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Abstract

State-of-the-art person re-identification methods seek robust person matching
through combining various feature types. Often, these features are implicitly
assigned with generic weights, which are assumed to be universally and
equally good for all individuals, independent to people’s different appearances.
In this study, we show that certain features play more important role than
others under different viewing conditions. To explore this characteristic, we
propose a novel unsupervised approach to bottom-up feature importance
mining on-the-fly specific to each re-identification probe target image, so
features extracted from different individuals are weighted adaptively driven
by their salient and inherent appearance attributes. Extensive experiments
on three public datasets give insights on how feature importance can vary
depending on both the viewing condition and specific person’s appearance,
and demonstrate that unsupervised bottom-up feature importance mining
specific to each probe image can facilitate more accurate re-identification
especially when it is combined with generic universal weights obtained using
existing distance metric learning methods.
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1. Introduction

A critical task in visual surveillance is to automatically associate individuals
across different disjoint and large spaces at different times, known as re-
identification, in order to facilitate cross-camera tracking of people and
understanding their global behaviour in a wider context (Loy et al., 2010).
Typically, when a target (a probe) is observed in a view, the goal of
person re-identification (re-id) is to discover the same person appears at
an arbitrary location and time from a crowd of people (gallery candidates)
based on their appearance similarity to the probe image. Appearance-
based person re-identification is a non-trivial problem owing to visual
ambiguities and uncertainties caused by illumination changes, viewpoint and
pose variations, and inter-object occlusions. To address this problem, most
existing methods (Farenzena et al., 2010; Bazzani et al., 2012) combine
different appearance features, such as colour and texture, to improve
reliability and robustness in person matching.

Often, each type of visual features is represented by a bag-of-words scheme
in the form of a histogram. Feature histograms are then concatenated with
some weighting between different types of features in accordance to their
perceived importance, i.e. based on some empirical assumed discriminative
power of certain type of features in distinguishing the visual appearance
of an individual from the others (Prosser et al., 2010; Zheng et al., 2013;
Mignon and Jurie, 2012; Gray and Tao, 2008; Hirzer et al., 2012). Moreover,
an implied assumption for choosing a generic feature weighting scheme is
that the underlying features used are also tolerant/invariant to camera view
changes. To accommodate such feature importance selection criteria, existing
techniques implicitly assume a feature weighting or selection mechanism that
is generic, by imposing weights (or a linear weight function) on certain
feature types that are considered optimal in a universal sense, e.g. colour
may be considered as the most stable and universally good (therefore more
important) feature for discriminating people in crowded spaces subject
to frequent occlusion and unknown viewpoint changes, rather typical re-
identification scenarios. In this study, we refer such universal feature
weights selection schemes as learning top-down Generic Feature Importance
(GFI). They can be learned either through boosting (Gray and Tao, 2008),
rank learning (Prosser et al., 2010; Wu et al., 2012), or distance metric
learning (Zheng et al., 2013; Hirzer et al., 2012; Mignon and Jurie, 2012;
Kostinger et al., 2012).
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Figure 1: A probe image and the target image, together with the rank of correct matching
by using different feature types separately.

Human often relies on salient features for distinguishing one from the
others, i.e. using the plaid pattern on the shirt to distinguish the man
from the woman wearing red sweater in Figure 1. Such bottom-up feature
saliency is valuable for person re-identification but is often too subtle to be
captured when computing feature importance using existing top-down GFI
techniques. In this study, we propose a new and interesting perspective for
person re-identification based on unsupervised feature importance mining.
In particular, we investigate a different notion of feature importance in
comparison to existing re-id studies, i.e. the discriminative power of intrinsic
appearance attributes unique to each individual. We consider that certain
appearance features can be more important than others in describing an
individual and distinguishing him/her from other people. For instance,
colour is more informative to describe and distinguish an individual wearing
textureless bright red sweater, but texture information can be equally or more
critical for a person wearing plaid shirt (Figure 1). Hence, it is desired not to
bias all the weights to some universally good features that are assumed stable
for re-identifying all individuals. Instead, we wish to investigate an approach
to selectively distribute weights to person probe image specific feature subset
given different appearance attributes of different people1.

There are two clear distinctions between the conventional top-down and
the proposed bottom-up feature importance mining. First, the conventional
top-down GFI methods are supervised, i.e. the learning process requires ex-

1Similar to that of Layne et al. (2012), we refer attributes as appearance characteristics
of individuals, e.g. dark shirt, blue jeans, carrying-object, backpack.
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haustive supervision on pairwise individual correspondence between camera
pair. In contrast, the proposed bottom-up feature importance mining is
fully unsupervised, i.e. without requiring manually labelled person identities
in the training process. Second, the conventional top-down approach
imposes weights on certain feature types that are considered optimal in
a universal sense; whilst the bottom-up approach aims to discover a set
of discriminative features and quantify their importance specific to each
individual. From another perspective, the notion of bottom-up learning can
also be interpreted as a process of unsupervised discovering latent attribute
(see Sect.3.1), which is largely different from existing top-down supervised
attribute learning (Layne et al., 2012; Lampert et al., 2009) that require
exhaustive human-specified attributes.

Formulating an unsupervised and on-the-fly importance sampling method
for person re-identification is non-trivial. Firstly, what is unique or salient
about a person against a large and dynamic crowd of people is somewhat
difficult and subjective to quantify under different circumstances. Secondly,
simultaneously identifying any and all salient features specific to each
individual can be computationally prohibitive. Lastly, a model is required
to not only discover a set of probe-specific important (salient) features, but
also quantify automatically the importance of each feature type.

In this study, we investigate what features are more important for
person re-identification under significantly changing viewing conditions. In
particular, we show that selecting features adaptively for different individuals
yield more robust re-identification performance than feature histogram
concatenation with uniform weighting (Wang et al., 2007; Loy et al., 2010).
Motivated by this observation, we formulate a fully unsupervised approach
to on-the-fly bottom-up feature importance mining driven by learning
to classify the probe person’s appearance attributes. Two methods for
computing the bottom-up feature importance are proposed and evaluated:
Prototype-Specific Feature Importance (PSFI) and Individual-Specific Feature
Importance (ISFI).

