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Constrained Clustering with Imperfect Oracles
Xiatian Zhu, Student Member, IEEE, Chen Change Loy, Member, IEEE, and Shaogang Gong

Abstract—While clustering is usually an unsupervised opera-
tion, there are circumstances where we have access to prior belief
that pairs of samples should (or should not) be assigned with the
same cluster. Constrained clustering aims to exploit this prior
belief as constraint (or weak supervision) to influence the cluster
formation so as to obtain a data structure more closely resembling
human perception. Two important issues remain open: (1) how
to exploit sparse constraints effectively, (2) how to handle ill-
conditioned/noisy constraints generated by imperfect oracles.
In this paper we present a novel pairwise similarity measure
framework to address the above issues. Specifically, in contrast
to existing constrained clustering approaches that blindly rely on
all features for constraint propagation, our approach searches
for neighbourhoods driven by discriminative feature selection
for more effective constraint diffusion. Crucially, we formulate
a novel approach to handling the noisy constraint problem,
which has been unrealistically ignored in constrained clustering
literature. Extensive comparative results show that our method is
superior to the state-of-the-art constrained clustering approaches
and can generally benefit existing pairwise similarity based data
clustering algorithms, such as spectral clustering and affinity
propagation.

Index Terms—Constrained clustering, constraint propagation,
imperfect oracles, similarity/distance measure, feature selection,
noisy constraints, spectral clustering, affinity propagation.

I. INTRODUCTION

Pairwise similarity based clustering algorithms, such as
spectral clustering [1], [2], [3], [4], or affinity propagation [5],
search for coherent data clusters based on (dis)similarity
relationship between data samples. In this paper, we consider
the problem of pairwise similarity based constrained clustering
given constraints derived from human/oracles. The constraint
is often available in small quantity, and expressed in the form
of pairwise link, namely must-link - a pair of samples must
be in the same cluster, and cannot-link - a pair of samples
belong to different clusters. The objective is to exploit this
small amount of supervision effectively to help revealing
the semantic data partitions/groups that capture consistent
concepts as perceived by human.

Constrained clustering has been extensively studied in the
past and it remains an active research area [6], [7], [8]. Though
great strides have been made in this field, two important and
non-trivial questions remain open as detailed below.

(I) Sparse constraint propagation - Whilst constraints can be
readily transformed into pairwise similarity measures, e.g. as-
sign 1 to the similarity between two must-linked samples,
and 0 to that between two cannot-linked samples [9], samples
labelled with link preference are typically insufficient since
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Fig. 1. (a) Ground truth cluster formation, with invalid pairwise constraints
highlighted in light red colour; must- and cannot-links are represented by
solid and dashed lines respectively; (b) the clustering result obtained using
unsupervised clustering; (c) the clustering result obtained using our method.

exhaustive pairwise labelling are laborious. As a results, the
limited amount of constraints are usually employed together
with data features to positively affect the similarity measures
over unconstrained sample pairs so that the yielded similarities
are closer to the intrinsic semantic structures. Such a similarity
distortion/adaptation process is often known as constraint
propagation [7], [8].

Effective constraint propagation relies on robust identi-
fication of unlabelled nearest neighbours (NN) around the
labelled samples in the feature space. Often, the NN search is
susceptible to noisy or ambiguous features, especially so on
image and video datasets. Trusting all the available features
blindly for NN search (as what most existing constrained
clustering approaches [6], [7], [8] did) is likely to result in
suboptimal constraint diffusion. It is challenging to determine
how to propagate their influence effectively to neighbouring
unlabelled points. In particular, it is non-trivial to reliably
identify the neighbouring unlabelled points for propagation.

(II) Noisy constraints from imperfect oracles - Human
annotators (oracles) may provide invalid/mistaken constraints.
For instance, a portion of the ‘must-links’ are actually ‘cannot-
links’ and vice versa. For example, annotations or constraints
obtained from online crowdsourcing services, e.g. Amazon
Mechanical Turk [10], are very likely to contain errors or
noises due to data ambiguity, unintentional human mistakes
or even intentional errors by malicious workers [10], [11].
Learning such constraints blindly may result in sub-optimal
cluster formation. Most existing methods make an unrealistic
assumption that constraints are acquired from perfect oracles
thus they are noise-free. It is non-trivial to quantify and
determine which constraints are noisy prior to clustering.

To address the above issues, we formulate a novel COn-
straint Propagation Random Forest (COP-RF), not only ca-
pable of effectively propagating sparse pairwise constraints,
but also able to deal with noisy constraints produced by
imperfect oracles. The COP-RF is flexible in that it generates
an affinity matrix that encodes the constraint information for
existing spectral clustering methods [1], [2], [3], [4] or other
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pairwise similarity based clustering algorithms for constrained
clustering.

More precisely, the proposed model allows for effective
sparse constraint propagation through using the NN samples
that are found in discriminative feature subspaces, rather than
those that found considering the whole feature space, which
can be suboptimal due to noisy and ambiguous features. This
is made possible by introducing a new objective/split function
into COP-RF, which searches for discriminative features that
induce the best data subspaces while simultaneously consid-
ering the model parameters that best satisfy the constraints
imposed. To identify and filter noisy constraints generated
from imperfect oracles, we introduce a novel constraint incon-
sistency quantification algorithm based on the outlier detection
mechanism of random forest. Fig. 1 shows an example to illus-
trate how a COP-RF is capable of discovering data partitions
close to the ground truth clusters despite it is provided only
with sparse and noisy constraints.

The sparse and noisy constraint issues are inextricably
linked but no existing constrained clustering methods, to our
knowledge, address them in a unified framework. This is the
very first study that addresses them jointly. In particular, our
work makes the following contributions:

1) We formulate a novel discriminative-feature driven ap-
proach for effective sparse constraint propagation. Ex-
isting methods fundamentally ignore the role of feature
selection in this problem.

2) We propose a new method to cope with potentially noisy
constraints based on constraint inconsistency measures,
a problem that is largely unaddressed by existing con-
strained clustering algorithms.

