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Abstract

Regression-based techniques have shown promising re-
sults for people counting in crowded scenes. However, most
existing techniques require expensive and laborious data
annotation for model training. In this study, we propose
to address this problem from three perspectives: (1) Instead
of exhaustively annotating every single frame, the most in-
formative frames are selected for annotation automatically
and actively. (2) Rather than learning from only labelled
data, the abundant unlabelled data are exploited. (3) La-
belled data from other scenes are employed to further al-
leviate the burden for data annotation. All three ideas are
implemented in a unified active and semi-supervised regres-
sion framework with ability to perform transfer learning, by
exploiting the underlying geometric structure of crowd pat-
terns via manifold analysis. Extensive experiments validate
the effectiveness of our approach.

1. Introduction
Video-imagery based crowd counting [21] is important

for profiling the population movement over time across
spaces for establishing global situational awareness. Count-
ing in crowded public spaces is non-trivial due to severe
inter-object occlusion, scene perspective distortion, and vi-
sual ambiguity introduced by challenging lighting condi-
tion and complex human activities. State-of-the-art meth-
ods [9, 10, 19, 7] typically adopt regression-based tech-
niques to learn a mapping between low-level features and
people count, so as to circumvent explicit object segmenta-
tion and detection in crowded scenes. However, these tech-
niques generally require exhaustive frame-wise labelling or
even exact head-position annotations [19] to train a regres-
sion model. Furthermore, given a new scene or changed
scene layout, a model has to be learned from scratch by re-
peating the laborious annotation process.

In this study, we aim to learn a regression model for
crowd counting by annotating only a handful of frames

* Most of the work was done when the first author was at Vision Se-
mantics Ltd, London, UK.

(dozens rather than hundreds), so as to significantly reduce
the amount of manual annotation and make the model much
more applicable in practice. To achieve this goal, we wish to
explore three ideas with different underlying assumptions.
(1) Instead of exhaustively annotating every single frame,
we design a model to select automatically and actively the
most informative image frames for count annotation. The
underlying assumption is that if the selected samples are
informative and representative, this should have a minimal
effect on the learned regression model as compared to learn-
ing from all exhaustively labelled frames. (2) For video-
based crowd counting, potentially unlimited amount of data
can be readily collected. Rather than learning from only
labelled data, the abundant unlabelled data are to be ex-
ploited. We assume that the intrinsic distribution structure
of those unlabelled data can be computed to facilitate both
the learning of a regression counting model using only a
handful of labelled data, and the selection of more informa-
tive image frames to label therefore further reinforcing the
first idea above. (3) Instead of learning a regression model
from scratch in every new scene, the labelled data from
other scenes should also be exploited to compensate for the
lack of labelled data in the new scene. The assumption for
this idea is that there is transferrable knowledge in other
scenes which can be employed to further alleviate the bur-
den for data annotation. Although different scenes can be
visually very different, the crowd patterns share some com-
mon grounds (e.g. larger crowd leads to large foreground
areas) which correspond to transferrable knowledge.

In order to realise these three ideas for crowd counting
with only a handful of labelled frames in one scene and
generalising to other scenes, we develop a unified frame-
work for active and semi-supervised learning of a regres-
sion model with transfer learning capability. The frame-
work is formulated based on exploiting the underlying man-
ifold structure of unlabelled crowd data to facilitate count-
ing when the labelled samples are sparse. Many real-world
data is supported on a low-dimensional manifold [4]. We
observe that crowd pattern data often form a well structured
manifold due to the inherent imaging process for generat-
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Figure 1. Three-dimensional embedding of crowd patterns obtained using multi-dimensional scaling. Each point corresponds to a global
feature vector of crowd pattern of a video frame. Every point is encoded by colour so that points with higher crowd density are red and
points with fewer people are blue. The details of the datasets, ucsd, mall, and hallway are provided in Sec. 4.