To avoid a potentially prohibitive feature importance mining process,
our model is designed to first discover, by unsupervised clustering, inherent
visual appearance attribute prototypes, in order to yield more meaningful and
compact groupings of image samples of different people in a training pool.
From this unsupervised learning of appearance attribute based prototypes,
we formulate a principled method to quantify bottom-up feature importance
specific to each probe image re-identification based on introducing an

4



error gain criterion from classifying the probe image by learned attribute
prototypes using a random forest.

The contributions of this study are two-fold:

1. While most existing person re-identification methods focus on su-
pervised top-down feature importance learning, we provide empirical
evidence to support the view that some benefits can be gained
from unsupervised bottom-up feature importance mining guided by a
person’s appearance attribute classification. To our best knowledge,
this is the first study that systematically investigates the role of
different feature types in relation to appearance attributes for person
re-identification.

2. We formulate a novel unsupervised approach for on-the-fly mining of
person appearance attribute-specific feature importance. Specifically,
we introduce the concept of learning grouping of appearance attributes
for guiding bottom-up feature importance mining. Moreover, we
define an error gain based criterion to systematically quantify feature
importance for the process of re-identification of each specific probe
image.

Extensive experiments conducted on three benchmarking re-identification
datasets demonstrate that person re-identification can benefit from com-
plementing existing supervised learning based top-down generic feature
importance weighting approaches with the unsupervised learning based
bottom-up feature importance mining approach investigated in this study.

2. Related Work

Person re-identification is typically defined as the task of matching and
ranking pedestrian across non-overlapping camera views. This task is related
to the tracking-by-identification problem (Mandeljc et al., 2012; Ben Shitrit
et al., 2011), which aims to re-identifying people across trajectory fragments
in multiple cameras with overlapping fields of view. Often, person-specific
appearance and motion cues are exploited for tracks association to prevent
identity switches. In this study, we focus on person re-identification across
non-overlapping views.

Person re-identification by image matching can benefit from integrating
several types of visual features (Farenzena et al., 2010; Bazzani et al., 2012;
Prosser et al., 2010; Zheng et al., 2013; Loy et al., 2013; Gray and Tao,
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2008; Wang et al., 2007; Alahi et al., 2010; Schwartz and Davis, 2009; Bak
et al., 2010a). For instance, Farenzena et al. (2010) combine weighted colour
histogram, maximally stable local colour regions and structured patches for
constructing a feature descriptor. Bazzani et al. (2012) propose histogram
plus epitome features as a human signature. Bak et al. (2010b) and Alahi
et al. (2010) combine local statistics of colour and gradient to construct a
covariance descriptor. Wang et al. (2007) introduce shape context along with
colour histograms to capture more structural information.

Given the host of available appearance representations of colour, tex-
ture and shape, most existing distance metric learning based person re-
identification methods take a GFI learning strategy (Prosser et al., 2010;
Zheng et al., 2013; Loy et al., 2013; Mignon and Jurie, 2012; Gray and
Tao, 2008; Wu et al., 2012; Kostinger et al., 2012). Essentially, such
techniques assume that certain features are universally more important in
all circumstances, regardless of viewing condition changes between gallery
and probe images and the specific visual appearance characteristics of a re-
identification target person in the probe image. For example, the RankSVM
method by Prosser et al. (2010) aims to find a linear function to weight
the absolute difference of samples via optimisation given pairwise relevance
constraints. The Probabilistic Relative Distance Comparison (PRDC) model
of Zheng et al. (2013) maximises the probability of a pair of true match
having a smaller distance than that of a wrong matched pair. The output
is an orthogonal matrix that essentially encodes the universal importance of
each feature. Then the learned feature importance is used universally for all
the probe images.

There are other methods that extract important (salient) parts of a
person for robust matching (Liu et al., 2012b; Farenzena et al., 2010; Cheng
et al., 2011). For instance, Farenzena et al. (2010) select salient parts of a
body figure by symmetry; Cheng et al. (2011) exploit human salient body
parts to enable more accurate visual correspondence. Their consideration
of importance is different from ours in this study. In the aforementioned
methods, the feature importance mining is spatial and confined within a
single image, e.g. selecting certain body parts as important rather than the
background region. In this study, we aim to discover unique visual properties
of a person, not within an image, but relative to a dynamic crowd of
people under unknown changing viewing conditions between different camera
locations.

The method proposed by Schwartz and Davis (2009) shares a similar
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Figure 2: An overview of the proposed bottom-up feature importance mining approach
for person re-identification. Training steps are indicated by red solid arrows and testing
steps are denoted by blue slash arrows.

spirit to our work, i.e. it aims to discover what is important given specific
appearance. In contrast to the model of Schwartz and Davis (2009) that
requires labelled images to discover feature importance for a close-set of
appearances, our method is fully unsupervised. Importantly, the proposed
approach in this study is more adaptable in principle due to that the
feature importance is mined by unsupervised learning of appearance attribute
prototypes. This approach is designed to not only discover the feature
importance from a training dataset off-line, but also to readily allow for
computing feature importance on-the-fly given a specific probe image for
re-identification.

