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Abstract

We present a novel approach for detecting global be-

haviour anomalies in multiple disjoint cameras by learning

time delayed dependencies between activities cross cam-

era views. Specifically, we propose to model multi-camera

activities using a Time Delayed Probabilistic Graphical

Model (TD-PGM) with different nodes representing activ-

ities in different semantically decomposed regions from dif-

ferent camera views, and the directed links between nodes

encoding causal relationships between the activities. A

novel two-stage structure learning algorithm is formulated

to learn globally optimised time-delayed dependencies. A

new cumulative abnormality score is also introduced to re-

place the conventional log-likelihood score for gaining sig-

nificantly more robust and reliable real-time anomaly de-

tection. The effectiveness of the proposed approach is val-

idated using a camera network installed at a busy under-

ground station.

1. Introduction

Detecting video anomalies is non-trivial because abnor-

mal behaviours are rare, difficult to define and can be sub-

tle, ambiguous, and easily confused with noise. Compared

with single view anomaly detection, detecting abnormal be-

haviours captured by a network of cameras is even more

challenging particularly when the camera views are not

overlapped. This is because anomalies can take place glob-

ally across multiple camera views even though they often

appear normal if observed in isolated camera views. For

instance, consider two cameras monitoring road junctions

A and B which are one mile apart and a vehicle passing A

will typically appear at B in 2 minutes; it is normal to ob-

serve either large or small volume of traffics in either views.

However, if large volume of traffic is observed at Junction

A but two minutes later only few vehicles can be seen in

Junction B, it is possible to infer that something abnormal

(e.g. a road accident) has just happened between A and B,

provided that the time delayed causal relationship between

activities in A and B can be discovered and quantified. To

further complicate the matter, the network can be extended

to include more junctions each of which can contribute to

what is observed in Junction B to different extents by dif-

ferent time delays.

It is therefore essential to learn global activity depen-

dencies and the associated time delays for detecting global

anomalies in disjoint camera views. This requires not only

discovering and interpreting the temporal and causal rela-

tionships between activities, but also collecting relevant vi-

tal cues for detecting global anomalies. In this context, a

global anomaly can be detected when the learned normal

time-delayed causal relationships are not supported by vi-

sual evidence collected cross camera views on-the-fly.

To this end, we propose a novel approach for modelling

globally optimised time-delayed dependencies between dis-

tributed local activities by formulating a Time Delayed

Probabilistic Graphical Model (TD-PGM), based on which

we develop a framework for global anomaly detection in

multiple disjoint camera views. In our model, each node

represents activities in a semantically decomposed region

from one of the camera views, and the directed links be-

tween the nodes encode the causal relationships between

the activities. The time delayed dependencies among ac-

tivities across camera views are globally optimised using

a novel two-stage structure learning method. In the first

stage, a prior structure of the graphical model is learned

based on Time Delayed Mutual Information (TDMI). This

is followed in the second stage by a scored-searching based

structure learning method derived by modifying the K2

algorithm [6]. This two-stage method ensures accurate

and efficient learning of globally optimised dependencies

among activities.

Once learned, our model can be used for real time

anomaly detection by examining the log-likelihood of vi-

sual evidence collected from all camera views given the

model. However, since we are interested in analysing busy

public scenes featured with severe occlusions and low im-

age resolution both spatially and temporally, the detection

could potentially be sensitive to noise resulting in large



number of false alarms. To overcome this problem, a new

Cumulative Abnormality Score (CAS) is introduced to re-

place the conventional log-likelihood (LL) score for more

robust and reliable real-time anomaly detection.

The novelties of this work are: (1) To the best of our

knowledge, there is no reported study on modelling time

delayed global activity dependencies for real-time detection

of subtle and ambiguous global behaviour anomalies across

distributed multi-camera views of busy public scenes. (2)

A novel structure learning method is proposed to discover

and quantify globally optimised time delayed dependencies;

this is achieved without any prior knowledge and assump-

tions on the camera topology and the method is fully un-

supervised. (3) A new CAS is formulated for more robust

real-time anomaly detection. Comparative experiments are

carried out to demonstrate the effectiveness of the proposed

approach using 177 hours of videos from a camera network

installed at a busy underground station with complex and

diverse scenes including ticket hall, concourse, train plat-

forms and escalators.