ing crowd patterns from shared physical spaces subject to
social behavioural constraints [15]. Figure 1 shows differ-
ent examples of manifold embedding of crowd patterns ex-
tracted from three different public scenes. It is evident that
typically the crowd density (e.g. number of people) varies
smoothly within the manifold space. To exploit the exis-
tence of such underlying geometric structures of crowd pat-
terns for learning a regression model without exhaustively
labelling the data, we develop a semi-supervised regression
model with manifold regularisation to assimilate the count
estimation of two nearby crowd pattern points in the man-
ifold. This formulation builds on the Laplacian regularised
least squares concept [25], but is reformulated carefully to
employ Hessian energy [18, 24] for manifold regularisation
due to the latter’s superior extrapolation potential for semi-
supervised learning of a regression function. Modelling the
underlying crowd pattern structure also provides a solution
to active regression learning. That is, it can help to se-
lect fewer and more informative data points to be labelled,
given limited labelling budget1. This active sample selec-
tion for annotation is integrated seamlessly into our semi-
supervised model training.

In addition to exploiting intrinsic structures of unla-
belled data collected from the same scene for active and
semi-supervised regression modelling, we further develop a
transfer learning capability to utilise available labelled data
from other scenes. Transferring the shared common infor-
mation from training data across different visual domains
requires a process to filter out changes caused by different
camera viewing angles or activity patterns. We wish to ex-
plore the following consideration: If two different scenes
share similar imaging generating processes, they may also
share a similar underlying manifold structure from the sam-
pled data, suggesting that the knowledge available from one
scene can be re-used in another scene. In this study, we in-
vestigate in particular how manifold regularisation would
help in learning a crowd counting model with labelled data
collected from a different scene. We call this transfer count-
ing.

1A ‘budget’ is the funds (or time) available to spend on annotation [32].

2. Related Work

Crowd counting: Various approaches to crowd count-
ing have been proposed [21], including counting-by-
detection [20, 39, 12], counting-by-clustering [6, 29], and
counting-by-regression [9, 10, 19, 7]. The latter is favoured
by most recent studies due to its robustness against occlu-
sion. The regression-based techniques are fundamentally
supervised methods, which often assume the availability of
large amount of labelled data for training. Tan et al. [31] re-
lax this assumption by presenting a semi-supervised learn-
ing framework, which utilises sequential information in the
unlabelled frames to penalise sudden prediction change.
This method relies on the assumption that the temporal
space is dense, i.e. high enough video frame rate is required
to capture the smoothness in crowd pattern change over
time. This assumption can be too stringent for many real-
world scenarios when data bandwidth and storage space is
limited, or continuous high frame-rate video recording is
not available [23]. Our approach relaxes this assumption
since our method explores smoothness in intrinsic crowd
pattern distribution structure, not only in the video stream
temporal space, leading to a more generic/scalable and ro-
bust approach to crowd counting estimation (see compar-
ative experiments in Sec. 4.1). Importantly, in the same
framework the model is capable of transfer counting.

Semi-supervised and transfer learning: Manifold learn-
ing has been widely explored in computer vision, such as
face expression [8] and age estimation [13]. The intuition
of incorporating manifold regularisation in semi-supervised
learning has also been studied [1, 4, 38, 18], whilst
manifold-based transfer learning has been proposed in [34]
to transfer knowledge across domains via an aligned man-
ifold. However, no crowd counting studies have attempted
manifold regularisation for achieving semi-supervised and
transfer counting. Although existing work on manifold
learning are relevant for our problem, applying them di-
rectly for active and semi-supervised regression modelling
of crowd count is non-trivial and has not been attempted
before. Note that the term ‘tranfer counting’ has been first



used in [35]; but it refers to transferring knowledge across
overlapping camera views for the same crowd from the
same scene whilst we are concerned with transferring be-
tween completely unrelated scenes – a much more generic
and realistic setting.