3. Quantifying Feature Importance for Re-ID

A diagram that summarises our approach for bottom-up feature impor-
tance mining is depicted in Figure 2. To address the challenge of both
avoiding prohibitive feature importance mining from a training dataset and
providing adaptive per probe specific feature importance selection on-the-fly,
we formulate a novel method based on a cascaded clustering-classification
random forest.
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Specifically, in the training stage, a clustering forest is first employed
to discover latent manifold clusters from a large set of unlabelled training
images (Figure 2(c)-(e)). The discovered clusters are considered as feature
prototypes, which correspond to a visually meaningful set of appearance
attributes. These prototypes are exploited to facilitate unsupervised bottom-
up feature importance mining. The prototype discovery is critical in that it
avoids exhaustive search of feature importance against all the training images
given a probe image. Instead, it facilitates mining feature importance in
a much smaller number of representative prototypes. To mine the feature
importance of each prototype (Figure 2(f)-(g)), we formulate a classification
forest to quantify the relevance of a feature variable to a prototype by
examining its error gain in an information theoretic sense.

In the process of re-identifying a probe image, our method determines on-
the-fly the bottom-up feature importance for the given probe image according
to its mixture of prototype memberships inferred by a classification random
forest.

3.1. Prototypes Discovery

The first step of our method is to cluster a given set of unlabelled images
into several representative prototypes, each of which composes of images that
are most likely to correspond to similar constitutions of multiple classes of
appearance attributes, e.g.wearing colourful shirt, with backpack, dark jacket
(Figure 2(e)).

Formally, given an input of n unlabelled images {Ii}, where i = 1, . . . , n,
feature extraction f(·) is first performed on every image to extract a D-
dimensional feature vector, that is f(I) = x = (x1, . . . , xD)T ∈ RD

(Figure 2(b)). We aim to discover a set of prototypes

c ∈ C = {1, . . . , K} , (1)

i.e. low-dimensional manifold clusters that aim at grouping images {I} with
similar appearance attributes. Note that this unsupervised feature prototype
discovery process is critical for enabling tractable feature importance mining
(Section 3.2). In particular, performing an exhaustive feature importance
mining against n images has a complexity of O(n2), whilst our approach
takes O(K2) given K prototypes, where K � n.

We treat the prototype discovery problem as a graph partitioning
problem, which requires us to first estimate the pairwise similarity between
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images and construct a similarity matrix for the training dataset. For
addressing this problem, instead of using conventional Euclidean distance
based similarity measure, we exploit a clustering random forest of a cascaded
model for similarity matching (Breiman, 2001; Liu et al., 2000). This is
because that a clustering forest can (1) avoid manual definition of distance
function since the pairwise affinities are defined by the tree structure itself,
and (2) select implicitly and automatically optimal features via optimisation
of the well-defined clustering information gain function (Breiman, 2001).
This property is desired to ensure noisy and possibly redundant feature
variables to play a lesser role in constructing the pairwise similarity matrix,
also referred to as an affinity matrix in the following.

A clustering forest is an ensemble of Tcluster clustering trees (Figure 2(c)).
Each clustering tree t defines a partition of the input samples x at its leaves,
l(x) : RD → L ⊂ N, where l represents a leaf index and L is the set of all
leaves in a given tree. For each tree, we compute an n×n affinity matrix At,
with each element At

ij defined as

At
ij = exp−dist

t(xi,xj), (2)

where

distt (xi,xj) =

{
0 if l(xi) = l(xj)

∞ otherwise
. (3)

Following Eqn. (3), we assign the closest affinity=1 (distance=0) to samples
xi and xj if they fall into the same leaf node, and affinity=0 (distance=∞)
otherwise. To obtain a smooth forest affinity matrix, we compute the final
affinity matrix as

A =
1

Tcluster

Tcluster∑

t=1

At, (4)

and construct a normalised affinity matrix as

L = D−1/2AD−1/2,where Dii =
∑n

j=1Aij. (5)

We adopt a self-tuning spectral clustering method (Perona and Zelnik-Manor,
2004) to partition the weighted graph into K prototypes, with the model
order K being estimated automatically through analysing the eigenvectors
of the normalised affinity matrix L (Perona and Zelnik-Manor, 2004; Xiang
and Gong, 2008). Subsequently, each unlabelled training probe image {Ii}
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is assigned as a member of a prototype ci as shown in Figure 2(e). More
examples of prototypes are given in Figure 6 to 8.

It is worth pointing out that there is no guarantee that in clustering only
a single cluster or prototype contains a particular appearance attribute. The
reason is that we are characterising persons whose appearance are likely be
partially similar with others. Therefore we do not expect the automatically
discovered clusters or prototypes to be totally different at each member. In
practice, we would discover a few distinct clusters, each of which contains
members that are consistent in appearance. Inevitably, we would also obtain
some other clusters that house images which are less representative in a given
dataset. As such, the purity of the obtained classes cannot be guaranteed.
Nevertheless, empirically we found that the presented application is not
sensitive to the uniqueness and purity constraints.

3.2. Quantifying Feature Importance of Prototypes

As discussed in Section 1, unlike the generic feature importance that is
assumed to be universally good for all people under all viewing conditions,
bottom-up probe-specific feature importance is designed to be specific to
a person characterised by his/her unique appearance attributes undergone
viewing condition changes. To achieve that, we first compute the feature
importance revealed for each prototype driven by the shared attributes
among the images clustered into this prototype. Then we determine for
a given probe image its feature importance according to its mixture of
memberships among the prototypes (Figure 2(g)).

We consider that each prototype c has its own attribute-sensitive
weighting wc = (wc

1, . . . , w
c
D)T, of which high value is assigned to unique

features of that prototype. For example, in the first prototype shown in
Figure 2(e), colour features gain higher weights, reflecting higher feature
importance, than others since the members in the prototype exhibit richer
appearance with bright colour but relatively lesser expression in texture as
compared to other prototypes. It is not difficult to see that allocating higher
weights to the colour features allows us to better distinguish this prototype
from the others.

