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Abstract—In spite of the popularity of password-based 
authentication method, there are many inherent flaws with this 
approach. To minimize the risk of intrusion, typing biometrics 
can be used to complement and strengthen this popular 
authentication method. In this paper we investigate how 
keystroke pressure is used to strengthen the security of 
traditional password-based authentication system, and 
compare its performance with that of the conventional timing-
based keystroke technique. The paper also investigates the use 
of combined keystroke pressure and latency for the verification 
process. The performances of several classification methods in 
user authentication, namely Multilayer Perceptron (MLP), 
Logistic Regression (LR), Fuzzy ARTMAP (FAM) neural 
networks, and a statistical approach, are studied and 
compared. Although keystroke latency gives better results than 
keystroke pressure, a combination of both techniques yields 
the best performance, with the False Acceptance Rate (FAR) of 
0.87% and the False Rejection Rate (FRR) of 4.4%.  

I. INTRODUCTION 
Computer systems are now used in almost all aspects of 

our life. Personal computers have evolved from single-user 
systems to multi-user networks spanning national and 
international territories, and even expanding to advanced grid 
network with large scale sharing of computer resources, such 
as computational power and databases. Hence, the increasing 
degree to which confidential and proprietary data can be 
stolen makes security a foremost concern in today's age of 
technology. 

Password mechanisms have been, and probably will 
remain, as the primary method of user authentication in web-
based or traditional computer access terminals. Ironically, 
password authentication is an inexpensive, convenient and 
familiar paradigm that most operating systems support. 
Unfortunately, static identification and authentication seems 
to be inadequate to protect computer resources from 
malicious attacks and intrusions, since passwords can be 
easily cracked, guessed, stolen or deliberately shared. To 
remedy these potential security weaknesses, more robust 

safeguards or strategies are needed against unauthorized 
access to computer resources. 

Typing biometrics is one alternative biometric 
technology in the computer security arena. As the name 
implies, it is an automated biometric method that analyzes 
the way a person types on a keyboard. The concept of typing 
biometrics we are using here is basically adding another 
protection layer to the current password system. The premise 
behind this protection layer is that each person exhibits a 
distinctive pattern and cadence of typing. Therefore, unless 
the imposter has the ability to replicate or imitate exactly the 
authorized user’s typing patterns, it would be very difficult 
for the imposter to gain full access to the computer 
resources, even if the imposter is able to guess the correct 
password. 

Previous research [1–3] has shown that it is possible to 
identify a user based on his or her keystroke latency patterns 
with a high level of accuracy. In this paper we investigate 
how keystroke pressure (the amount of force exerted on each 
key pressed) may be used to reinforce the system’s security. 
In order to measure the forces exerted during typing, we 
developed a pressure-sensitive keyboard system that allows 
us to acquire keystroke pressure [4].  

Based on the data collected from keystroke pressure, we 
compare the performance among four different classification 
methods, namely statistical approach, Multilayer Perceptron 
(MLP), Logistic Regression (LR), and Fuzzy ARTMAP 
(FAM) neural networks. The results obtained are then 
compared with that of the conventional keystroke timing-
based technique. Apart from that, we investigated the 
combination of keystroke pressure and keystroke latency in a 
single profile in order to achieve a higher accuracy rate. 

The organization of this paper is as follows. First, an 
explanation of the procedures for setting up the experiment is 
provided in Part II. In Part III, the classification methods 
used in this paper are described. Next, the results are 
discussed in Part IV.  Finally, the paper concludes with some 
recommendations for further investigation in Part V. 



II. EXPERIMENTAL SET-UP 

A.  Data Collection 
A special keyboard system with pressure sensors adhered 

underneath the keys was used to monitor the typing patterns. 
Analogously, the pressure sensor acts like a variable resistor 
where its resistance changes in accordance to the amount of 
force that each user applies when he or she types. A force-to-
voltage circuit was used to convert the keystroke pressure to 
discrete voltage-time signals. The signals were then sent to 
the computer through data acquisition hardware.  