Active learning for regression: The problem of how to
select data points for labelling is addressed by active learn-
ing [30, 22], mostly for classification rather than regression.
Recently, a few studies have been devoted to regression-
based active data selection, including D-optimality [14] and
E-optimality [24] designs. These methods stem from the
idea of optimal experimental design [2], which either aims
to minimise a model’s prediction error, output variance, or
parameter variance by selecting informative samples. For
instance, a data selection method based on optimal exper-
imental design is proposed by He [14]. However, it may
suffer from sensitivity problem during the evaluation of de-
terminant of Hessian matrix, due to the difficulty in deter-
mining small eigenvalues [5]. To circumvent the sensitivity
problem, we take an approach similar to the robust experi-
mental design method of [11] to identify supporting points
via clustering. Our clustering-based data selection method
can be considered as a degenerate case of the active learn-
ing approach [14] in that our algorithm still selects a set of
informative points for human to label but in a batch man-
ner without updating the sampling strategy sequentially, in
exchange for a more stable behaviour in data selection.

Our contributions are three-fold: (1) To eliminate exhaus-
tive data labelling for learning a regression based crowd
counting model, this is the first study to systematically de-
velop a unified active and semi-supervised crowd count-
ing regression model using only a handful of annotations.
(2) A concept of transfer counting with practical potential
is proposed and a transfer learning model based on crowd
data manifold regularisation is formulated to utilise labelled
crowd data from other crowd scenes. (3) Extensive compar-
ative evaluations are conducted using two publicly avail-
able crowd datasets and a new dataset extracted from the
i-LIDS dataset [16] to demonstrate the effectiveness of the
proposed approach.

3. Learning Inherent Constraints for Counting
3.1. Semi-supervised Crowd Counting

Counting by regression: Taking a regression approach to
crowd counting, one typically extracts a set of perspective
normalised low-level features x from each frame, e.g. fore-
ground segments or an edge map, and subsequently learns a
model to predict the crowd density given the low-level fea-
tures. Ridge Regression (RR) or its kernelised version, Ker-
nel Ridge Regression (KRR) have shown promising perfor-
mance for crowd counting regression [10]; it is thus chosen
as the regression baseline model in our framework. For-

mally, given a set of l labelled samples {(xi, yi)}li=1, of
samples xi from X ⊆ Rd with corresponding labels yi in
Y ⊆ R, KRR estimates the unknown regression function as

f∗ = argmin
f∈HK

1

l

∑l

i=1
V (xi, yi, f) + λ‖f‖2K , (1)

where V is a loss function, typically the squared loss
[yi − f(xi)]2 for Regularised Least Squares (RLS) regres-
sion problem. The kernel K is a positive definite Mercer
kernel K : X ×X → R, and there is an associated Repro-
ducing Kernel Hilbert Space (RKHS) of functions X → R.
Penalising the RKHS norm ‖f‖2K imposes smoothness to
the possible solutions.
Semi-supervised regression: A semi-supervised regres-
sion method is specifically formulated here to produce accu-
rate person counting given only sparse labelled data. This is
made possible by exploiting the underlying geometric struc-
ture of abundant unlabelled data and temporal continuity of
crowd pattern. More precisely, given a set of training data,
we assume some of them are labelled, L = {(xi, yi)}li=1,
but most of them are unlabelled, U = {xj}j=l+uj=l+1 , where l
and u are the number of labelled and unlabelled samples, re-
spectively. A user shall only label a few data points and the
rest of the unlabelled training data will be annotated auto-
matically by inference using the model. A set of regression
coefficients is estimated at the end for inductive inference
given unseen data.

Our goal is to perform semi-supervised learning to as-
similate the vast majority of unlabelled data points U by the
labels of the small minority L. This is computed by a joint
regularisation through learning the crowd pattern intrinsic
distribution (geometric) structure (p(x)) and imposing tem-
poral smoothness of activity patterns in the scene. In other
words, we would like to ensure that the solution is optimal
with respect to three considerations: (1) regression in a re-
duced kernel space (RKHS), (2) the marginal distribution
of unlabelled data points p(x), and (3) temporal continu-
ity in the physical space. To achieve this, we introduce the
following additional regularisers to Eqn. (1):