Based on this principle, we wish to compute the importance of a feature
according to its ability in discriminating different prototypes. Specifically,
we train a classification random forest (Breiman, 2001) using {x} as inputs
and treating the associated prototype labels {c} as classification outputs
(Figure 2(f)). For each tree t, we reserve 1

3
of the original training data
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as out-of-bag (oob) validation samples. First, we compute the classification
error εc, td for every dth feature in prototype c. Then we randomly permute
the value of the dth feature in the oob samples and compute the ε̃ c, t

d on the
perturbed oob samples of prototype c. The importance of the dth feature of
prototype c is then computed as an error gain

wc
d =

1

Tclass

Tclass∑

t=1

(ε̃ c, t
d − εc, td ), (6)

where Tclass is the total number of trees in the classification forest. Higher
value in wc

d indicates higher importance of the dth feature in prototype c.
Intuitively, the dth feature is important if perturbing its value in the samples
causes a drastic increase in classification error gain, which suggests its critical
role in discriminating different prototypes.

3.3. On-The-Fly Feature Importance Inference

In the previous step we compute the feature importance wc for each
prototype c but not for a specific individual’s probe image. In this section,
we explain our approach for computing the bottom-up feature importance
for an unseen probe image on-the-fly driven by its appearance (Figure 2(h)).

Firstly, we extract a feature vector, xp to represent the unseen image. We

then determine its mixture of memberships to prototypes, λ = (λ1, . . . , λK)
T

by classifying xp using the classification forest learned in the previous step
(see Section 3.2).

λc =
1

Tclass

∑Tclass

t=1
pt(c|xp), (7)

where pt(c|xp) represents the posterior of tree t. The λc represents the average
frequency of the given xp being assigned to prototype c across all the trees.
The mixture of prototype memberships realistically reflects the fact that each
individual is a multi-mode composition of various visual characteristics.

Given the mixture of prototype memberships, λ, we propose two methods
to obtain the bottom-up feature importance for the unseen probe image:

Prototype-Specific Feature Importance (PSFI)2: The feature impor-
tance of xp is defined as:

w̃p = (wc∗ | c∗ = argmax
c∈{1,...,K}

λc). (8)

2This method was presented in our earlier version of this work (Liu et al., 2012a).
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Individual-Specific Feature Importance (ISFI): The feature impor-
tance of xp is defined as:

w̃p =
∑K

c=1
λcwc. (9)

In PSFI an individual is assumed to be directly associated to one single
prototype. This assumption may be too restrictive since different individuals
would have different appearance attributes though the differences can be
subtle. The ISFI relaxes this assumption. Specifically, each person is allowed
to hold different degrees of membership to all the prototypes. In comparison
to PSFI, the ISFI offers further intuitions about what features are unique for
each specific individual.

3.4. Feature Importance in Re-Identification Ranking

To obtain the matching ranks of xp against a gallery of images, we
compute a feature importance weighted `1-norm distance between xp and
a feature vector of the jth gallery image xg

j as follows

dist(xp,xg
j ) = ‖(w̃p)T|xp − xg

j |‖1, (10)

where w̃p is computed by either Eqn. (8) or Eqn. (9). The ranks are obtained
by sorting dist(xp,xg

j ) in a ascending order, that is a smaller distance results
in a higher rank (higher visual similarity).

3.5. Fusion with Generic Feature Importance

Contemporary methods (Prosser et al., 2010; Zheng et al., 2013) learn a
generic weight function a priori (i.e. off-line) assuming the stability of feature
elements across cameras. We now investigate possible benefit in improving
re-identification accuracy from the fusion of the proposed bottom-up feature
importance vector w̃p, and a top-down generic feature weight matrix V
obtained from Prosser et al. (2010) and Zheng et al. (2013).

The main objective of fusion is to combine the benefits of both ap-
proaches. In particular, the top-down approach is capable of capturing the
global environmental viewing condition changes which cannot be derived
from the unsupervised bottom-up method discussed so far; whereas the
proposed bottom-up approach discovers valuable salient information specific
to individual.
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To take advantages of both approaches, we adopt a weighted sum method
as follows

distfusion(xp,xg) = α‖(ẅp)T|xp − xg|‖1 + (1− α)‖VT|xp − xg|‖1, (11)

where α is a parameter that controls the weight between the top-down and
bottom-up feature importances, and ẅp is a post-processing of w̃p. The
details are given in the following paragraph.

We observe that instead of using the original weight values of w̃p as it
is for fusion, selectively keeping its high weights while suppressing the less
prominent weights lead to a more robust fusion. The reason of doing this
is intuitive: (1) preserving the most salient features that are stable across
camera views, and (2) suppressing the weights of the remaining features in
w̃p allows us to discard less discriminative features during fusion, so that
their weighting can be fully handled by top-down generic feature weight
matrix V, which is more robust in coping with global viewing condition
changes. To that end, we employ a maximal-weight selection function M to
automatically adapt the weight values of w̃p, that is M : w̃p → ẅp ∈ RD. In
particular, for each spatially local segment of a person image (see Figure 3),
we retain the feature channel with the largest weight, whilst suppress the
weight values of other feature channels to 0 in w̃p. Note that the maximal-
weight selection is not performed when using PSFI/ISFI alone without the
merits from supervision.

We shall show in the following experiments that such a combined feature
importance distance measure can improve both unsupervised bottom-up
feature importance mining from on-the-fly individual visual appearance
changes and supervised top-down generic feature importance weighting
learned off-line from a labelled dataset between camera views.

4. Experiments

A primary aim of this study is to investigate what features are important
in different circumstances – a comprehensive evaluation on this is presented
in Section 4.2. Next, we present the results from automatic unsupervised
prototype discovery in Section 4.3. We then compare in Section 4.4 different
feature importance measures computed by the unsupervised bottom-up
solution and two top-down generic feature importance weighting methods,
which are RankSVM (Prosser et al., 2010) and PRDC (Zheng et al., 2013).
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Figure 3: An example to show maximal-weight selection. (a) input image; (b) strip
partition; (c) bottom-up feature importance; (d) after maximal-weight selection.

And we evaluate the fusion of the bottom-up and generic feature importance
mining methods in Section 4.5 . Finally we present the sensitivity tests of
several critical parameters in Section 4.6.