2. Related Work

Existing multi-camera activity modelling approaches

can be categorised into two groups: tracking based [9,

12, 14, 17, 18] and event based [11, 19]. With a tracking-

based approach, one must solve the camera topology in-

ference problem [12, 14] and the trajectory correspondence

problem [9]. Both problems are non-trivial and remain un-

solved for a large number of cameras and complex activity

patterns in a crowded public scene captured in low spatial

and temporal resolutions [17]. Recently Wang et al. pro-

pose a method which bypasses the topology inference and

correspondence problem [17]. However, the method still

cannot cope with busy scenes. Moreover, their trajectory

co-clustering method is based on Latent Dirichlet Analy-

sis (LDA) and is thus limited to capture only co-occurrence

relationships among activity patterns. Any temporal rela-

tionship is not discovered and quantified automatically but

simply determined by a pre-defined temporal threshold.

Alternatively, an event-based approach aims to avoid ex-

plicit object-centred segmentation and tracking. Zhou and

Kimber [19] detect blob events in each camera view and

model them as a first-order Markov chain in a Coupled

Hidden Markov Model (CHMM). The chain’s connectiv-

ity is manually defined and labelled to reflect neighbouring

relationships of cameras. The model becomes intractable

even given a small number of camera views. Moreover, the

model is restricted to capture first order temporal depen-

dency, which is not suitable for modelling cross-camera ac-

tivity dependencies with arbitrary time delays. In compari-

son, our approach learns the activity dependencies without

any prior knowledge on the camera topology or top-down

rules for labelling. In addition, it is computationally effi-

cient and can handle arbitrary time delays among activities.

Our approach is closely related to our previous

work [11], which learns pairwise time delayed correlations

among multi-camera activities using Cross Canonical Cor-

relation Analysis (xCCA). However, our approach differs

from and is advantageous over that in [11] in the follow-

ing ways: (1) Their method is limited to the discovery

of pairwise linear correlations without considering multi-

ple dependencies in a global context; it is thus not suitable

for a complex network where activity can have multiple

causes from different views. In contrast, our approach per-

forms structure learning for discovering the dependencies

globally among all activity patterns. (2) Compared to the

correlation-based method, we explore TDMI to take into ac-

count possible non-linear dependencies among activity pat-

terns across different views. (3) Global anomaly detection

is not attempted in [11].

Our approach is centred around a novel two-stage struc-

ture learning algorithm for a TD-PGM. There are a large

number of methods in the literature on learning the struc-

ture of a graphical model. They are conventionally cat-

egorised as either constraint-based methods [3, 5, 10], or

scored-searching based methods [6, 8]. More recently, hy-

brid methods have been proposed to combine both methods

above in order to improve computational efficiency and pre-

diction accuracy in structure learning [1, 15, 16]. With the

same objectives, our two-stage structure learning method

differs from existing hybrid methods in that it is capable

of learning graph dependencies among multiple time-series

with unknown time delays.

3. Global Activity Modelling

3.1. Global Activity Representation

It is necessary to decompose each camera view into

semantic regions where different activity patterns are ob-

served (e.g. decompose a traffic junction into different lanes

and waiting zones). To this end, the approach proposed

in [11] is adopted which clusters a scene using spectral

clustering based on correlation distances of local block

spatio-temporal activity patterns. This results in N re-

gions across Kc cameras. Given scene decomposition,

activity patterns observed over time in a region rn with

n = 1, . . . , N , is represented as a bivariant time series:

ûn=(ûn,1, . . . , ûn,t, . . . , ûn,T ), where ûn,t is the percent-

age of static foreground pixels within the nth region at time

t and T is the total number of frames used in the learning

process; and v̂n = (v̂n,1, . . . , v̂n,t, . . . , v̂n,T ), where v̂n,t is

the percentage of pixels within the region that are classified

as moving foreground. Note that more sophisticated fea-

tures such as optical flows can be considered if videos of

high spatial and temporal resolution are available.