f∗ = argmin
f∈HK

1

l

∑l

i=1
[yi − f(xi)]2

+λA‖f‖2K + λI‖f‖2I + λT ‖f‖2T , (2)

where ‖f‖2I is a regularisation term to reflect the intrinsic
structure of the crowd patterns, whilst ‖f‖2T is a penalty
term to enforce temporal smoothness. Here λA, λI , and λT
control the function complexity in the ambient space, intrin-
sic geometry of p(x), and temporal space, respectively. We
now explain each regularisation terms in detail.
Distribution structure regularisation: The underlying
distribution structure (geometrical) of crowd patterns can
be modelled using a crowd manifold. We assume that



the marginal distribution p(x) is supported on a low-
dimensional manifold M embedded in RD. In particular,
if two samples xi, xj are close in the intrinsic geome-
try of p(x), then the conditional distributions p(y|xi) and
p(y|xj), i.e. the crowd density are similar.

Several choices of ‖ ·‖I exist. We adopt the Hessian reg-
ularisation function introduced in [18], which has a notice-
able difference in comparison to the more commonly used
Laplacian regularisation [4]. Specifically, Hessian regulari-
sation prefer functions that vary linearly with respect to the
geodesics on the data manifold [18]. This property is par-
ticularly critical for enabling better extrapolation behaviour
in solving a semi-supervised regression problem.

The Hessian regulariser is the squared norm of the sec-
ond covariant derivative, ‖∇a∇bf‖2, corresponding to the
Frobenius norm of the Hessian of f in normal coordinates.
An estimate of ‖∇a∇bf‖2 of xi is given as

‖∇a∇bf‖2 ≈
∑k

γ, β=1
fγfβB

i
γβ , (3)

where fj = f(xj), and xγ , xβ are the set of k nearest neigh-
bour, Nk(xi), of point xi in a k-NN graph. Here Biγβ rep-
resents the local Hessian energy of xi estimated through
second-order polynomial fitting in normal coordinates [18].
The total estimated Hessian energy is a sum over all (l+u)
labelled and unlabelled points

ŜHess(f) =

l+u∑
i=1

∑
γ∈Nk(xi)

∑
β∈Nk(xi)

fγfβB
i
γβ = fTBf . (4)

The regression loss function of Eqn. (2) is now re-written as

f∗ = argmin
f∈HK

1

l

∑l

i=1
[yi − f(xi)]2

+λA‖f‖2K + λIf
TBf + λT ‖f‖2T . (5)

Temporal regularisation: The temporal constraint can be
incorporated easily into our framework by assuming that if
two observations xi and xj occur close in time, then the
crowd density should not differ significantly. Again, several
choices of ‖ · ‖T exist. Empirically we found that Lapla-
cian yields better performance than Hessian for temporal
regularisation. To estimate a normalised Laplacian, we first
construct an affinity matrix A ∈ R(l+u)×(l+u) defined by
Aij = exp

((
−‖ti − tj‖2

)
/2σ2

)
, for i 6= j and Aii = 0,

t ∈ {1, 2, . . . } is the time index of each frame, and the scale
parameter σ is automatically inferred using the self-tuning
approach [36]. Intuitively, Aij has a high value for neigh-
bouring samples in time and a low value if the samples are
far apart temporally. The normalised Laplacian L is com-
puted as

L = D−
1
2AD−

1
2 , (6)

where D is a diagonal matrix with Dii =
∑l+u
j Aij .

Our final loss function to be minimised is defined as

f∗ = argmin
f∈HK

1

l

∑l

i=1
[yi − f(xi)]2

+λA‖f‖2K + λIf
TBf + λT f

TLf . (7)

This is solved efficiently using either the Newton’s
method [17] or preconditioned conjugate gradient [25] to
obtain the (l + u)-dimensional expansion coefficient vec-
tor α = [α1, . . . , αl+u]

T coefficients and the optimal bias
b. By the representer theorem, given an unseen low-level
feature vector x∗, the crowd density is estimated as

f∗(x∗) =
∑l+u

i
αiK(x∗,xi) + b. (8)