We evaluate the effectiveness of the proposed approach
by combining it with spectral clustering [1]. We demonstrate
that the spectral clustering + COP-RF is superior when
compared to the state-of-the-art constrained spectral clustering
algorithms [8], [9] in exploiting sparse constraints generated
by imperfect oracles. In addition to spectral clustering, we
show the possibility of using the proposed approach to benefit
affinity propagation [5] for effective constrained clustering.

II. RELATED WORK

A number of studies suggest that human similarity judge-
ments are non-metric [12], [13], [14]. Incorporating non-metric
pairwise similarity judgements into clustering has been an im-
portant research problem. There are generally two paradigms
to exploit such judgements as constraints. The first paradigm
is distance metric learning [15], [16], [17], [18], [19], which
learns a distance metric that respects the constraints, and runs
ordinary clustering algorithms, such as k-means, with distor-
tion defined using the learned metric. The second paradigm
is constrained clustering, which adapts existing clustering
methods, such as k-means [6], [20] and spectral clustering
methods [21], [22] to satisfy the given pairwise constraints. In
this study, we focus on constrained clustering approach. We
now detail related work to this method.

Sparse constraint propagation - Studies that perform con-
strained spectral clustering in general follow a procedure that

first manipulates the data affinity matrix with constraints and
then performs spectral clustering. For instance, Kamvar et
al. [9] trivially adjust the elements in an affinity matrix with
‘1’ and ‘0’ to respect must-link and cannot-link constraints,
respectively. No constraint propagation is considered in this
method.

The problem of sparse constraint propagation is considered
in [7], [8], [23], [24]. Lu and Carreira-Perpinán [7] propose to
perform propagation with a Gaussian process. This method is
limited to the two-class problem, although a heuristic approach
for multi-class problems is also discussed. Li et al. [24] formu-
late the propagation problem as a semi-definite programming
(SDP) optimisation problem. The method is not limited to
the two-class problem, but solving the SDP problem involves
extremely large computational cost. In [23], the constraint
propagation is also formulated as a constrained optimisation
problem, but only must-link constraints can be employed.
In contrast to the above methods, the proposed approach is
capable of performing effective constrained clustering using
both available must-links and cannot-links, whilst it is not
limited to two-class problems.

The state-of-the-art results are achieved by Lu and Ip [8].
They address the propagation problem through manifold dif-
fusion [25]. The locality-preserving character in learning a
manifold with dominant eigenvectors makes the solution less
susceptible to noise to a certain extent, but the manifold
construction still considers the full feature space, which may
be corrupted by noisy features. We will show in Section IV that
the manifold-based method is not as effective as the proposed
discriminative-feature driven constraint propagation. Impor-
tantly, the method [8], as well as other methods ([23], [7],
[24]), do not have a mechanism to handle noisy constraints.

Handling imperfect oracles - Few constrained clustering
studies consider imperfect oracles whereas most assume per-
fect constraints available. Coleman et al. [26] propose a con-
strained clustering algorithm capable to deal with inconsistent
constraints. This model is restricted to only the two-class
problem due to the adoption of 2-correlation clustering idea.
On the other hand, some strategies to measure constraint
inconsistency and incoherence are discussed in [27], [28].
Nevertheless, no concrete method is proposed to exploit
such metrics for improved constrained clustering. Beyond
constrained clustering, the problem of imperfect oracles has
been explored in active learning [29], [30], [31], [32] and
online crowdsourcing [10], [33]. Our work differs significantly
from these studies as we are interested in identifying noisy or
inconsistent pairwise constraints rather than inaccurate class
labels.

In comparison to our earlier version of this work [34],
in this paper we provide more comprehensive explanations
and justifications of the proposed approach, a new approach
for filtering noisy constraints, along with more extensive
comparative experiments.
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III. CONSTRAINED CLUSTERING WITH IMPERFECT
ORACLES

A. Problem Formulation

Given a set of samples denoted as X = {xi}, i = 1, . . . , N ,
with N denoting the total number of samples, and xi =
(xi,1, . . . , xi,d) ∈ F , d the feature dimensionality of the
feature space F ⊂ Rd, the goal of unsupervised clustering is
to assign each sample xi with a cluster label ci. In constrained
clustering, additional pairwise constraints are available to
influence the cluster formation. There are two typical types
of pairwise constraints:

Must-link : M = {(xi,xj) | ci = cj},
Cannot-link : C = {(xi,xj) | ci 6= cj}. (1)

We denote the full constraint set as P = M ∪ C. The
pairwise constraints may arise from pairwise similarity as
perceived by a human annotator (oracle), temporal continuity,
or prior knowledge on the sample class label. Acquiring
pairwise constraints from a human annotator is expensive. In
addition, owing to data ambiguity and human unintentional
mistakes, the pairwise constraints are likely to be incorrect
and inconsistent with the underlying data distribution.

We propose a model that can flexibly generate constraint-
aware affinity matrices, which can be directly employed as
input by existing pairwise similarity based clustering algo-
rithms e.g. spectral clustering [3] or affinity propagation [5] for
constrained clustering (Fig. 4). Before detailing our proposed
model we briefly describe the conventional random forests.

B. Conventional Random Forests

Classification forests - A general form of random forests
is the classification forests. A classification forest [35] is an
ensemble of Tclass binary decision trees T (x): F → RK , with
RK = [0, 1]K denoting the space of class probability distri-
bution over the label space L = {1, . . . ,K}. During testing,
each decision tree yields a posterior distribution pt(l|x∗) for
a given unseen sample x∗ ∈ F , and the output probability of
forest is obtained via averaging

p(l|x∗) =
1

Tclass

Tclass∑
t

pt(l|x∗). (2)

The final class label l̂ is obtained as l̂ = argmaxl∈L p(l|x∗).
Tree training: Decision trees are learned independently from

each other, each with a random training set Xt ⊂ X , i.e. bag-
ging [35]. Growing a decision tree involves a recursive node
splitting procedure until some stopping criterion is satisfied,
e.g. the number of training samples arriving at a node is
equal to or smaller than a pre-defined node-size φ, and leaf
nodes are then formed, and their class probability distributions
are estimated with the labels of the arrival samples as well.
Obviously, smaller φ leads to deeper trees.