To obtain a more compact representation, we cluster the



original 2D feature space (ûn, v̂n) in each region indepen-

dently using a Gaussian Mixture Model (GMM). The GMM

is learned using Expectation-Maximisation (EM) with the

number of component Kn determined by automatic model

order selection using Bayesian Information Criterion (BIC).

The learned GMM is then used to classify activity patterns

detected in each region at each frame into one of the Kn

components. Activity patterns in a region over time are thus

represented using the class labels and denoted as a 1D vec-

tor xn=(xn,1, . . . , xn,t, . . . ), where xn,t ∈ {1, 2, . . . ,Kn}
and n=1, . . . , N .

3.2. Time Delayed Mutual Information Analysis

TDMI is explored here to learn time delayed dependency

between each pair of regional activity patterns. TDMI was

originally proposed by Fraser and Swinney [7] for measur-

ing the Mutual Information (MI) between a time series x(t)
and a time shifted copy of itself x(t + τ) as a function of

time delay τ . If we treat the regional activity patterns in the

ith and jth regions as time series data and denote them as

xi(t) and xj(t) respectively, the mutual information for a

time delay τ between them is computed as follows:

I (τ) =
∑

xi(t)

∑

xj(t+τ) p (xi(t),xj(t+ τ))

· log2
p (xi(t),xj(t+ τ))

p (xi(t)) p (xj(t+ τ))
,

(1)

where p (xi(t)) and p (xj(t+ τ)) denote the marginal

probability distribution functions of xi(t) and xj(t+ τ) re-

spectively, and p (xi(t),xj(t+ τ)) is the joint probability

distribution function of xi(t) and xj(t + τ). The proba-

bility distribution functions are approximated by construct-

ing histograms with Kn equal-width bins, each of which

correspond to one aforementioned GMM class. Note that

I (τ) ≥ 0 with the equality if, and only if xi and xj are in-

dependent. If τ = 0, TDMI is equivalent to MI between xi

and xj .

The time delay between xi and xj is estimated as:

τ̂xixj
= argmax

τ

I (τ) , (2)

and the corresponding TDMI is obtained as:

Îxixj
= I

(

τ̂xixj

)

. (3)

We compute the time delay and TDMI for each pair of re-

gional activity patterns to construct a TDMI matrix I =
[̂Ixixj

]N×N and an associated time delay matrix D =
[τ̂xixj

]N×N , to be used for the learning of globally opti-

mised time-delayed dependencies as below.

3.3. Global Activity Dependency Modelling

Globally optimised time-delayed dependencies among

regional activity patterns are modelled using a TD-PGM.

This is achieved by taking two steps: (1) structure learning

and (2) parameter learning. Let us first formally define the

model. A TD-PGM is denoted as B = 〈G,Θ〉 and consists

of a directed acyclic graph (DAG) G whose nodes represent

a set of observations X = {x1, . . . ,xN}, in which an ob-

servation xn corresponds to the activity patterns observed

in the nth semantic region. The network is governed by a

set of parameters denoted by Θ = {θn}. All the observa-

tions in the network are discrete variables due to the GMM

clustering, allowing us to represent the conditional proba-

bility distribution p(xn|pan, θn) between a child node and

its parents pan in G using a multinomial probability distri-

bution. We assume conditional independence which implies

that xn is independent from its non-descendants given its

parents. These relationships are represented through a set

of directed edges E, each of which points to a node from its

parents on which the distribution is conditioned. Given any

two observations xi and xj , we represent a directed edge

from xi to xj by writing xi → xj , where (xi,xj) ∈ E

and (xj ,xi) /∈ E. Note that in our model each observation

has an associated time index and the model aims to capture

time-delayed dependencies among observation variables.