4.1. Experimental Settings

Datasets - Three publicly available person re-identification benchmark
datasets were used for our experiments, including VIPeR (Gray and Tao,
2008), i-LIDS Multiple-Camera Tracking Scenario (i-LIDS) (Zheng et al.,
2009) and QMUL underGround Re-IDentification (GRID) (Loy et al., 2010).

• VIPeR: The dataset contains 632 persons, each of which has two images
captured in outdoor views. The dataset is challenging due to drastic
appearance difference between most of the matched image pairs caused
by viewpoint variations and large illumination changes at outdoor
environment.

• i-LIDS : The dataset was captured in a busy airport arrival hall using
multiple cameras. It contains 119 people with a total of 476 images,
with an average of four images per person. Apart from the illumination
changes and pose variations, many images in this dataset are also
subject to severe inter-object occlusion.

• GRID : The challenging GRID dataset was captured from 8 disjoint
camera views installed in a busy underground station. It is divided
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into a probe and a gallery sets. The probe set contains 250 person,
whilst the gallery set contains 1025 person in which an additional 775
persons were collected who do not match any images in the probe set.
The dataset is challenging due to severe inter-object occlusion and large
viewpoint variations.

Feature representation - We employ a mixture of colour and texture
histograms similar to those employed in (Prosser et al., 2010; Zheng et al.,
2013; Mignon and Jurie, 2012; Liu et al., 2012a; Hirzer et al., 2012).
Specifically, we divide an image of a person equally into six horizontal stripes
to roughly capture the head, upper and lower torsos, and leg regions (see
Figure 3(b)). Alternatively, one can segment an image into patches with
smaller size to conduct a finer-scale part-based search. We consider eight
colour channels (RGB, HSV and YCbCr)3 and 21 texture filters (8 Gabor
filters and 13 Schmid filters) applied to the luminance channel. Then in
each stripe feature extracted from each channel is represented by a 16-
dimensional histogram. Concatenating all the feature channels results in
2784-dimensional feature vector for each image. Note that our method is
not restricted to the aforementioned feature representation. Other more
elaborative features can be readily used, such as the covariance feature (Bak
et al., 2010b, 2011), Haar (Hirzer et al., 2011), maximally stable colour
regions (Farenzena et al., 2010), and epitome features (Bazzani et al., 2012).

Evaluation - For each dataset, we select images of p person to build the
test set, and the remaining as validation and training partitions. In the test
set of each trial, we choose one image from each person randomly to set up
the test gallery set and the remaining images are used as probe images. The
testing process is as follows: given a probe set and a gallery set, each image
of the probe set is matched with the images of the gallery. Thus, a ranking
for every image in the gallery with respect to the probe is obtained.

We quantify re-identification performance using three standard measures,
i.e.matching rate at rank-r, cumulative matching characteristic (CMC) curve
(Gray and Tao, 2008), and area under the CMC curve (AUC). Matching rate
at rank r measures the expectation of finding the correct match in the top r
matches. The CMC curve plots this value for all r and AUC summarises the

3Since HSV and YCbCr share similar luminance/brightness channel, dropping one of
them results in a total of 8 channels.
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Figure 4: In each subfigure, we show a probe image and the groundtruth target image,
together with the rank of correct re-identification matches by using different isolated
feature types respectively.

curve: higher AUC is better. In our experiments all reported performance is
averaged over 10 trials.

4.2. Comparing Feature Effectiveness for Re-ID

We consider that certain features are more important than others in
describing an individual and distinguishing him/her from other people. To
validate this hypothesis, we analyse the matching performance of using
different features individually.

We first provide some visual examples in Figure 4 (also presented in
Figure 1) to compare the ranks returned by using different feature types.
It is observed that no single feature type is able to constantly outperform
the others. For example, for individuals wearing textureless but colourful
and bright clothing (Figure 4 (a), (d) and (g)), the colour features yielded
a higher rank. For person wearing clothing with rich texture (Figure 4 (b),
(e), (f) and (h)), logo (e.g.Figure 4(c)) or backpack (e.g.Figure 4(i)), texture
features especially the Gabor features tend to dominate. These examples
indicate that certain features can be more informative than others given
different appearance attributes.

A more complete evaluation on the effects of different features on re-
identification performance is presented in Figure 5. In general, HSV and
YCbCr colour features exhibit very close performances, and are much
superior over all other features. The Schmid texture feature is least effective
when used alone. This observation of colours being the most informative
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Figure 5: The CMC performance comparison of using different features on the VIPeR,
i-LIDS, and GRID datasets. ‘Concatenated Features’ refer to the concatenation of all
feature histograms with uniform (i.e. identical) weighting. In the ‘Best Ranked Features’
strategy, ranking for each individual is selected based on the best feature that returned
the highest rank during matching.
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features supports similar conclusions drawn from early studies (Gray and
Tao, 2008).

One may consider concatenating all the features together, assuming
that different features could complement each other leading to better
performance. Nevertheless, we found that naively concatenating all the
feature histograms with uniform (identical) weighting does not necessary
yield a better performance, and sometimes even worse than using a single
feature type, as shown by the ‘Concatenated Features’ performance in
Figure 5. These results suggest a more selective feature weighting is necessary
based on the level of informative of each feature variable.

In the ‘Best Ranked Features’ strategy, the final rank is obtained by
automatically selecting the best feature that returned the highest rank for
each individual, e.g. selecting HSV feature for Figure 4(a) whilst choosing
Gabor feature for Figure 4(c). As expected, the ‘Best Ranked Features’
strategy yields the best performance, i.e. 13.97%, 11.31% and 14.31%
improvement of AUC on the VIPeR, i-LIDS, and GRID datasets, respectively,
in comparison to the ‘Concatenated Features’.