The training of each internal (or split) node s is a process
of optimising a binary split function defined as

h(x,ϑ) =

{
0, if xϑ1 < ϑ2,
1, otherwise. (3)
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Fig. 2. An illustrative example on the training process of a decision tree.

This split function is parameterised by two parameters: (i)
a feature dimension xϑ1

, with ϑ1 ∈ {1, . . . , d}, and (ii) a
feature threshold ϑ2 ∈ R. We denote the parameter set of the
split function as ϑ = {ϑ1, ϑ2}. All arrival samples of a split
node will be channelled to either the left or right child node
according to the output of Equation (3).

The optimal split parameter ϑ∗ is chosen via

ϑ∗ = argmax
Θ

∆Iclass, (4)

where Θ =
{
ϑi
}mtry(|S|−1)

i=1
represents a parameter set over

mtry randomly selected features, with S the sample set arriv-
ing at the node s. The cardinality of a set is given by | · |.
Particularly, multiple candidate data splittings are attempted
on mtry random feature-dimensions during the above node
optimisation process. Typically, a greedy search strategy is
exploited to identify ϑ∗. The information gain ∆Iclass is
formulated as

∆Iclass = Is −
|L|
|S|
Il −

|R|
|S|
Ir, (5)

where s, l, r refer to a split node, the left and right child node,
respectively. The sets of data routed into l and r are denoted as
L and R, and S = L∪R as the sample set residing at s. The I
can be computed as either the entropy or Gini impurity [36]. In
this study we utilise the Gini impurity due to its simplicity and
efficiency. The Gini impurity is computed as G =

∑
i 6=j pipj ,

with pi and pj being the proportion of samples belonging
to the ith and jth category, respectively. Fig. 2 provides an
illustration on the training procedure of a decision tree.

Clustering forests - In contrast to classification forests, clus-
tering forests [37], [38], [39], [40] require no ground truth
label information during the training phase. A clustering forest
consists of Tclust binary decision trees. The leaf nodes in each
tree define a spatial partitioning of the training data. Interest-
ingly, the training of a clustering forest can be performed using
the classification forest optimisation approach by adopting the
pseudo two-class algorithm [35], [41], [42]. Specifically, we
add N pseudo samples x̄ = {x̄1, . . . , x̄d} (Fig. 3-b) into the
original data space X (Fig. 3-a), with x̄i ∼ Dist(xi) sampled
from certain distribution Dist(xi). In the proposed model,
we adopt the empirical marginal distributions of the feature
variables owing to its favourable performance [42]. With this
data augmentation strategy, the clustering problem becomes
a canonical classification problem that can be solved by the
classification forest training method as discussed above. The
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(a) The original data (b) The pseudo data

(c) The first 2 decisions (d) The resulting partitions

Fig. 3. An illustration of performing clustering with a random forest over a
toy dataset. Original toy data samples (a) are labelled as class 1, whilst the
red-coloured pseudo-points ‘+’ (b) as class 2. A forest performs a two-class
classification on the augmented space (c). (d) The resulting data partitions on
the original data.

key idea behind this algorithm is to partition the augmented
data space into dense and sparse regions (Fig. 3-c,d) [41].

C. Our Model: Constraint Propagation Random Forest

To address the issues of sparse and noisy constraints, we for-
mulate a COnstraint Propagation Random Forest (COP-RF),
a novel variant of clustering forest (see Fig. 4). We consider
using a random forest, particularly a clustering forest [35],
[40], [41], [43] as the basis to derive our new model for two
main reasons:

1) It has been shown that random forest has a close
connection with adaptive k-nearest neighbour methods,
as a forest model adapts neighbourhood shape according
to the local importance of different input variables [44].
This motivates us to exploit the adaptive neighbourhood
shape1 for effective constraint propagation.

2) The forest model also offers an implicit feature selec-
tion mechanism that allows more accurate constraint
propagation in the provided feature space by exploiting
identified discriminative features during model training.

The proposed COP-RF differs significantly from the conven-
tional random forests in that the COP-RF is formulated with
a new split function, which considers not only the bottom-up
data feature information gain maximisation, but also the joint
satisfaction of top-down pairwise constraints. In what follows,
we first detail the training of COP-RF followed by how COP-
RF performs constraint propagation through discriminative
feature subspaces.

1The neighbours of a data x in forest interpretation are the points that fall
into the same child node.
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Fig. 4. Overview of the proposed constrained clustering approach.

The training of COP-RF - The training of a COP-RF
involves independently growing an ensemble of Tc constraint-
aware COP-trees. To train a COP-tree, we iteratively optimise
the split function (Equation (3)) by finding the optimal Θ∗

including both the best feature dimension and cut-point to
partition the node training samples S, similar to an ordinary
decision tree (Section III-B). The difference is that the term
‘best’ or ‘optimal’ is no longer defined only as to maximising
the bottom-up feature information gain, but also simultane-
ously satisfying the imposed top-down pairwise constraints.
More precisely, at the t-th COP-tree, its training set Xt only
encompasses a subset of the full constraint set P , i.e.

Pt =
{
Mt ∪ Ct

}
⊂ P. (6)

whereM and C are defined in Equation (1). Instead of directly
using the information gain in Equation (5), we optimise
each internal node s in a COP-tree via enforcing additional
conditions on the candidate data splittings:

∀(xi,xj) ∈Mt ⇒ xi,xj ∈ L (or xi,xj ∈ R),

∃(xi,xj) ∈ Ct ⇒ xi ∈ L & xj ∈ R (or opposite),

where xi,xj ∈ S, and Pt =Mt ∪ Ct. (7)

L and R are data subsets at left and right child (see Equa-
tion (5)). Owing to the conditions in Equation (7), COP-RF
differs significantly from the conventional information gain
function [35], [41], [43] as the maximisation of Equation (5)
is now bounded by the constraint set Pt. Specifically, the
optimisation routine automatically selects discriminative fea-
tures and their optimal cut-point via feature-information-based
energy optimisation, whilst at the same time fulfilling the
guiding conditions imposed by pairwise constraints, leading
to semantically adapted data partitions.