3.3.1 Structure Learning

The optimal structure of the TD-PGM B encodes the time

delayed dependencies that we aim to discover and quan-

tify. To learn this structure, we formulate a novel two-stage

structure learning method which first generates a prior net-

work structure based on the TDMI matrix I and the time de-

lay matrix D. Furthermore, we also re-formulate a scored-

searching based method, the K2 algorithm [6], so that it

can be employed to refine the prior network structure and

produce a final dependency structure. This is necessary be-

cause of a limitation of the K2 algorithm as explained be-

low.

The K2 algorithm is well suited for learning the depen-

dency structure of a large camera network due to its superior

computational efficiency compared to other methods such

as Markov Chain Monte Carlo (MCMC) based structure

learning. The computational speed up is gained through the

use of topological ordering ϕ that helps to reduce the net-

work search space. The ordering ϕ specifies that a node xi

can only be the parent of xj if, and only if, xi precedes xj in

ϕ. The conventional K2 algorithm is sensitive to ϕ. A ran-

domly set ϕ does not guarantee to give the most probable

model structure. A straightforward solution to this problem

is to apply the K2 algorithm exhaustively on all possible or-

derings to find a structure that maximises the score. How-

ever, this solution is clearly infeasible even for a moderate

number of nodes, as the number of iterations required is N !
for a model with N nodes .

Let us now describe in more details our structure learn-

ing method. Instead of setting ϕ randomly, we derive it



from a prior network structure constructed based on the

TDMI matrix I and time delay matrix D. First, an optimal

dependence tree is generated based on I. This is achieved in

two steps. (a) We assign weights following I to each possi-

ble edges of a weighted graph with node set X that encodes

no assertion of conditional independence. (b) Prim’s algo-

rithm [13] is applied to find a subset of the edges that forms

a tree structure that includes every node, in which the total

weight
∑

(xi,xj)∈E
Îxixj

of the tree is maximised. The out-

put is an optimal dependence tree (Chow-Liu tree) [4] that

best approximates the network joint probability.

Second, the edges of the tree structure are oriented. Typ-

ically, one can assign edge orientations by either selecting a

random node as root node, or by performing conditional in-

dependence test [1] and scoring function optimisation over

the graph [2]. These methods are either inaccurate or re-

quire exhaustive search on all possible edge orientations

therefore computationally costly. To overcome these prob-

lems, we propose an effective and accurate approach to ori-

ent the edges by tracing the time delays for pair of nodes

in the tree structure using D learned by the TDMI analy-

sis. In particular, if the activity patterns observed in xi are

lagging the patterns observed in xj with a time delay τ , it

is reasonable to assume that the distribution of xi is con-

ditionally dependent on xj . The edge is therefore pointed

from xj to xi. With a prior network structure defined by the

edges, we can derive ϕ by performing topological sorting.

The whole process of obtaining the prior network structure

and ϕ is summarised in Alg. 1.

Input: An undirected weighted graph with a node set

X = {xn}, where n = 1, 2, . . . , N , and edge

set E. TDMI matrix I and time delay matrix D

Output: Prior network structure defined by X′ and E′

Topological ordering ϕ
X′ = x, where x is an arbitrary node from X;

E′ = ∅;
while X′ 6= X do

Choose an edge (xi,xj) ∈ E with maximum

weight Îxixj
, where xi ∈ X′ and xj /∈ X′;

X′ = X′ ∪ {xj};
E′ = E′ ∪ {(xi,xj)};
if D(xi,xj) > 0 then

xi → xi;

else
xi ← xj ;

end

end

ϕ = topological sort (E′);
Algorithm 1: Finding a prior network structure and the

topological ordering.