This verification demonstrates that for each individual in most cases there
exists certain type of features (or the ‘Best Ranked Feature’) which can
achieve a high rank, and selecting such ‘Best Ranked Feature’ is critical to
a better matching rate. Based on the analysis from Figure 4, these ‘Best
Ranked Features’ generally show consistency with the appearance attributes
for each individual. Therefore, the results suggest that the overall matching
performance can potentially be boosted by weighting features selectively
according to the inherent appearance attributes.

4.3. Evaluation of Prototype Discovery

To weigh features selectively in accordance to the individual appearance
attributes and to achieve efficient bottom-up feature importance mining, our
method first discovers prototypes, i.e. low-dimensional manifold clusters that
model similar appearance attributes.

To enrich the diversity of appearance characteristics available for more
robust prototype discovery, we borrow additional unlabelled samples from
different data sources so that the training set size of each dataset achieves 700.
The additional images of VIPeR and i-LIDS are borrowed from each other to
make up the balance, since the illumination and viewpoint of both datasets
are similar. For the GRID dataset, the additional images are obtained from
other camera views in the same underground station. Different datasets

18



Example members in each prototype

P
ro

to
ty

p
e 

in
d
ex

1

2

3

4

5

6

7

8

9

10

11

Figure 6: Examples of prototype discovered in VIPeR dataset with some unlabelled images
borrowed from i-LIDS. Each prototype represents a low-dimensional manifold cluster that
models similar appearance attributes. Each image row in the figure shows a few examples
of images in a particular prototype, with their interpreted unsupervised attributes listed
as follows:(1) dark coat, dark trousers, side pose; (2) dark coat, with luggage (3) bright
shirt with texture; (4) jeans; (5) colourful jacket with texture, bright trousers; (6) colrful
shirt, with bag; (7) dark trousers, side pose; (8) dark coat, dark trousers; (9) dark shirt,
bright trousers, back pose; (10) colourful shirt, jeans, side pose; (11) bright shirt, dark
trousers.
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Figure 7: Examples of prototype discovered in i-LIDS dataset with some unlabelled images
borrowed from VIPeR. Their interpreted unsupervised attributes listed as follows: (1)
dark coat with luggage; (2) colourful shirt, jeans; (3) dark coat, dark trousers, side pose,
with backpack; (4) dark coat; (5) colourful jacket, dark trousers; (6) bright jacket with
texture; (7) bright shirt, bright jeans; (8) dark jacket with texture; (9) shirt with texture,
dark trousers; (10) colourful shirt; (11) colourful shirt with texture; (12) shirt with stripe
pattern.

inherently contain different number of prototypes. Our method described
in Section 3.1 automatically discover the numbers as 11, 12, 11 for VIPeR,
i-LIDS and GRID respectively. We set the number of trees in our model
as Tcluster = Tclass = 200. The minimum forest node size, which implicitly
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Figure 8: Examples of prototype discovered in GRID dataset, with their interpreted
unsupervised attributes listed as follows: (1) dark coat, dark trousers, with backpack;
(2) bright shirt, dark trousers, with backpack; (3) colourful shirt with texture; (4) bright
shirt, bright trousers; (5) white shirt, dark trousers, back pose; (6) colourful shirt; (7)
dark coat, dark trousers; (8) bright trousers; (9) colourful shirt, dark trousers; (10) bright
shirt, dark trousers; (11) bright shirt with texture.

influences the depth of each tree in the forest, is set to 1. From our sensitivity
tests presented in Section 4.6, we observe that the final re-identification
performance is not sensitive to the setting of these forests’ parameters.

Some examples of prototype discovered on the VIPeR, i-LIDS, and GRID
datasets are depicted in Figures 6, 7 and 8. Each colour-coded row represents
a prototype. A short list of possible attributes discovered in each prototype
is given in the figure caption. Note that these inherent attributes are
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neither pre-defined nor pre-labelled, but automatically discovered by the
unsupervised clustering forest in our cascaded model. As shown by the
example members in each prototype, images with similar attributes are
categorised into the same cluster. For instance, a majority of members
in the 5-th prototype of VIPeR can be characterised with bright and high
contrast colour appearance. In the first prototype of VIPeR, the key
attributes are ‘carrying backpack’ and ‘side pose’. Similar visual consistency
in prototype can be observed in the i-LIDS and GRID datasets. Note that
some prototypes, however, have lower purity as they also accommodate
images whose appearance are less representative and frequent in the dataset.

In general, the results demonstrate that our method is capable of
generating reasonably good clusters of inherent attributes, which can be
employed in subsequent step for bottom-up feature importance mining.

4.4. Bottom-up versus Top-down Generic Feature Importance

It is interesting to first analyse which features are regarded as important
by different importance measures. In the following experiment we compare
the feature importance measures produced by two generic feature importance
(GFI) methods, i.e. the RankSVM (Prosser et al., 2010) and the PRDC
(Zheng et al., 2013) (see Section 2 for details), and the bottom-up feature
importance mining method. The GFI-based approaches are trained using
labelled images, and the results are averaged over 10-fold cross validation.
We fix the penalty parameter in RankSVM to 100 and used the default
parameter values for PRDC as in Zheng et al. (2013) for all the datasets.

Figure 9 shows examples to highlight the feature importance values
discovered by different methods at different body regions. On the left-most
pane we show the feature importance discovered by both the RankSVM and
PRDC4, followed by that inferred by ISFI in the middle-pane, and PSFI in
the right-most pane. Each region in the silhouette/actual images are masked
with the labelling colour of the most dominant feature type. In the feature
importance plot, we show in each region the importance of each type of the
features, of which the values are derived by summing the weight of all the
histogram bins that belong to this type.