A total of 10 computer-literate users participated in the 
experiment. Note that the participants were not informed of 
the data collection strategy. Initially, each participant had to 
register his or her user name and password with the system. 
All participants were requested to enter the same password 
since the objective is to determine if one user could be 
identified and differentiated from the other, as well as from 
the whole group. The password was “try4-mbs”. It was 
chosen because it is more than 8 characters in length 
combining symbols, numbers and letters. Participants have 
been asked to practise typing the password until they are 
familiar with it prior to the actual experiment several days 
beforehand. A new user went through a session where he or 
she typed the password for 15 times under conditions 
simulating the actual login environment. 

Generally, a user’s typing pattern will stabilize as his/her 
fingers become accustomed to the keys of the authentication 
string (consisting of the account name and password) being 
entered. The more times a user enters the same password, the 
less fuzzy the typing pattern becomes [1]. In order to obtain a 
more consistent typing pattern from the user, all data from 
the first five trials were eliminated. Only the next ten trials 
were used.  

As a result, a database of 10 user profiles was 
constructed. Each user profile composed of 10 samples of 
keystroke latency as well as 10 samples of keystroke 
pressure. Keystroke latency was measured in milliseconds, 
whereas keystroke pressure was measured in volts ranging 
from 0 to 10 volts in the form of time discrete signal. 

B. Keystroke Pressure Signal Transformation 
Features based on frequency domain analysis play a 

significant role in this application. From preliminary 
observations, some user’s keystroke pressure may be seen in 
some frequency band as a higher amplitude level, whereas in 
others, the amplitude level is higher in the some of the 
frequency bands.  

In our study, the pressure discrete time signals were 
transformed into the frequency domain by using a Fast 
Fourier Transform (FFT). The resulting outputs contained 
both the magnitude and phase information. Only the 
magnitude information is used for subsequent feature 
extraction. Note that the pressure signal transformation and 
feature extraction described in the next section are not 
applicable to the statistical approach. 

C. Feature Extraction 
Each of the typing patterns to be classified should have 

certain features that are unique in order to achieve 
satisfactory classification accuracy. This plays a very 
important role in accurately identifying the legitimate user by 
the classifier. Badly implemented feature extraction or 
improper features selected will probably lead to poor 
classification results even by using the best possible 
classifier. After some careful examination, features to be 
extracted from the frequency domain signal of keystroke 
pressure are determined and they are shown in Table I. 

TABLE I.  FEATURES EXTRACTED FROM THE FREQUENCY 
DOMAIN SIGNAL OF KEYSTROKE PRESSURE 

No. Name of Feature No. Name of Feature 
1 Arithmetic mean 6 Fundamental frequency 
2 Root mean square 7 Energy 
3 Peak 8 Kurtosis 
4 Signal in noise & distortion 9 Skewness 
5 Total harmonic distortion   

 

D. Data Pre-processing 
In order to reduce the influence of outliers which are not 

representative of the user’s typing pattern, the data for each 
profile was pre-processed [1, 2]. Firstly, for both keystroke 
pressure and latency, the mean and standard deviations of 
each feature in the profile were computed. Next, each feature 
was then compared with its respective mean and any 
measurements that differ by more than T standard deviations 
from the mean (i.e. outliers), would be discarded and 
replaced with the mean value instead. The threshold is 
presently defined as the mean plus 1.5 standard deviations. 
All features were rescaled so that they fall within the range 
of 0 and 1, as inputs to both the MLP and FAM need to be in 
within that range. 