We can now introduce a modified K2 algorithm (see

Alg. 2) after obtaining ϕ. The algorithm iterates over each

node xn that has an empty parent set pan before the iter-

ations. Note that a candidate parent is selected in accor-

dance with the node sequence specified by ϕ. Parent nodes

are greedily added to pan if the addition of the parent to

xn maximises the score of the network. A BIC score is

adopted. Between each node xn and its parent set pan, the

BIC score is computed as:

BIC(xn,pan) = Ln −
Cn

2
log T, (4)

where Cn is the number of parameters needed to describe

the conditional distribution, whilst Ln is the log probability

of xn given its parents set pan, which is given as:

Ln = log p(xn|θn) =
T
∑

t=1

log p(xn,t|pan, θn). (5)

Different from the original K2 algorithm, in our algorithm

parent’s activity patterns are shifted with a relative delay to

child node’s activity patterns based on D.

Input: A graph with a node set X = {xn}, where

n = 1, 2, . . . , N , an ordering of the nodes ϕ,

an upper bound η on the number the parents a

node may have, and time delay matrix D

Output: Parents set of each node pan
for n = 1 to N do

pan = ∅;
scoreold = BIC(xn,pan);
OKToProceed = true;

while OKToProceed and |pan| < η do
let xm be the candidate parent of xn,

xm /∈ pan, with activity patterns xm(t+ τ),
τ = D(xn,xm), that maximises the

BIC(xn,pan ∪ {xm});
scorenew = BIC(xn,pan ∪ {xm});
if scorenew > scoreold then

scoreold = scorenew;

pan = pan ∪ {xm};
else

OKToProceed = false;

end

end

end

Algorithm 2: Our re-formulated K2 algorithm with a time

delay factor being introduced.

3.3.2 Parameter Learning

There are two typical methods for estimating the parame-

ters of a Probabilistic Graphical Model (PGM) given fully

observed data, namely Maximum Likelihood Estimation

(MLE) and Bayesian learning. In this study, we adopt the

latter approach since it offers the flexibility of performing

real-time learning. Specifically, we apply the BDeu prior

(likelihood equivalent uniform Bayesian Dirichlet) [8] (a



conjugate prior of multinomial distribution) over model pa-

rameters. The use of conjugate prior allows us to update the

network posterior distribution sequentially and efficiently.

To account for a cross-region time delay factor, regional ac-

tivity patterns are temporally shifted according to the time

delay matrix D during the parameter learning stage.

3.4. Global Anomaly Detection

A conventional way for detecting anomalies is to exam-

ine the log-likelihood (LL), log p (xt|Θ) of the observations

given a model, e.g. [19]. Specifically, an unseen global ac-

tivity pattern is detected as abnormal if

log p (xt|Θ) =

N
∑

n=1

log p (xn,t|pan, θn) < Th, (6)

where Th is a pre-defined threshold, and xt =
{x1,t, . . . , xn,t, . . . , xN,t} are observations at time slice t
for all N regions from all the camera views in a camera net-

work. However, given a busy public scene featured with se-

vere occlusions and low image resolution both spatially and

temporally, observations xt inevitably contain noise and the

LL-based method is likely to fail in discriminating the ‘true’

anomalies from noisy observations because both can con-

tribute to a low value in log p (xt|Θ), and thus cannot be

distinguished by examining log p (xt|Θ) alone.

We address this problem by introducing a Cumulative

Abnormality Score (CAS) which alleviates the effect of

noise by accumulating the temporal history of the likeli-

hood of anomaly occurrences in each region over time. This

is based on the assumption that noise would not persist over

sustained period of time and thus can be filtered out when

visual evidence is accumulated over time. Specifically, an

abnormality score (set to zero at t = 0) is computed for

each node in the TD-PGM on-the-fly to monitor the like-

lihood of abnormality for each region. Given observation

xn,t for the nth region at time t, the log-likelihood of the

regional activity xn is computed as:

log p (xn,t|pan, θn) . (7)

If log p (xn,t|pan, θn) is less than a threshold Thn, the ab-

normality score for xn, denoted as cn,t, is increased as:

cn,t = cn,t−1 + | log p (xn,t|pan, θn) − Thn|. Other-

wise it is decreased from the previous abnormality score:

cn,t = cn,t−1 − δ (| log p (xn,t|pan, θn)− Thn|) where δ
is a decay factor controlling the rate of the decrease. cn,t is

set to 0 whenever it becomes a negative number after a de-

crease. We therefore have cn,t ≥ 0, ∀ {n, t}, with a larger

value indicating higher likelihood of being abnormal.