More concretely, a data split in COP-tree can be considered
as candidate if and only if it respects all involved must-
links, i.e. the constrained two samples by some must-link
have to be grouped together. Moreover, candidate data splits
that fulfill more cannot-links are preferred. The difference
in treating must-links and cannot-links originates from their
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Algorithm 1: Split function optimisation in a COP-tree.
Input: At a split node s of a COP-tree t:

- Training samples S arriving at a splitnode s;
- Pairwise constraints: Pt =Mt ∪ Ct;

Output:
- The best feature cut-point Θ∗ and;
- The associated child node partition {L∗, R∗};

1 Optimisation:
2 Initialise L = R = ∅ and ∆I = 0;
3 maxCLs = 0; /* the max number of respected cannot-links */
4 for var← 1 to mtry do
5 Select a feature xvar ∈ {1, . . . , d} randomly;
6 for each possible cut-point of the feature xvar do
7 Split S into a candidate partition {L,R};
8 dec = validate({L,R},

{
Mt, Ct

}
,maxCLs);

9 if dec is true then
10 Compute information gain ∆Î following Equation (7);
11 if ∆Î > ∆I then
12 Update Θ∗;
13 Update ∆I = ∆Î, L = L̂, and R = R̂.
14 end
15 end
16 else
17 Ignore the current splitting.
18 end
19 end
20 end
21 if No valid splitting found then
22 A leaf is formed.
23 end
24 function validate({L,R}, {M, C},maxCLs)
25 {
26 /* Deal with must-links */
27 ∀(xi,xj) ∈M,
28 if (xi ∈ L and xj ∈ R, or vice versa) return false.
29 /* Deal with cannot-links */
30 Count the number κ of respected cannot-links;
31 if (κ < maxCLs) return false.
32 else maxCLs = κ.
33 Otherwise, return true.
34 }

distinct inherent properties: (1) Once a particular must-link is
violated at some split node, i.e. the two linked samples are
separated apart, there will be no chance to compensate for
agreeing again with this must-link in the subsequent process;
That means all must-links have to be fulfilled anytime. (2)
Whilst a cannot-link would be fulfilled forever once it is
respected one time. This property allows us to ignore a cannot-
link temporarily. In particular, although the learning process
prefers data splits that fulfil more cannot-links, it does not
need to forcefully respect all cannot-links at the current split
node. Algorithm 1 summarises the split function optimisation
procedure in a COP-tree.

Generating affinity matrix by COP-RF - Every individual
COP-tree within a COP-RF partitions the training samples at
its leaves `(x): Rd → L ⊂ N, where ` represents a leaf index
and L refers to the set of all leaves in a given tree. For a given
COP-tree, we can compute a tree-level N ×N affinity matrix
At with elements defined as At

i,j = exp−distt(xi,xj) where

distt(xi,xj) =

{
0, if `(xi) = `(xj),
+∞, otherwise. (8)

Hence, we assign the maximum affinity (affinity=1, dis-
tance=0) between points xi and xj if they fall into the same

leaf, and the minimum affinity (affinity=0, distance=+∞)
otherwise. A smooth affinity matrix can be obtained through
averaging all the tree-level affinity matrices

A =
1

Tc

∑Tc

t=1
At. (9)

The Equation (9) is adopted as the ensemble model of COP-RF
due to its advantage of suppressing the noisy tree predictions,
though other alternatives such as the product of tree-level
predictions are possible [45].

Discussion - Recall that the data partitions in COP-RF are
required to agree with the imposed pairwise constraints, which
are defined by splitting conditions in Equation (7). From Equa-
tion (8), it is clear that the pairwise similarity matrix induced
by COP-RF is determined by the data partitions formed over
its leaves. Hence, the pairwise similarity matrix induced by
COP-RF indirectly encodes the pairwise constraints defined by
oracles. To summarise, we denote the constraint propagation
in COP-RF by the process chain below: pairwise constraints
→ steering data partitions in COP-RF → distorting pairwise
similarity measures. As the data partitioning operation in
COP-RF is driven by the optimal split functions that are
defined on discovered discriminative features (Equation (3)),
the corresponding constraint propagation process takes place
naturally in discriminative feature subspaces.

D. Coping with Imperfect Constraints

Most existing models [6], [9], [8] assume that all the
available pairwise constraints are correct. It is not always so
in reality, e.g. annotations from crowdsourcing are likely to
contain invalid constraints due to data ambiguity or mistakes
by human. The existence of fault constraints can result in error
propagation to neighbouring unlabelled points. To overcome
this problem, we formulate a novel method to measure the
quality of individual constraints by estimating their inconsis-
tency with the underlying data distribution, so as to facilitate
more reliable constraint propagation in COP-RF.

Incorrect pairwise constraints are likely to conflict with
the intrinsic data distributions in the feature space. Motivated
by this intuition, we propose a novel approach to estimating
constraint inconsistency measure, as described below.

Specifically, we adopt the outlier detection mechanism
offered by classification random forest [35] to measure the
inconsistency of a given constraint. First, we establish a set
of samples with Z = {zi}|P|i=1 with class labels Y = {yi}|P|i=1,
where |P| represents the total of constraints. Here, a sample
z is defined as

z =

[
|xi − xj |

1
2 (xi + xj)

]
, (10)

where (xi,xj) is a sample pair labelled with either must-
link or cannot-link. We assign z with class y = 0 if the
associated constraint is cannot-link, and y = 1 for must-link.
Equation (10) considers both relative position and absolute
locations of (xi,xj). This characteristic enables the forest
learning process to be position-sensitive and thus achieve data-
structure-adaptive transformation [46].
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Algorithm 2: Quantifying constraint inconsistency.
Input: Pairwise constraints: (xi,xj) ∈ P = {M∪ C };
Output: Inconsistency scores of individual constraints (xi,xj) ∈ P;

1 Quantifying process:
2 Generate a new sample set Z = {zi}

|P|
i=1 with class labels

Y = {yi}
|P|
i=1 from constraints P (Equation (10));

3 Train a classification forest F with Z and Y ;
4 Compute an inconsistency score ξ for each z or constraint

(Equation (11)).