III. CLASSIFICATION METHODS 

A. Statistical Approach 
The main purpose of using a simple statistical approach 

is to provide quick insights into the accuracy that can be 
obtained. Basically, we have adopted a total of 10 features 
that can be extracted from the keystroke pressure time 
discrete signal, i.e.  the maximum value, minimum value, 
range, median, mean, sum, standard deviation, variance, 
skewness and kurtosis [5]. A reference sample is computed 
by averaging the features across the samples for each profile. 
The measurement of similarity is based on the difference 
between the test sample and the reference sample. A feature 
from the test sample is considered a good match with the 
feature from reference sample if it is within a set threshold of 
the reference feature, i.e. a test feature is valid if, 

 threshold
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 Thus, an attempt is considered valid if more than a 
certain amount of features in the test sample matches that 
from the reference template. The matching criterion is 
presently set at 8, i.e. the user can only be accepted as 
legitimate user if at least eight features from the test sample 
match those from the reference sample. Otherwise it is 
considered as an invalid attempt. 

B. Multilayer Perceptron 
The Multilayer Perceptron (MLP) [6] which is 

commonly known as the feed-forward neural network, is 
capable of separating both linearly and non-linearly 
separable pattern classes. 

The network is trained with the backpropagation 
algorithm. The network used here comprises of nine 
input nodes, a single hidden layer with five hidden nodes 
and one output node. After several trials, the hidden unit is 
set to a tan-sigmoid non-linear activation function with a 
learning rate of 0.1 and momentum of 0.9.  

C. Logistic Regression 
The logit model was introduced by Joseph Berkson in 

1944 [7], who also coined the term. The LR is a non-linear 
transformation of the linear regression. It is useful when the 
dependent or response variable is restricted to two values, 
which usually represent the occurrence or non-occurrence of 
some outcome event - usually coded as 0 or 1, respectively. 
Given ii xxxy βββα ++++= ...2211 , α is the constant of 
the equation, and β is the coefficient of the predictor 
variables, the relationship between the predictor and 
response variables is defined as 
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p is used to predict whether the user is legitimate or an 
imposter. The independent or predictor variables are 
extracted features of the users’ typing patterns. If the value 
of p is less than a pre-defined threshold, the user is 
legitimate; otherwise the user will be rejected. At present, the 
threshold value is defined at 0.5. 

D. Fuzzy ARTMAP 
Fig. 1 shows the Fuzzy ARTMAP (FAM) neural network 

[8]. FAM includes a pair of Adaptive Resonance Theory 
(ART) modules designated as ARTa and ARTb, which create 
stable recognition categories in response to arbitrary 
sequences of input patterns. FAM also includes a map field 
module, Fab, an associative learning network to establish an 
association between input patterns and target classes.  FAM, 
a generalization of binary ARTMAP, learns to classify inputs 
by a pattern of fuzzy membership values between 0 and 1 
indicating the extent to which each feature is present. This 
generalization is accomplished by replacing the ART1 
modules of the binary ARTMAP system with fuzzy ART 
modules.  

 
Figure 1.  Architecture of Fuzzy ARTMAP (FAM) neural network. 

There are two key parameters which influence the FAM 
performance in pattern classification, i.e. baseline vigilance 
parameter of ARTa, aρ  ∈ [0, 1]; and the learning rate 
parameter of ARTa, βa ∈ [0, 1]. The vigilance parameter, ρa 
∈ [0, 1], is a dimensionless parameter of ARTa, that 
determines the level of similarity between the transformed 
prototype vector and the input vector required before a match 
is said to occur. At the beginning of each input presentation 
ARTa vigilance, ρa equals a user-defined baseline vigilance 
parameter aρ . The learning parameter, βa, determines the 
learning modes of the network. There are two learning 
modes: fast learning (βa = 1 for all times) and fast-commit 
slow recode learning (βa = 1 for an uncommitted node and βa 
< 1 for a committed node). 

A series of experiments have been carried out to find the 
optimum value of aρ  and βa. It turned out that aρ  = 0.77 
and βa = 0.01 gave the best performance [4]. Thus, these 
values were used in the following experiments, unless stated 
otherwise. 