A global anomaly is detected at each time frame when

the total of cumulative abnormality score Ct =
∑N

n=1 cn,t
across all the regions is larger than a threshold Th. Overall,

there are two thresholds to be set. Threshold Thn is set

automatically to the same value for all the nodes as:

Thn = LL− σ2
LL. (8)

where the LL and σ2
LL are the mean and variance of the log

probabilities computed over all the nodes for every frames,

which are obtained from a validation dataset. The other

threshold Th is set according to the detection rate/false

alarm rate requirement for specific application scenarios.

Note that during the computation of log probability, the ac-

tivity patterns of a parent node are referred based on the

relative delay between the parent node and the child node.

Once a global anomaly is detected, the contributing re-

gional activities can be identified by examining cn,t. Partic-

ularly, cn,t for all regions are ranked in a descending order.

The contributing regional activities of the anomaly is iden-

tified as being from the first Na regions in the rank that are

accounted for a given fraction P = [0, 1] of Ct.

4. Experimental Results

Dataset – Our dataset contains fixed views from nine dis-

joint and uncalibrated cameras installed at a busy under-

ground station with a ticket hall and a concourse leading to

two single train platforms via escalators (see Fig. 1). Three

cameras were placed in the ticket hall and two cameras were

positioned to monitor the escalator areas. Both train plat-

forms were covered by two cameras each. The video from

each camera lasts around 20 hours from 5:42am to 01:19am

the next day, giving a total of 177 hours of video footage at

a frame rate of 0.7 fps. Each frame has a size of 320× 230.

The dataset was divided into 10 subsets, each of which

contains 5000 frames (≈ 2-hour in length) per camera. Two

subsets were used as validation data. For the remaining 8

subsets, 500 frames/camera from each subsets were used

for training and the rest for testing, i.e. 10% for training.

Global Time-delayed Dependency Learning – Using the

training data, the 9 camera views were automatically de-

composed into 65 semantically meaningful regions (see

Fig. 1). Given the scene decomposition, the global activ-

ities, composed of 65 regional activities, are modelled us-

ing a TD-PGM. The model structure, which encodes the

time-delayed dependencies among regional activities, was

initialised using pairwise TDMI and then optimised glob-

ally using our two-stage structure learning method. The

final structure of the TD-PGM is depicted in Fig. 2. As

expected, most of the discovered dependencies are between

regions from the same camera views which have short time-

delays. However, a number of interesting dependencies be-

tween inter-camera regions were also discovered accurately.

For instance, the entrance/exit region in Cam 6 (Region 41)

has an edge pointing towards the bottom of the going-up es-

calator in Cam 5 (Region 33) with a time delay of 38 frames.



Figure 1. The underground station layout and the decomposed camera views for our dataset. Entry and exit points are shown in red bars.

Passengers typically enter from the main entrance, walk through the ticket hall or queue up for tickets (Cam 1), enter the concourse through

the ticket barriers (Cam 2, 3), take the escalators (Cam 4, 5), and enter one of the platforms. The opposite route is taken if they are leaving

the station. The dataset is challenging due to: (1) complexity and diversity of the scene (e.g. behaviour on the platforms are very different

from the behaviours in the ticket hall), (2) low video temporal and spatial resolution, (3) enormous number of objects appears in the scene

especially during peak hours, (4) complex crowd dynamics, (e.g. passengers may appear in a group or individual, remain stationary at any

point of the scenes, not to get on an arrived train etc.) (5) the existence of multiple entry and exit points that are not visible in the camera

views.