Subsequently, we train a classification random forest F
using Z and Y . The learned F can then used to measure
the inconsistency of each sample zi. A sample is deemed
inconsistent if it is unique against other samples with the same
class label. Formally, based on the affinity A on Z that can
be computed with Equation (8) and Equation (9) using F, the
inconsistency measure ξ of zi is defined as

ξ(zi) =
ρi − ρ̄
ρ̄

, where (11)

ρ̄ = median([ρ1, . . . , ρ|Zi|]),

ρi =
1∑

zj∈Zi(A(zi, zj))2
,

where Zi comprises of all samples with the same class label
as zi in Z. By Equation (11), we assign a high inconsistency
score to zi if it has low similarity to samples with the same
class label, and a low inconsistency score otherwise. Finally,
the inconsistency measure of each constraint (xi,xj) ∈ P is
obtained by simply taking the ξ of the corresponding z. An
overview of the proposed constraint inconsistency quantifica-
tion is depicted in Algorithm 2.

To remove potentially noisy constraints, we rank all the
pairwise constraints based on their inconsistency score in an
ascending order. Given the rank list, we keep the top β% of the
constraints for COP-RF training. In our study, we set β = 50
obtained by cross-validation.

E. Constrained Clustering

After computing the affinity matrix by COP-RF (Equa-
tion (9)), it can be fed into any pairwise similarity based
clustering methods, such as spectral clustering [1], [2], [3],
[4], affinity propagation [5]. Since the affinity matrix A is
constraint-aware, these conventional clustering models are
automatically transformed to conduct constrained clustering on
data. For spectral clustering, we generate as model input a k-
nearest neighbour graph from A, a typical local neighbourhood
graph in spectral clustering literature [3]. Following [5], we
perform affinity propagation directly on A. In Section IV, we
will show extensive experiments to demonstrate the effective-
ness of the proposed COP-RF in constrained clustering.

F. Model Complexity Analysis

COP-trees in a COP-RF model can be trained independently
in parallel, as in most of the random forest models. For the
worst case complexity analysis, here we consider a sequential
training mode, i.e. each tree is trained one after another with
a 1-core CPU.

The learning complexity of a whole COP-RF can be
examined from its constituent parts. Specifically, it can be
decomposed into tree- and node-levels as: (i) The complexity
of learning a COP-RF is directly determined by individual
COP-tree training costs. (ii) Similarly, the training time of a
single COP-tree relies on the costs of learning individual split
nodes. Formally, given a COP-tree t, we denote the set of
all the internal nodes as Πt and the sample subset used for
training an internal node s ∈ Πt as S, the training complexity
of s is then mtry(|S| − 1)u when a greedy search algorithm
is adopted, with mtry the number of features attempted to
partition S during training s, and u the complexity of con-
ducting one data splitting operation. As shown in Algorithm 1,
the cost of a single data partition in a COP-tree includes two
components: (1) the validation of constraint satisfaction; and
(2) the computation of information gain. Therefore, the overall
computational cost of learning a COP-RF can be estimated as

Ω =

Tc∑
t

∑
s∈Πt

mtry|S|u = mtry

Tc∑
t

∑
s∈Πt

|S|u, (12)

where Tc is the number of trees in a COP-RF. Note that the
value of

∑
s∈Πt

|S| depends on both the training sample size
N and the tree topological structure, so it is difficult to express
in an explicit form if possible. In Section IV-E we will examine
the actual run time needed for training a COP-RF.

IV. EVALUATIONS

A. Experimental Settings
Evaluation metrics - We use the widely adopted adjusted
Rand Index (ARI) [47] as the evaluation metric. ARI measures
the agreement between the cluster results and the ground truth
in a pairwise fashion, with higher values indicating better
clustering quality in the range of [−1, 1]. Throughout all the
experiments, we report the ARI values averaged over 10 trials.
In each trial we generate a random pairwise constraint set from
the ground truth cluster labels.

Implementation details - The number of trees, Tc, in a COP-
RF is set to 1000. In general, we found that better results can
be achieved by adding more trees, in line with the observation
in [45]. Each Xt is obtained by performing N times of
random selection with replacement from the augmented data
space of 2 × N samples (see Section III-B). The depth of
each COP-tree is governed by either constraint satisfaction,
i.e. a node will stop growing if during any attempted data
partitioning constraint validation fails (see Algorithm 1), or
the size of a node equals to 1 (i.e. φ = 1). We set mtry

(see Equation (4)) to
√
d with d the feature dimensionality

of the input data and employ a linear data separation [45]
as the split function (see Equation (3)). More complex split
functions, e.g. quadratic functions or Support Vector Machine
(SVM), can be adopted at a higher computational cost. We set
k ≈ N/10 for the k-nearest neighbour graph construction in
the constrained spectral clustering experiments.

B. Evaluation on Spectral Clustering
Datasets - To evaluate the effectiveness of our method in
coping with data of varying numbers of dimensions and
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TABLE I
THE DETAILS OF DATASETS.

Dataset # Clusters # Features # Instances
Ionosphere (Iono.) 2 34 351

Iris 3 4 150
Segmentation (Seg. ) 7 19 210

Parkinsons (Park.) 2 22 195
Glass 6 10 214
ERCe 6 2672 600

(a) (b) (c) 

(d) (e) (f) 

(a) (b) 

(c) (d) 

(e) (f) 

  (a)   (b)   

      

(c) 

(d) (e) (f) 

Fig. 5. Example images from the ERCe video dataset. It contains six events
including (a) Student Orientation, (b) Cleaning, (c) Career Fair, (d) Group
Study, (e) Gun Forum, and (f) Scholarship Competition.

clusters, we select five diverse UCI benchmark datasets [48],
which have been widely employed to evaluate clustering and
classification techniques. We also collect an intrinsically noisy
video dataset from a publicly available web-camera deployed
in a university’s Educational Resource Center (ERCe). The
video dataset is challenging as it contains a wide range of
physical events characterised by large changes in the envi-
ronmental setup, participants, and crowdedness, as well as
intricate activity patterns. It also potentially contains large
amount of noise in its high-dimensional feature space. The
dataset consists of 600 video clips with six possible clusters
of events, namely Student Orientation, Cleaning, Career Fair,
Gun Forum, Group Studying, and Scholarship Competition
(see Fig. 5 for example images). The details of all datasets
are summarised in Table I.