3.2. Active Learning for Regression

Having formulated the model above for learning crowd
counting using only a handful of labelled data supported
by a large number of unlabelled data, we now address the
problem of how to actively select the optimal handful of
labelled data so that they have a maximal impact on learn-
ing the model. Our intuition is that given a fixed number
of labelling budget, the most representative frames (in the
sense of covering different crowd densities/counts) are the
most useful ones to label. This brings in a chicken-and-egg
problem – without labelling all frames, how does one know
which ones are representative? To solve this problem, we
propose to discover these representative points (“supporting
points”) through clustering in the crowd marginal distribu-
tion structure (manifold).

Specifically, given a crowd manifold learned from a
set of unlabelled data, we perform spectral clustering [26]
on the data projected onto the manifold. That is, we
treat the problem of actively picking data points for la-
belling as of partitioning a weighted graph. Each node
in the graph corresponds to frame-level global crowd pat-
terns, connected by edges whose weights are defined by
the affinity between the patterns. More precisely, we con-
struct an affinity matrix As ∈ R(l+u)×(l+u) with Aij =
exp

((
−‖xi − xj‖2

)
/2σ2

)
, where σ is determined via

self-tuning method [36]. Similar to Eqn. (6), a normalised
Laplacian Ls is then constructed. Given a designated anno-
tation budget ofKA, we find theKA largest eigenvectors of
Ls, forming a matrix E ∈ R(l+u)×KA . Finally, we cluster
E (with its rows unit-length normalised) into KA clusters
using k-means algorithm. The KA supporting points are
estimated as the cluster centres.

3.3. Transfer Counting

For transfer learning in general, one considers a given
sparse set of labelled target training instances Ltarget =
{(xtarget, ytarget)}. In addition, a set of labelled train-
ing instances collected from a related source Lsource =
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(a) Before feature mapping	



(b) After feature mapping	

 (c) The embedding of the cross-domain manifold.	


Figure 2. (a)-(b) Performing feature mapping using the corre-
sponding points to align the feature range of ucsd and hallway
datasets. (c) The embedding of the cross-domain manifold using
the source data ucsd (red dots) and target data hallway (blue dots).

{(xsource, ysource)} are also made available. The objective
is to transfer the knowledge in Lsource in order to facilitate
learning of the target model.

In the context of transfer crowd counting, we con-
sider that the most straightforward approach to transfer-
ring labelled data from one scene to another is feature-
representation transfer [28]. More specifically, we wish to
first obtain perspective normalised features [7], followed by
feature-level alignment [33] to ensure the features extracted
from disparate scenes lie within the same space.

To perform feature-level alignment, we assume n pairs
of ‘corresponding samples’, {x̂source, x̂target} with identi-
cal count labels, that is ytarget = ysource, are available.
A possible way to align the features is by estimating a
mapping g : x̂source → x̂target ∈ Rd, and align the re-
maining source data to the target domain as g(xsource).
We choose a simple linear form for the function g, that
is g(Xsource) = Xsourceβ, where β is a diagonal matrix
with βii = (β1, . . . , βn). The values of β are estimated
in a least-squares sense. An example of feature-level align-
ment is shown in Fig. 2(a)-(b).

After aligning Xsource to the target domain, we com-
bine them together with the target data to form an expanded
training set, g(Xsource)∪Xtarget. This new enlarged train-
ing set is then employed to estimate a shared manifold
(Fig. 2(c)) and to learn a regression function following the
steps described in Sec. 3.1.

Note, using the aligned source data in its original high-
dimensional form may lead to poor result due to the likely
suboptimal feature alignment caused by poor correspond-
ing points selection or imperfect perspective normalisation.
Therefore, the step for learning a shared manifold is rather
critical in that it allows one to constrain the smoothness
of our solution with respect to the intrinsic geometry of
the cross-domain data space. In particular, the locality-
preserving character in learning a manifold with dominant
eigenvectors makes the solution less susceptible to noise or
small deviations in the aligned source data [3].