The following is a typical operation in ARTa, which also 
occurs in ARTb. All the equations are applicable to ARTb as 
well.  Note that the following is a concise account on FAM, 
and interested readers can refer to [8] for further details of 
FAM.  Initially, the original input vector a with M-
dimensional is normalized into a 2M-dimensional vector, A 
using a technique called complement coding. 
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The complement-coded input pattern A is propagated 
from F1

a to F2
a through a set of adaptive weights. For each 

input A and jth F2
a node, the choice function Tj(A) is defined 

as in (4), with wj
a denoting the weight vector of the jth F2

a 
node. 
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The node with the highest response value, denoted as 
node J, is selected as the winning node, with N denoting the 
number of F2

a nodes. 

 ( ) ( ){ }NTT jj ,...,1:max AA =  (5) 

If there is more than one maximum Tj(A) exists, the 
network chooses the category with the smallest index.  At the 
same time, all other nodes j ≠ J are deactivated in accordance 
with the winner-take-all strategy. The winning node J then 
propagates its output back to F1

a. Resonance occurs if the 
match function of the chosen category meets the vigilance 
criterion: 

 
a

a
J

ρ≥
∧

A
wA  (6) 

If the vigilance test is satisfied, resonance is said to have 
occurred and the operation proceeds to the learning stage.  If 
the test fails, node J is inhibited from participating in 
subsequent competitions. The network will carry out a new 
cycle of hypothesis selection and test until a match is found, 
- or until all the F2

a nodes have been exhausted. If none of 
the existing nodes satisfies the vigilance test, then a new 
node is formed at F2

a to code the input pattern.  

After resonance has occurred, the map field Fab receives 
input from both of the ARTa or ARTb category fields. 
Suppose that yb is the output of ARTb, and wj

ab is the weight 
vector that links node J in the ARTa and the map field, the 
Fab output vector xab is defined as 

 x y wab b
J
ab= ∧  (7) 

After the output of the map field is calculated, a map 
field vigilance test is conducted to confirm the prediction by 
comparing the similarity between the map field output and 
the target vector using (1) with ρab ∈ [0, 1] denoting the 
user-defined map field vigilance parameter. 

 x ab
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Failure of map field vigilance test indicates that the 
winning node, J of ARTa incorrectly predicts the target class, 
a match tracking procedure is triggered to raise the ARTa 
vigilance just enough to trigger a search for a new F2

a coding 
node.  

Since ARTa fails to meet the matching criterion, the 
current F2

a winning node is inhibited and the search for 
another F2

a node begins. If all the F2
a nodes in ARTa are 

inhibited, a new node is created to code the input pattern. A 
node becomes committed after it is selected for coding. The 
adaptive weights of winning node in ARTa is then updated 
according to, 

 ( ) ( ) a(old)
Ja

a(old)
Ja

newa
J β β wwAw −+∧= 1)(  (9) 

Two different operating strategies of FAM were adopted 
in this paper. The strategies were used to form two types of 
FAM, namely, voting FAM and average FAM [9]. 

1) Voting FAM  
The voting strategy is introduced based on the 

observation that different orderings or sequences of training 
samples will generate different cluster prototypes in ARTa. 
This would subsequently lead to different predictions of 
target classes, and thus different accuracy scores for each 
realization of FAM. In order to overcome this problem, a 
voting FAM network is constructed by training a pool of 
FAM, each with a random ordering of training samples. Each 
FAM is considered a voter in predicting an output class. 
Then, all predictions are combined and the final prediction 
for the given test pattern is the one with the majority number 
of votes. In other words, the final decision is the prediction 
made by more than half of the classifiers. Odd number of 
classifiers was used so that a final decision could be reached. 

2) Average FAM 
This method averages the performance metric from a 

pool of FAM network trained by different sequences of 
training samples.  