Features - For the UCI datasets, we use the original fea-
tures provided. As for the ERCe video data, we segment
a long video into non-overlapping clips (each consisting of
100 frames), from which a number of visual features are
then extracted, including colour features (RGB and HSV),
local texture features (LBP) [49], optical flow, image features
(GIST) [50], and person detections [51]. The resulting 2672-D
feature vectors of video clips may contain a large number of
less informative dimensions, we perform PCA on them and the
first 30 PCA components are used as the final representation.
All raw features are scaled to the range of [−1, 1].

Baselines - For comparison, we present the results of the
baselines2 as below: (1) Spectral Clustering (SPClust) [1]: the

2We experimented the constrained clustering method in [26] which turns
out to produce the worst performance across all datasets, and thus ignored in
our comparison.

conventional spectral clustering algorithm without exploiting
pairwise constraints. (2) COP-Kmeans [6]: a popular con-
strained clustering method based on k-means. The algorithm
attempts to satisfy all pairwise constraints during the iterative
refinement of clusters. (3) Spectral Learning (SL) [9]: a con-
strained spectral clustering method without constraint propaga-
tion. It extends SPClust by trivially adjusting the elements in
a data affinity matrix with 1 and 0 to satisfy must-link and
cannot-link constraints, respectively. (4) E2CP [8]: a state-
of-the-art constrained spectral clustering approach, in which
constraint propagation is achieved by manifold diffusion [25].
We use the original code released by [8], with parameter
setting as suggested by the paper, i.e. we set the propaga-
tion trade-off parameter as 0.8. (5) RF+E2CP: we modify
E2CP [8], i.e.instead of generating the data affinity matrix with
Euclidean-based measure, we use a conventional clustering
forest (equivalent to a COP-RF without constraints imposed
and noisy constraint filtering mechanism) to generate the
affinity matrix. The constraint propagation is then performed
using the original E2CP-based manifold diffusion. This allows
E2CP to enjoy a limited capability of feature selection using
a random forest model.

We carried out comparative experiments to (1) evaluate
the effectiveness of different clustering methods in exploiting
sparse but perfect pairwise constraints (Section IV-B1), and
(2) compare their clustering performances in the case of
having imperfect oracles to provide ill-conditioned pairwise
constraints (Section IV-B2).

1) Evaluation of Sparse Constraint Propagation: In this
experiment, we assume perfect oracles thus all the pairwise
constraints agree with the ground truth cluster labels. First, we
examined the data affinity matrix after employing the available
constraints, which may reflect how effective a constrained
clustering method is. Fig. 6 depicts some examples of affinity
matrices produced by SL, E2CP, RF+E2CP, and COP-RF,
respectively. COP-Kmeans is excluded since it is not a spectral
method. It can be observed that COP-RF produces affinity
matrices with more distinct block structure in comparison
to its competitors on the most cases. Moreover, the block
structure becomes clearer when more pairwise constraints are
considered. The results demonstrate the superiority of the
proposed approach in propagating sparse pairwise constraints,
leading to more compact and separable clusters.

Fig. 7 reports the ARI curves of different methods along
with varying numbers of pairwise constraints (ranging in
0.1 ∼ 0.5% of total constraints N(N−1)

2 where N is the
number of data samples). The overall performance of various
methods can be quantified by the area under the ARI curve and
the results are reported in Table II. It is evident from the results
(Fig. 7 and Table II) that on most datasets, the proposed COP-
RF outperforms other baselines, by as much as >400% against
COP-Kmeans and >40% against the state-of-the-art E2CP in
averaged area under the ARI curve. This is in line with our
previous observations on the affinity matrices (Fig. 6). Unlike
E2CP that relies on the conventional Euclidean-based affinity
matrix that considers all features for constraint propagation,
COP-RF propagate constraints via discriminative subspaces
(Section III-C), leading to its superior clustering results.
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TABLE II
COMPARING DIFFERENT METHODS BY THE AREA UNDER THE ARI CURVE. PERFECT ORACLES ARE ASSUMED. HIGHER IS BETTER.

Dataset SPClust [1] COP-Kmeans [6] SL [9] E2CP [8] RF+E2CP COP-RF
Ionosphere 0.490 0.225 0.063 0.176 3.120 2.979

Iris 3.273 1.632 3.499 3.516 3.265 3.385
Segmentation 1.943 0.499 1.973 1.989 2.266 2.239

Parkinsons 0.677 0.114 0.811 0.787 1.082 1.403
Glass 1.121 0.394 1.162 1.210 1.602 2.015
ERCe 2.647 0.292 3.681 3.447 3.840 3.947

Average 1.692 0.526 1.865 1.854 2.529 2.661

TABLE III
COMPARING DIFFERENT METHODS BY THE AREA UNDER THE ARI CURVE. A FIXED RATIO (15%) OF INVALID PAIRWISE CONSTRAINTS ARE INVOLVED.

HIGHER IS BETTER.

Dataset SPClust [1] COP-Kmeans [6] SL [9] E2CP [8] RF+E2CP COP-RF
Ionosphere 0.490 0.146 0.192 0.276 2.851 2.606

Iris 3.273 1.590 3.454 3.416 2.988 3.067
Segmentation 1.943 0.433 1.877 1.913 2.039 2.109

Parkinsons 0.677 0.067 0.786 0.780 0.910 1.102
Glass 1.121 0.679 1.114 1.159 1.244 1.734
ERCe 2.647 0.328 0.368 0.832 3.119 3.705

Average 1.692 0.540 1.299 1.396 2.192 2.387

TABLE IV
COMPARING DIFFERENT METHODS BY THE AREA UNDER THE ARI CURVE. VARYING RATIOS (5 ∼ 30%) OF INVALID PAIRWISE CONSTRAINTS ARE

INVOLVED. HIGHER IS BETTER.