Data Nf R D Tp Tr/Te
ucsd [7] 2000 238 × 158 11–46 49885 800/1200
mall [10] 2000 320 × 240 13–53 62325 800/1200
hallway 2200 360 × 288 0–30 14707 500/1700

Table 1. Dataset properties: Nf = number of frames, R = Reso-
lution, D = Density (minimum and maximum number of people
in the ROI), Tp = total number of pedestrian instances, Tr/Te =
number of frames in the training (Tr) and testing (Te) partitions.

4. Experiments

Datasets: Apart from the established UCSD pedestrian
dataset (ucsd) [7] and a more recent shopping mall dataset
(mall) [10, 9, 21], we introduce a new dataset in this study
for comparative evaluation, referred to as the i-LIDs hall-
way dataset (hallway). A unique characteristics of this new
dataset is its severe perspective distortion and occlusion.
The hallway dataset is composed of 2200 frames extracted
at 3 frames per second (fps) from the sequence ABTEN201c
of the i-LIDS dataset [16]. We annotate the data by labelling
the head position of every pedestrian in all frames2. Ex-
ample frames of these datasets are shown in Fig. 1, with
their details given in Table 1. Both the hallway and mall
datasets are challenging. In particular, the perspective dis-
tortion, especially in the hallway dataset, is heavier than that
in the ucsd dataset, resulting in more severe inter-object oc-
clusion, and larger change in object size and appearance at
different depths of the scene. In addition, the mall dataset
is challenging in that it covers crowd densities from sparse
to crowded, as well as diverse activity patterns (static and
moving crowds) under large range of illumination condi-
tions at different time of the day.

Features: For each dataset, we set a region of interest
(ROI) to exclude the non-corridor/non-pathway regions in
the scene. From the ROI, we extract segment-based and
structural-based features following the methods described
in [10]. For local texture features, we adopt uniform Local
Binary Patterns (LBP) [27], which frequently corresponds
to primitive micro-features such as edges and corners. For
both the ucsd and the hallway datasets, scene lighting is sta-
ble so we employ a static background subtraction method
to extract the foreground segments. For the mall dataset,
gradual illumination change is present, we therefore adopt
a GMM-based dynamic background modelling method. All
features are perspective normalised [7].

Evaluation metric: We employ mean squared error (MSE)
in performance evaluation, εsqr = 1

N

∑N
i=1(yi−ŷi)2, where

N is the total number of test frames, yi is the actual count,
and ŷi is the estimated count of ith frame. All results are
averaged over 20 trials unless specified.

2The ground truth, together with the extracted features, and the
train/test partitions can be downloaded at http://www.ie.cuhk.
edu.hk/˜ccloy/.

http://www.ie.cuhk.edu.hk/~ccloy/
http://www.ie.cuhk.edu.hk/~ccloy/


Method Transductive Inductive
KRR 2.780 ± 0.46 8.040 ± 1.10
SSR (manifold) 1.751 ± 0.25 7.943 ± 0.86
SSR (temporal) 1.213 ± 0.29 7.296 ± 0.75
SSR (manifold+temporal) 1.224 ± 0.29 7.329 ± 0.72
SSR (manifold+temporal+selection) 1.005 ± 0.05 7.060 ± 0.62

(a) uscd

Method Transductive Inductive
KRR 12.871 ± 1.51 19.282 ± 3.83
SSR (manifold) 13.088 ± 1.81 18.417 ± 3.35
SSR (temporal) 11.921 ± 1.46 18.791 ± 3.53
SSR (manifold+temporal) 11.726 ± 1.41 18.112 ± 3.38
SSR (manifold+temporal+selection) 11.437 ± 0.88 17.853 ± 2.38

(b) mall

Method Transductive Inductive
KRR 2.559 ± 0.46 7.971 ± 1.00
SSR (manifold) 2.770 ± 0.41 7.389 ± 1.18
SSR (temporal) 2.189 ± 0.22 6.828 ± 0.72
SSR (manifold+temporal) 1.774 ± 0.09 5.546 ± 0.30
SSR (manifold+temporal+selection) 1.634 ± 0.03 5.342 ± 0.16

(c) hallway

Table 2. Performance comparison between the KRR baseline
regression and the proposed semi-supervised regression (SSR)
method: with manifold regularisation, temporal regularisation, a
combination of two, and finally the automatic labelled data selec-
tion. The performance is measured in mean squared error (MSE),
averaged over 20 trials. A smaller MSE value is better.