We first compare the top-down generic feature importance with the
bottom-up feature importance, i.e. PSFI and ISFI. In general, the GFI

4For PRDC, we only show the first orthogonal projection learned by the algorithm,
i.e. the most dominant feature importance.
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Figure 9: Examples of comparison of the generic feature importance/weights by
RankSVM (Prosser et al., 2010) and PRDC (Zheng et al., 2013) against the bottom-up
feature importance mining.
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methods emphasise more on the colour features for all the regions, whereas
the texture features are assigned higher weights in the leg region than the
torso region. The same feature importance assignment is applied equally
to all images regardless the appearance of individuals. In contrast, the
bottom-up feature importance discovered by both the PSFI and ISFI are
more attribute-sensitive. For example, for image regions with bright and
distinct colour appearance, e.g. Figure 9(a)-3&4 and Figure 9(b)-1&2, the
colour feature types in the torso region are allocated higher weights than the
texture feature types. For image regions that exhibit rich texture pattern,
such as Figure 9(a)-1 with stripes on the jumper, Figure 9(b)-4 with floral-
skirt, the relative importance of texture features increases. For instance, in
Figure 9(b)-4, the weight of the Gabor feature type in the forth region is
12.37% higher than that observed in the second region.

We analyse subsequently the differences between PSFI and ISFI. Note
that in each row of Figure 9 we show two example members from a particular
prototype in the middle pane and the associated feature importance of that
prototype, that is the PSFI in the right-most pane. As revealed by the
selected example pairs from the same prototype, although the PSFI is capable
of assigning higher weight to certain common attributes, such as bright shirt
(e.g. Figure 9(a)-3&4) or bright coat (e.g. Figure 9(b)-1&2), it is not able
to distinguish further those examples in the same prototype. For instance,
PSFI fails to discover the fact that the third region of Figure 9(b)-1 has more
structured texture pattern than that of Figure 9(b)-2. In contrast, the ISFI
is marginally better in mining the subtle uniqueness of specific individual,
as it is able to assign higher weight to the texture feature type in the third
region of Figure 9(b)-1.

4.5. Further Evaluations

Evaluating bottom-up feature importance: As shown in Table 1,
in comparison to the baseline uniform weighting method, the bottom-up
feature importance mining gives improved matching rate on all the datasets.
The improvements on both the VIPeR and GRID datasets are statistically
significant at 5% significance level 5. Owing to the better capability of

5We employ Wilcoxon signed-rank test in all the significant tests in this paper. In
particular, we quantify the improvement significance in terms of the AUC of top 30 ranks.
In general, performance gains on these top ranks are regarded important in person re-
identification application.
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Table 1: Comparison of top rank matching rate (%) on VIPeR, i-LIDS and GRID datasets,
between PSFI/ISFI and uniform weighting method. r is the rank and p is the size of gallery
set. We use a superscript ∗ beside the dataset on which the improvements are statistically
significant.

Method VIPeR(p=316)∗ i-LIDS(p=50) GRID(p=900)∗

r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

Uniform weight 9.43 20.03 27.06 34.68 30.40 55.20 67.20 80.80 4.40 11.68 16.24 24.80
PSFI 10.32 23.10 32.18 45.57 30.40 56.20 68.00 81.60 4.96 14.32 20.24 26.56
ISFI 10.63 24.02 32.18 44.40 30.20 57.00 67.60 82.00 5.20 14.80 20.32 26.56

Table 2: Comparison of top rank matching rate (%) on VIPeR, i-LIDS and GRID datasets,
between the generic feature weighting and the combination methods. r is the rank and p is
the size of gallery set. We use a superscript ∗ beside the dataset on which the improvements
are statistically significant. Note that on GRID dataset only the improvements from the
combinations of PRDC are statistically significant.

Method VIPeR(p=316)∗ i-LIDS(p=50)∗ GRID(p=900)∗

r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20 r=1 r=5 r=10 r=20

RankSVM 14.87 37.12 50.19 65.66 29.80 57.60 73.40 84.80 10.24 24.56 33.28 43.68
PSFI+RankSVM 15.76 38.70 51.36 66.84 32.60 60.00 73.40 86.40 10.32 25.36 33.52 43.84
ISFI+RankSVM 16.46 38.76 51.36 67.18 31.60 58.40 73.80 86.40 10.72 24.56 33.52 44.16

PRDC 16.01 37.09 51.27 65.95 31.40 57.00 70.20 83.00 9.68 22.00 32.96 44.32

PSFI+PRDC 16.99 38.10 52.37 66.84 33.60 60.80 73.00 85.60 10.24 23.44 34.80 45.44
ISFI+PRDC 17.12 38.96 52.94 67.34 35.00 59.80 72.80 85.00 9.60 23.04 33.92 46.08

representing uniqueness of specific individual, the performance of ISFI is
better to that obtained by using PSFI, as indicated by the relative increase
of ∼2.5% in rank 1 matching rate averaged across all three datasets.

Note that we borrow unlabelled images from different external data
sources to facilitate the prototype discovery process (see Section 4.3). With-
out the additional unlabelled data, the unsupervised prototype clustering
suffers from insufficient data for capturing the statistics of the population.
In particular, we observe a performance drop of 7.26% and 3.55% in AUC
of PSFI and ISFI, respectively, when no additional unlabelled data is used.
The results suggest that PSFI and ISFI can greatly benefit from the freely
available unannotated samples, even from different data sources.

Evaluating the fusion of top-down and bottom-up feature impor-
tance: In this experiment we evaluate the fusion of top-down and bottom-up
feature importance (Section 3.5). We use a separate validation partition to
obtain the value of α in Eqn. (11). In particular, the values are set to 0.2, 0.4,
0.2 for VIPeR, i-LIDS, and GRID respectively. We shall provide sensitivity
test on this parameter in Section 4.6.
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Figure 10: α sensitivity test. (a) Combination of ISFI and RankSVM on the VIPeR
dataset; (b) Combination of ISFI and PRDC on the VIPeR dataset.