Dataset SPClust [1] COP-Kmeans [6] SL [9] E2CP [8] RF+E2CP COP-RF
Ionosphere 0.536 0.000 0.253 0.314 3.172 3.399

Iris 4.341 2.507 4.339 4.352 3.659 3.684
Segmentation 2.462 0.514 2.348 2.336 2.481 2.605

Parkinsons 0.979 0.108 0.957 0.948 0.975 1.338
Glass 1.421 0.343 1.380 1.477 1.558 2.020
ERCe 3.160 0.000 0.159 1.320 3.682 4.331

Average 2.150 0.579 1.573 1.791 2.588 2.896

We now examine and discuss the performance of other
baselines. The poorest results are given by COP-Kmeans on
majority datasets, beyond which some incomplete curves are
observed in Fig. 7 as the model fails to converge (early
termination without a solution) as more constraints are intro-
duced into the model. On the contrary, COP-RF is empirically
more stable than COP-Kmeans, as COP-RF casts the difficult
constraint optimisation task into smaller sub-problems to be
addressed by individual trees. This characteristic is reflected
in Equation (6), where each tree in a COP-RF only needs to
consider a subset of constraints Pt ⊂ P .

SPClust’s performance is surprisingly better than COP-
Kmeans although it does not utilise any pairwise constraint.
This may be because of: (1) in comparison to the conventional
k-means, SPClust is less sensitive to noise as it partitions data
in a low-dimensional spectral domain [3], and (2) the limited
ability of COP-Kmeans in exploiting pairwise constraints. SL
performs slightly better than SPClust through switching the
pairwise affinity value in accordance to must-link and cannot-
link constraints. Due to the lack of constraint propagation, SL
is less effective in exploiting limited supervision information
when compared to propagation based models.

Better results are obtained by constraint propagation based
E2CP. Nevertheless, the state-of-the-art E2CP is inferior to

the proposed COP-RF, since its manifold construction still
considers the full feature space, which may be corrupted
by noisy features. We observe in some cases, such as the
challenging ERCe dataset, the performance of E2CP is worse
than the naive SL method that comes without constraint propa-
gation. This result suggests that propagation could be harmful
when the feature space is noisy. The variant modified by us,
i.e. RF+E2CP, employs a conventional clustering forest ([43],
[41]) to generate the data affinity matrix. This allows E2CP to
take advantage of a limited capability of forest-based feature
selection, and better results are obtained compared with the
pure E2CP. Nevertheless, RF+E2CP’s performance is generally
poorer than COP-RF’s (see Table II). This is because the
feature selection of the ordinary forest model is less effective
than that of COP-RF, which jointly considers feature-based
information gain maximisation and constraint satisfaction.

To further highlight the superiority of COP-RF, we show
in Fig. 8 the improvement of area under the ARI curve
achieved by COP-RF relative to other methods (dark bars).
Clearly while COP-RF rarely performs noticeably worse than
the others, the potential improvement is large.

2) Evaluation on Propagating Noisy Constraints: In this
experiment, we assume imperfect oracles thus pairwise con-
straints are noisy. We conduct two sets of comparative exper-
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Fig. 6. Comparison of affinity matrices by different methods given a varying
number (0.1 ∼ 0.5%) of perfect pairwise constraints.

iments: (1) We deliberately introduced a fixed ratio (15%) of
random invalid constraints into the perfect constraint sets as
used in the previous experiment (Section IV-B1). This is to
simulate the annotation behaviour of imperfect oracles for the
comparison of our approach with existing models. (2) Given a
set of random constraints sized 0.3% of the total constraints,
we varied the quantity of random noisy constraints, e.g. from
5% to 30%. This allows us to further compare the robustness
of different models against mistaken pairwise constraints. In
both experiments, we repeat the same experimental protocol
as discussed in Section IV-B1.

A fixed ratio of noisy constraints - In this evaluation, we
examined the performance of different models when 15%
of noisy constraints are included in the given constraint
sets. The performance comparison are reported in Fig. 9
and Table III and the relative improvement in Fig. 8. It
is observed from Table III that in spite of the imperfect
oracle assumption, COP-RF again achieves better results than
other constrained clustering models on most datasets as well
as the best average clustering performance across datasets,
e.g.>300% increase against COP-Kmeans and >70% increase
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Fig. 7. ARI comparison of clustering performance between different methods
given a varying number of perfect pairwise constraints.

against E2CP. Furthermore, Fig. 8 also shows that COP-RF
maintains encouraging performance given noisy constraints,
in some cases such as the challenging ERCe video dataset
even larger improvements are obtained over E2CP and other
models, compared with the perfect constraint case.

Varying ratios of noisy constraints - Noisy constraints bring
negative impact on the clustering results, as shown in the
above experiment. We wish to investigate how constrained
clustering models would perform under different ratios of
noisy constraints. To this end, we evaluated the robustness
of compared models against different amounts of noisy con-
straints involved in sets of 0.3% out of the full pairwise
constraints. Fig. 10 and Table IV show that COP-RF once
again outperforms the competitor models on most datasets. As
shown in Fig. 11, the performance improvement of COP-RF
over constraint propagation baselines maintains over varying
degrees of noisy constraints in most cases. Specifically, COP-
RF’s average relative improvements over E2CP and RF+E2CP
across all datasets are 63% and 2% given 5% noisy constraints
whilst 48% and 8% given 30% noise.

C. Evaluation on Affinity Propagation

To demonstrate the generalisation of our COP-RF model,
we show its effectiveness on affinity propagation, an exemplar-
location based clustering algorithm [5]. Similarly, ARI is used
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(d) COP-RF over E2CP [8]
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Fig. 8. The improvement of the area under the ARI curve achieved by COP-
RF relative to other methods. Dark bars: when perfect constraints are provided.
Grey bars: when 15% of the total constraints are noisy. White bars: when
varying ratios (5 ∼ 30%) of noisy constraints are provided.

as performance evaluation metrics3.