IV. RESULTS AND DISCUSSION 
A comparison of experimental results among statistical 

approach, MLP, LR and FAM is presented. The primary 
objective of the experiments is to examine the validity of 
using keystroke pressure in user authentication. Thus, the 
experiments and discussions are mainly focused on 
keystroke pressure.  In order to evaluate the performance of 
different classification approaches, the following 
performance metrics were used. 

• Accuracy – the ratio of the number of correct 
prediction to the total number of cases. 



• Sensitivity – the ratio of the number of correct 
legitimate user’s samples prediction to the total 
number of legitimate user’s samples. 

• Specificity – the ratio of the number of correct 
imposters’ samples prediction to the total number of 
imposters’ samples. 

• False Acceptance Rate (FAR) – the rate that an 
imposter’s typing pattern is falsely identified as 
belonging to a legitimate user, 

 ySpecificitFAR −=100  (10) 

• False Rejection Rate (FRR) – the rate that a typing 
pattern is incorrectly identified as belonging to an 
imposter, 

 ySensitivitFRR −=100  (11 ) 

A. Performance Evaluation with Cross Validation 
The approach of 10-fold cross validation was employed 

in this investigation [10]. Initially, all keystroke pressure data 
were divided into 10 profiles where each profile represented 
a user. Each time a different profile was chosen to be a 
legitimate user, it was labeled as “Class 0”. The rest (9 
profiles) were then assumed to be imposters and all of them 
were labeled as “Class 1” instead. As a result, there were a 
total of 10 input sequences, in which each input sequence has 
a different legitimate user profile. For each input sequence, it 
was randomly partitioned into 90%/10% of training/testing 
samples. The partitioning procedure was carried out until 
100 pairs of training/testing data set have been generated.  

Note that for the statistical approach, a slightly different 
method had been used to generate the training/testing data 
set. For each input sequence, there were only 10 pairs of 
training/testing data set. Every time we picked a different test 
sample from each of the profiles, it was compared against the 
reference (training) sample computed from Class 0. A 
reference sample is computed based on 9 samples exclusive 
to the test sample.  

Table II summarizes the experimental results in terms of 
accuracy, sensitivity, and specificity for different 
classification methods using the keystroke pressure data. 

TABLE II.  PERFORMANCE COMPARISON  

 Accuracy Sensitivity Specificity 
Statistical 
Approacha 78.10 ± 4.53 % 31.00 ± 33.48 % 83.33 ± 4.16 % 

MLP 89.70 ± 5.86 % 53.60 ± 27.43 % 93.71 ± 3.89 % 
LR 94.22 ± 3.79 % 77.50 ± 17.21 % 96.08 ± 2.56 % 
Average 
FAM 93.41 ± 3.68 % 76.20 ± 18.16 % 95.32 ± 2.64 % 

a. Best result with threshold value = 10 

For the statistical approach, the FAR of 16.67% is clearly 
too high since a reliable identity verifier should have a FAR 
that is less than 1%.  Furthermore, the FRR of 61% is also 
not acceptable since the users may have to retry many times 
in order to log onto the computer. 

For the MLP, both the FAR (6.29%) and FRR (46.4%) 
are not suitable for practical application. LR yielded better 
results as compared to MLP, with FAR of 3.92% and FRR of 
22.5%.  However, the FAR is still considered high from the 
target FAR of less than 1%.  Similarly, the results achieved 
for both FAR of 4.68% and FRR of 23.8% for the average 
FAM is not satisfactory too. 

In the experiment using the statistical approach, we also 
examined the error rate by varying the threshold value.  Fig. 
2 shows the relationship between the threshold value and the 
FAR and FRR. As may be seen from these graphs, changing 
the threshold value decreases one type of error rate while 
increasing the other type of error. The equal error rate where 
these two error curves intersect is approximately 40% with a 
threshold value of 19. 
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Figure 2.  Relationship between threshold value with FAR and FRR. 