Table 2 summarises the results. It is evident from the table that the
proposed fusion approach improves the RankSVM and PRDC baselines.
In particular, the improvements yielded by all combination variants are
statistically significant at 5% significance level, except the combinations
with RankSVM on the challenging GRID dataset (despite higher averaged
matching rates are observed).The relatively limited improvement may be
caused by the nature of the GRID dataset, in which many people tend to wear
clothing with similar style and colour. This largely increases the difficulty in
discovering meaningful and distinctive prototypes, leading to poorer weight
estimation in both PSFI and ISFI. Adopting more elaborative features may
overcome this issue.

It is evident that on their own the top-down supervised generic feature
weighting outperform bottom-up unsupervised feature importance mining.
However, a combined weighting (Eqn. (11)) improves both models. This
suggests that the benefits from top-down and bottom-up feature importance
to re-identification are not exclusive and can play a complementary role.

4.6. Pre-processing and Parameter Sensitivity Test

Parameter for combining top-down and bottom-up feature impor-
tance α: Figure 10 shows the sensitivity test results of α (see Eqn. 11) on
the VIPeR dataset. The AUC ratio with respect to a specific value of α is
computed by dividing the area under the CMC curve top 30 ranks obtained
from the combined measure by that obtained when we set α = 0 (i.e. only
GFI is activated). The higher ratio indicates a better performance of the
combined feature importance weighting (Eqn. (11)). These results show that
setting α in the range of [0.1, 0.3] generally improves both top-down and
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Figure 11: The effect of applying maximal-weight selection scheme when combining
bottom-up and top-down feature importance. We compare the performance between
ISFI+PRDC with and without applying the scheme, in terms of AUC improvement over
the baseline PRDC.

bottom-up feature importance weighting on the VIPeR dataset. Similar α
sensitivity test results are observed on i-LIDS and GRID datasets, where the
best ranges are [0.3, 0.6] and [0.1, 0.3], respectively.

Note that setting a small α implies a high emphasis on the global weight
derived from supervised learning. This is reasonable since performance gain
in re-identification still has to rely on the capability of capturing the global
viewing condition changes, which requires supervised weight learning.

Evaluating the effect of maximal-weight selection: This scheme
automatically adapts the original weight values of w̃p for more robust fusion
(see Section 3.5). In Figure 11, we compare ISFI+PRDC with and without
applying the scheme, in terms of their respective AUC improvement over the
baseline PRDC method. Clearly while ISFI+PRDC with the maximal-weight
selection rarely performs worse than that without selection, the potential
improvement is in general promising. We observe similar results on other
ISFI/PSFI and RankSVM/PRDC combinations.

Forest parameters for prototype generation: We evaluate the sensitivity
of the number of trees Tcluster, node size in the clustering forest, and the
number of prototypes K during the prototype generation, using the CMC
curve of ISFI as our performance measure and VIPeR as the test dataset.
As shown in Figure 12(a), only a slight performance increase is obtained
from introducing more trees to the forest, at a price of higher computational
burden. The re-identification performance is equally insensitive to the node
size and the number of prototypes as shown in Figures 12(b) and (c).

Pre-processing with foreground mask: In our experiment, the features
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Figure 12: Sensitivity of parameters in prototype generation, including (a) the number
of trees and (b) the node size in the clustering forest, and (c) the number of clusters or
prototypes.
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Figure 13: The effect of foreground mask on recognition performance on VIPeR. (a) (left):
probe image without mask; (right): probe image with mask. (b) CMC curves of PSFI and
ISFI.

are extracted from the whole image to ensure consistency with the experi-
mental settings applied in both Prosser et al. (2010) and Zheng et al. (2013).
This is also stemmed from a practical consideration that finding accurate
foreground regions is non-trivial in real-world scenario. However, intuitively
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the features, and subsequently the prototypes, would be less influenced by the
background region if the feature extraction is performed on the human body
with a foreground mask imposed. To evaluate this assumption, we applied
an ellipsoid mask and treated the internal region of the ellipse as foreground
area, as shown in Figure 13(a). Alternatively, other segmentation techniques
such as STEL (Jojic et al., 2009) can be used to discard the background.
The same testing protocol is adopted as described in Section. 4.1. As shown
in Figure 13(b), both the ISFI and PSFI methods enjoy an increase of
performance when such a generic foreground mask is applied.

5. Discussion and Conclusion

In this study, we have shown that certain appearance features can be
more important than others in describing an individual and distinguishing
him/her from other people. To that end, we proposed a novel method based
on a cascaded clustering-classification random forest to perform unsupervised
bottom-up feature importance mining driven by unsupervised appearance
attribute-based prototype clustering. This approach complements existing
person re-identification studies that focus on top-down supervised learning
of generic feature weighting.

Experimental results on three benchmark datasets show a tangible
indication that instead of biasing all the weights to features that are assumed
universally good for all individuals (to compensate and reflect the stability
of each feature component across two cameras), computing selective feature
weighting on-the-fly for each probe image can improve re-identification.

Importantly we found that the effectiveness of unsupervised bottom-up
feature importance mining is dependent on both the quantity and quality
of the unlabelled training data, in terms of the available size of the training
data and the diversity of appearance attributes, i.e. sufficient and non-biased
sampling of large diversity in population appearance in the training data
can benefit significantly bottom-up feature importance mining for person
re-identification. Firstly, as shown in the experiment, sufficient number of
unlabelled data is desired to generate robust prototypes. Secondly, it would
be better to prepare a training set of unlabelled images that cover a variety of
different prototypes, in order to have non-biased contributions from different
feature types.

The results from this work raise an interesting question for further study,
what is the best mechanism for unsupervised bottom-up feature importance
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mining? In this study, our approach explored explicitly unsupervised
prototype discovery and classification error gain as the basis for bottom-
up feature importance mining. Other alternatives can also be explored, e.g.
exploiting different error gain measures such as outlier score from a large
reference image set. Future work can also include the investigation of better
feature selection fusion strategies for combining top-down generic weighting
and bottom-up feature importance mining.
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