Parameter settings: The proposed method has a few free
parameters, including the number of neighbours k to build
the k-NN graph, the dimensionality m of PCA subspace
during the determination of normal coordinates, and the reg-
ularisation parameters λA, λI , and λT . The Kernel Ridge
Regression (KRR) has two free parameters, the bandwidth
of Gaussian kernel and the regularisation parameter λ. All
the above free parameters for each method were optimally
estimated by cross validation on the labelled samples.

4.1. Semi-Supervised Crowd Counting

Semi-supervised learning: The goal of this experiment is
to evaluate the effectiveness of exploiting unlabelled data
distribution structure and temporal regularisations in the
semi-supervised regression (SSR) learning framework. All
datasets are partitioned into training/test sets in accordance
to the numbers given in the last column of Table 1. Note
that we follow [7] and [10] in partitioning the ucsd and
mall datasets. A total of 50 samples in the training partition
are randomly selected as labelled samples, while the rest of
the samples in the training partition (750 in both ucsd and
mall, and 450 in hallway) remain unlabelled. We evaluate
the transductive learning (tested with unlabelled data in the
training partition) and inductive inference (tested with un-
labelled data in the test partition) performances of the pro-
posed SSR method with different regularisation terms. The
results obtained from KRR without semi-supervised learn-
ing is also reported as a baseline.
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Figure 3. The effect of labelled and unlabelled data.

It is evident from Table 2 that semi-supervised learning
improves remarkably the crowd counting performance with
the help of unlabelled data, i.e. an average of 18% reduc-
tion in MSE over KRR when we apply labelled data se-
lection. Interestingly, given datasets of better frame rates,
e.g. the ucsd with 10 fps and the hallway with 3fps, slightly
better results were obtained using the temporal smoothness
constraint in comparison to manifold regularisation. On the
mall dataset with (∼1-2 fps), the effect of temporal smooth-
ness decreased notably. In general, combining both regular-
isation terms yielded better and more reliable performance.

We further examine the effect of labelled and un-
labelled data, by measuring the MSE performances
on labelled set {5, 10, 20, 40, 80} given unlabelled set
{25, 50, 100, 200, 400}. Figure 3 shows clearly that adding
more unlabelled data improved the counting performance.
For instance, given 80 labelled data, the MSE in the ucsd,
mall, and hallway datasets were reduced by nearly 7%,
22%, and 19% respectively, when we increased the unla-
belled data size from 25 to 400.

Active learning for labelled points selection: In this
experiment we compare our manifold-based “supporting
point” selection method (m-landmark) (see Sec. 3.2) with
k-means landmark discovery [31] and the random selection
baseline (RAND). Figure 4 shows that in general, both the
method in [31] and our method outperform the random se-
lection. For instance, our method constantly outperforms
RAND by around 7%-9% reduction in MSE on the ucsd
and hallway datasets. This is not surprising since the latter
blindly selects instances that may not contribute towards the
regression model learning. The result also shows that com-
pared to [31], our method gains better performance on the
ucsd and mall datasets, and more stable performance overall
(see the standard deviation plots in Fig. 4).

Active semi-supervised learning: Figure 5 shows a com-
parison of the actual counting performance between KRR
(without semi-supervised learning) and our full active semi-
supervised regression method. As compared to KRR that
employed all 500 data for training, our method only requires
10% of training data whilst simultaneously achieving a re-
markable 20% reduction in MSE. Note that both methods
fail to estimate the spike around frame 1500 because the
range of counts beyond 20 are not captured in the training
set. One can resolve this problem by simply collecting more
diverse training data with a wider-range of counts.