B. Voting Strategy for FAM 
The objective of this experiment is to compare the 

accuracy of LR, average FAM and voting FAM. In this 
experiment, nineteen independent classifiers were employed, 
each with randomized input patterns. Each classifier yielded 
a set of predictive outcomes, and these were combined to 
reach a final decision using majority voting.  For this 
experiment, aρ  = 0.1 and βa = 0.01.  Fig. 3 shows the results 
averaged over twenty runs. 

As can be seen from Fig. 3, voting results generally 
outperform average results and LR results.  This suggests 
that voting may be a good approach to improve classification 
results.  

From this experiment using voting FAM, the highest 
accuracy achieved was 93.90%. The performance improved 
as the number of voters increased from just three voters 
before saturating to 93.80% when this was increased beyond 
seven voters. 
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Figure 3.  Comparison of performance among LR, average FAM and 
voting FAM. 

C. Comparison of Keystroke Pressure and Latency 
In this experiment, the main goal is to compare the FAM 

performance by using keystroke pressure and latency. We 
also examined the use of both keystroke pressure and 
keystroke latency as a single profile with the hope that this 
may give us a better FAM classification accuracy rate. 
Average FAM was used in this experiment.  Table III shows 
the results in terms of accuracy, sensitivity, and specificity.  
Better results from keystroke latency as compared with 
keystroke pressure are obtained. However, the best results 
are achieved by combining both keystroke pressure and 
latency as a single profile. 

TABLE III.  PERFORMANCE USING PLURALITY OF FEATURES 

Features Accuracy Sensitivity Specificity 
Pressure 93.41 ± 3.68 % 76.20 ± 18.16 % 95.32 ± 2.64 % 
Latency 96.17 ± 3.81 % 85.40 ± 15.56 % 97.37 ± 2.83 % 
Pressure + 
Latency 98.78 ± 1.42 % 95.60 ±   5.42 % 99.13 ± 1.18 % 

 

V. CONCLUSIONS AND RECOMMENDATIONS 
Instead of using conventional timing-based typing 

characteristics, the work presented in this paper investigates 
the applicability of using a relatively novel method to 
ascertain the identity of a user–the user’s typing pressure. A 
series of experiments have been systematically conducted 
using different classification algorithms. Another focus of 
the paper is to explore the use of a voting strategy to improve 
the performance of FAM. The results were compared with 
those obtained from experiments using latency patterns. 
From the experiments, the poor results obtained from the 
statistical approach may not be surprising, based on its 
simplicity and ease of use. Nevertheless, it does give us an 
indication of the baseline accuracy rate that can be expected. 
In general, performance of MLP was relatively poor, while 
the performances of LR and FAM were comparably better. 
However, voting FAM yielded the best performance when 
compared with either average FAM or LR. In summary, the 
combination of keystroke latency and pressure yielded the 

best result, i.e., FAR of 0.87% and FRR of 4.4%, obtained 
by using average FAM. 

The work presented in this paper has revealed the 
potential of the pressure-based typing biometrics system.  
However, there are still a number of areas that can be 
enhanced and pursued as further work. Firstly, the number 
data samples obtained should be extended to include more 
participants. Validation and verification work to vindicate 
the system further with a larger sample size is ongoing. 
Secondly, the robustness of biometrics refers to the extent to 
which the characteristic or trait is subject to significant 
changes over time. Experiments should be conducted to 
examine the robustness of keystroke dynamics by collecting 
the user’s typing patterns at different phases, where each 
phase can be a few weeks or a few days apart. In addition to 
password, typing patterns displayed on entering username 
may be used as a means to identify a user because the 
username is also a regularly typed string. Effectively, both 
password and username can be combined to improve the 
recognition accuracy. Finally, keystroke duration is the 
length of time a key is depressed. Obaidat et al. [3] have 
shown that keystroke durations yielded better classification 
accuracy than keystroke latencies. It would be interesting to 
investigate the combination of keystroke duration, latency, 
and pressure for developing a more accurate typing 
biometrics-based user authentication system.  
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