problems. We propose adaptive flow aggregation,
which identifies large clusters in real-time and aggregates large
amount of short flows into a few flows. This mechanism,
while certainly not a panacea, provides relief from DoS attacks
and other security breaches. Additionally, it guarantees the
accuracy of legitimate flows.

We choose five fields typically used to define a flow, and
use 11 combinations of these five fields to define clusters. To
efficiently implement the algorithm in real-time, we design
a new data structure called two-dimensional hash table. One
objective of the algorithm is to keep as much information
as possible when performing aggregation. We divide different
clusters to three levels and maintain counters to help assess
their effect for aggregation. We then choose the clusters at the
highest level to aggregate to minimize loss of resolution.

We analyze the resource requirement and accuracy of our
solution, and compare it with other current solutions including
rejecting NetFlow, exporting NetFlow, and adaptive NetFlow.
Experimental evaluations on synthetic and actual trace files
confirm our analysis on resource requirements, and show that
our solution provides better accuracy for legitimate flows.

Our future work includes: first, a formal model and analysis
for accuracy comparison of adaptive NetFlow and our adaptive
flow aggregation, which depends on traffic characteristics and
what is the use of the flow information. In this paper, we
only give some scenarios in the analysis and experimental

evaluation part. Second, more experiments on additional data
sets of different traffic characteristics.

Acknowledgment

This work is funded by the Area of Excellence AoE/E-
01/99, and the UGC Direct Grant.

REFERENCES

[1] http://www.cisco.com/warp/public/732/Tech/nmp/netflow/index.shtml.
[2] http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/

120newft/120limit/120s/120s11/12s sanf.htm.
[3] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a better

netflow,” in SIGCOMM ’04: Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer
communications, pp. 245–256, ACM Press, 2004.

[4] http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/
120newft/120t/120t3/netflow.htm.

[5] http://www.ietf.org/internet-drafts/draft-dressler-ipfix-aggregation-
00.txt.

[6] C. Estan, S. Savage, and G. Varghese, “Automatically inferring patterns
of resource consumption in network traffic,” in SIGCOMM ’03: Proceed-
ings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pp. 137–148, ACM Press,
2003.

[7] K. Keys, D. Moore, and C. Estan, “A robust system for accurate real-
time summaries of internet traffic,” SIGMETRICS Perform. Eval. Rev.,
vol. 33, no. 1, pp. 85–96, 2005.

[8] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling high bandwidth aggregates in the network,”
SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, pp. 62–73, 2002.

[9] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in SIGCOMM ’02: Proceedings of the 2002 conference
on Applications, technologies, architectures, and protocols for computer
communications, pp. 323–336, ACM Press, 2002.

[10] B.-Y. Choi, J. Park, and Z.-L. Zhang, “Adaptive random sampling for
load change detection,” SIGMETRICS Perform. Eval. Rev., vol. 30, no. 1,
pp. 272–273, 2002.

[11] N. Duffield, C. Lund, and M. Thorup, “Estimating flow distributions
from sampled flow statistics,” in SIGCOMM ’03: Proceedings of the
2003 conference on Applications, technologies, architectures, and pro-
tocols for computer communications, pp. 325–336, ACM Press, 2003.

[12] CERT Coordination Center. CERT Advisory CA-1998-01 Smurf
IP Denial-of-Service Attacks, http://www.cert.org/advisories/CA-1998-
01.html.

[13] CERT Coordination Center. CERT Advisory CA-2003-04 MS-SQL
Server Worm, http://www.cert.org/advisories/CA-2003-04.html.

[14] CERT Coordination Center. CERT Advisory CA-2003-20 W32/Blaster
worm, http://www.cert.org/advisories/CA-2003-20.html.

[15] CERT Coordination Center. CERT Advisory CA-1996-21 TCP SYN
Flooding and IP Spoofing Attacks, http://www.cert.org/advisories/CA-
1996-21.html.

[16] http://sourceforge.net/projects/fprobe.
[17] N. Duffield and C. Lund, “Predicting resource usage and estimation

accuracy in an ip flow measurement collection infrastructure,” in IMC
’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pp. 179–191, ACM Press, 2003.

[18] D. Plonka, “Flowscan: A network traffic flow reporting and visualization
tool,” in Proceedings of USENIX LISA, 2000.

[19] D. Moore, K. Keys, R. Koga, E. Lagache, and kc Claffy, “Coralreef
software suite as a tool for system and network administrators,” in
Proceedings of USENIX LISA, 2001.

[20] http://www.ll.mit.edu/IST/ideval/data/1998/training/.