Dataset - We select the same face image set as [5], which is
extracted from the Olivetti database. Particularly, this dataset
includes a total of 900 grey images with resolution of 50×50
from 10 different persons, each with 90 images obtained
by Gaussian smoothing and rotation/scaling transformation.
It is challenging to distinguish these faces (Fig. 12) due
to large variations in lighting, pose, expression and facial
details (glasses / no glasses). The features of each image are
normalised pixel values with mean 0 and variance 0.1.

Baselines - Typically, negative squared Euclidean distance is
used to measure the data similarity. Here, we compare COP-
RF against (1) Eucl: the Euclidean metric; (2) Eucl+Links:
we encode the information of pairwise constraints into the
Euclidean-metric based affinity matrix by making the similar-
ity between cannot-linked pairs be minimal and the similarity
between must-linked pairs be maximal, similar to [9]; (3)
RF: the conventional clustering Random Forest [35] so that
the pairwise similarity measures can benefit from feature
selection; (4) RF+Links: analogues to Eucl+Links but with
the affinity matrix generated by the clustering forest.

In this experiment, we use the perfect pairwise links (0.1 ∼
0.5%) as constraints, similar to Section IV-B1. The results

3Average Squared Error (ASE) is adopted in [5] as evaluation metric. This
metric requires all comparative methods to produce affinity matrices based
on a particular type of similarity/distance function. In our experiments ASE
is not applicable since distinct affinity matrices are generated by different
comparative methods.
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Fig. 9. ARI comparison of clustering performance between different methods
given a fixed (15%) ratio of invalid constraints.

are reported in Fig. 13. It is evident that the feature selection
based similarity (i.e. RF) is favourable over the Euclidean
metric that considers the whole feature spaces. This obser-
vation is consistent with the earlier findings in Section IV-B.
Manipulating affinity matrix naively using sparse constraints
helps little in performance, primarily due to the lack of
constraint propagation. The superiority of COP-RF over all the
baselines justifies the effectiveness of the proposed constraint
propagation model in exploiting constraints for facilitating
cluster formation. Also, obviously larger performance margins
are acquired when one increases the amount of pairwise
constraints, further suggesting the effectiveness of constraint
propagation by the proposed COP-RF model.

D. Evaluation on Constraint Inconsistency Measure

The superior performance of COP-RF in handling imperfect
oracles can be better explained by examining more closely
the capability of our constraint inconsistency quantification
algorithm (Equation (11)). Fig. 14 shows the inconsistency
measures of individual pairwise constraints on Ionosphere and
Glass datasets. It is evident that the median inconsistency
scores induced by invalid/noisy constraints are much higher
than that by valid ones.

E. Computational Cost

In this section, we report the computational complexity
of our COP-RF model. Time is measured on a Linux ma-
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Fig. 12. Example face images from 10 different identities. Two distinct individuals are included in each row, each with 10 face images.

5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

A
R

I

Percentage of invalid constraints (%)

 

 

SPClust

E2CP
SL

RF+E2CP
COP−RF

(a) Ionosphere

5 10 15 20 25 30

0

0.5

1

A
R

I

Percentage of invalid constraints (%)

 

 

SPClust

E2CP
SL

COP−Kmeans

RF+E2CP
COP−RF

(b) Iris

5 10 15 20 25 30

0

0.5

1

A
R

I

Percentage of invalid constraints (%)

 

 

SPClust

E2CP
SL

COP−Kmeans

RF+E2CP
COP−RF

(c) Segmentation

5 10 15 20 25 30

0

0.5

1

A
R

I

Percentage of invalid constraints (%)

 

 

SPClust

E2CP
SL

COP−Kmeans

RF+E2CP
COP−RF

(d) Parkinsons

5 10 15 20 25 30

0

0.5

1

A
R

I

Percentage of invalid constraints (%)

 

 

SPClust

E2CP
SL

COP−Kmeans

RF+E2CP
COP−RF

(e) Glass

5 10 15 20 25 30

0

0.5

1

A
R

I

Percentage of invalid constraints (%)

 

 

SPClust

E2CP
SL

RF+E2CP
COP−RF

(f) ERCe

Fig. 10. ARI comparison of clustering performance between different
constraint propagation methods given varying ratios of invalid constraints.

chine of Intel Quad-Core CPU @ 3.30GHz and 8.0GB with
C++ implementation of COP-RF. Note that only one core is
utilised during the model training procedure. Time analysis is
conducted on the ERCe dataset using the same experimental
setting as stated in Section IV-B. A total of 60 repetitions were
performed, each utilising 0.3% out of the full constraints with
varying (5% ∼ 30%) amounts of invalid ones. On average,
training a COP-RF takes 213 seconds. Note that the above
process can be conducted in parallel in a cluster of machines
to speed up the model training.
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Fig. 11. ARI relative improvement of COP-RF over baseline constraint
propagation models given varying ratios of noisy constraints in 0.3% out
of the full constraints. Higher is better.

V. CONCLUSION

We have presented a novel constrained clustering framework
to (1) propagate sparse pairwise constraints effectively, and (2)
handle noisy constraints generated by imperfect oracles. There
has been little work that considers these two closely-related
problems jointly. The proposed COP-RF model is novel in that
it propagates constraints more effectively via discriminative
feature subspaces. This is in contrast to existing methods
that perform propagation considering the whole feature space,
which may be corrupted by noisy features. Effective propa-
gation regardless of the constraint quality could lead to poor
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Fig. 13. Comparison of different methods on clustering face images with
affinity propagation.
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Fig. 14. Quantifying constraint inconsistency by using the proposed algorithm
(Section III-D). High values suggest large probabilities of being invalid
constraints.

clustering results. Our work addresses this crucial issue by
formulating a new algorithm to quantify the inconsistency of
constraints and effectively perform selective constraint propa-
gation. The model is flexible in that it generates a constraint-
aware affinity matrix that can be used by the existing pair-
wise similarity measure based clustering methods for readily
performing constrained data clustering, e.g. spectral cluster-
ing, affinity propagation. Experimental results demonstrated
the effectiveness and advantages of the proposed approach
over the state-of-the-art methods. Future work includes the
investigation of active constraint selection with the proposed
model.
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