Table 3 shows the quantitative comparison of our SSR
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Figure 4. Count estimation performance using three different labelled data selection methods. The first row reports the average MSE whilst
the second row shows the associated standard deviation plots. The ’m-landmark’ is the proposed active selection method.
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Figure 5. Comparison of counting performance between the KRR and our semi-supervised method SSR on the hallway dataset. Note that
our method achieved 20% reduction in mean squared error with just 10% of labelled samples as compared to the KRR.

method against two recently proposed models [7, 9], all of
which use the same feature representations (Sec. 4). The
proposed SSR approach not only consistently outperforms
existing methods given sparse labelled samples (50 sam-
ples), but also performs comparatively to GPR and CA-RR
that learn from full training set.

Method # train samples ucsd [7] mall [10] hallway
GPR [7] 50 11.10 49.83 27.56
GPR [7] Full 7.68 14.88 5.60
CA-RR [9] 50 9.27 22.19 5.53
CA-RR [9] Full 7.19 14.80 5.00
SSR 50 7.06 17.85 5.34

Table 3. Comparison against the state-of-the-art methods: GPR =
Gaussian Processes Regression, CA-RR = Cumulative Attribute
Ridge Regression, SSR = the proposed Semi-Supervised Regres-
sion method. The performance is measured in mean squared error.

4.2. Transfer Crowd Counting

In this experiment we evaluate the proposed transfer
counting method (Sec. 3.3). We randomly selected 100 ran-
dom labelled samples from the source data to be transferred
for target model learning. In addition, a total of 50 ran-
dom labelled data in the target scene are chosen for boot-
strapping, 25 of which have corresponding labels with the
source labelled set. Those 25 pairs of corresponding sam-

Source Target Without Transfer
KRR SSR

– hallway 8.356 ± 0.70 6.285 ± 0.54
– ucsd 8.538 ± 1.22 7.732 ± 0.93

Source Target With Transfer
KRR SSR

ucsd hallway 16.848 ± 3.27 5.984 ± 0.40
hallway ucsd 23.010 ± 5.66 7.321 ± 1.86

Table 4. Transfer counting results.

ples are employed to learn a mapping function for aligning
the source labelled set.

The ucsd and hallway datasets are selected in this ex-
periment. Table 4 summarises the transfer counting results
averaged over 10 trials. The top half of Table 4 shows the
results on using KRR and SSR without transfer learning,
i.e. using the 50 labelled data in the target scene for model
learning. In the bottom half of the table, we show the trans-
fer learning results on both models, of which training are
conducted using the target scene data as well as 100 labelled
data from the source domain. It is evident that transferring
the data without learning a cross-domain manifold (i.e. us-
ing KRR) results in worse results in comparison to training
with just target data alone. On the other hand, our trans-
ferring method helps in reducing the MSE further (in com-
parison to without transfer) with the use of cross-domain
manifold.



The above results suggest that poor results may be ob-
tained if the suboptimal aligned source samples are em-
ployed directly in the target model training. However, when
those source data are embedded in a shared cross-domain
manifold together with the target data, they can effectively
help in filling the ‘gap’ not captured in the target labelled
data, leading to a more accurate estimation.

5. Conclusion
In contrast to most existing crowd counting studies that

rely on exhaustive annotations for model training, a uni-
fied active and semi-supervised regression approach is for-
mulated to enable crowd counting with just a few labelled
sample images through exploiting the underlying distribu-
tion structure of crowd patterns given readily available vast
quantity of unlabelled data. In addition, we proposed a
novel concept of and a model for transfer counting. We
demonstrated that the lack of labelled data in a new scene
can be helped by knowledge transferred from other scenes
in minimising the effort required for bootstrapping crowd
counting at the new scene. This has significant practical
value. In the current transfer counting method, we imposed
an assumption that the source and target data sharing a sim-
ilar manifold representation. Future work will explore ways
to relax this assumption through automatic estimation of
source-target relevance [37].
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