This corresponds to the inter-camera activity of passengers

leaving the northbound platform, walking along a corridor

(invisible from the nine views), and taking the escalator up.

We compared our method (TDMI+SL) with three al-

ternative dependency learning methods: (1) our two-stage

structure learning method but initialised using MI rather

than TDMI (MI+SL), to demonstrate the importance of

encoding time-delay; (2) pairwise (without global) depen-

dency learning method of [11] (xCCA without SL), to

highlight the effectiveness of global dependency optimisa-

tion; (3) our structure learning method but initialised using

xCCA rather than TDMI (xCCA+SL), to show the advan-

tage of modelling non-linearity among activity dependen-

cies using TDMI. Note that the same global activity repre-

sentation described in Sec. 3.1 was used on both TDMI and

xCCA based approaches. The results are shown in Fig. 3.

From Fig. 3(b), it is evident that without taking time de-

lay into account, ML+SL yielded a number of incorrect de-

pendency links such as 34→ 23 and 39→ 45 (highlighted

with red circles), which are against the causal flow of ac-

tivity patterns. Fig. 3(d) clearly shows that without global

dependency optimisation, most of the dependencies discov-

ered by method proposed in [11] were redundant. The result

was greatly improved after applying the proposed structure

learning method (see Fig. 3(c)). However, there were still a

few missing links such as regions (31,23) and regions (2,4).

This is mainly due to the use of pairwise linear correlations

without taking into account non-linearity among activity de-

pendencies across regions.

Anomaly Detection – For quantitative evaluation of our

anomaly detection method, ground truth was obtained by

exhaustive frame-wise examination on the entire test set.

(a) TDMI+SL (b) MI+SL

(c) xCCA+SL (d) xCCA without SL

Figure 3. Activity global dependency structures learned using dif-

ferent methods. The y-axis represents the parent nodes, whilst the

x-axis represents the child nodes. A black mark at (y,x) means

y → x. Missed edges and redundant edges are depicted using

squares and circles respectively, except in (d) where there are too

many.

Consequently, nine anomaly cases were found, each of them

lasting between 34 to 462 frames with an average of 176

frames (254 secs). In total, there were 1585 anomalous

frames accounting for 4.53% of the total frames in the test

set. As shown in Table 1, these anomaly cases fall into three

categories, all of which involve multiple regional activities.

A TD-PGM learned using our TDMI+SL method was

employed for anomaly detection using the proposed CAS.

One of the two free parameters in our approach, the de-



Figure 2. An activity global dependency graph learned using the two-stage structure learning method. Edges are labelled with the as-

sociated time delays discovered using the Time Delayed Mutual Information analysis. Regions and nodes with discovered inter-camera

dependencies are highlighted.

Cases Anomaly Description Cam Total frames

(% from total)

1-6 The queue in front of the ticket counters was

built to a sufficient depth in Regions 1, 2, 4

that it blocked the normal route from Region

5 to 2 taken by passenger who did not have to

buy ticket (see Fig. 6)

1 1021 (2.92)

7-8 Faulty trains on the platforms in Cam 6 and 7

resulting in overcrowding. To prevent further

congestion on the platform, passengers were

disallowed to enter the platforms via the

escalator (Region 34 in Cam 5). This in turn

caused congestion in front of the escalator

entry zone in Cam 4 (see Fig. 7)

4,5,6,7 446 (1.27)

9 Train moved in reversed direction 6,7 118 (0.34)

Table 1. Ground truth.

Figure 4. Anomaly scores computed using (a) log-likelihood (LL),

and (b) cumulative abnormality score (CAS). Ground truths of

anomalies are represented as bars in green colour.

Figure 5. Receiving operating characteristic (ROC) curves ob-

tained using different methods.

cay factor δ of CAS was set to 10 throughout the exper-

iments. From our experiments, we found that consistent

results were obtained with δ set beyond value 5. The per-

formance of our approach (TDMI+SL+CAS) was evalu-

ated using ROC curve by varying the other free parameter

threshold Th. This was compared with four alternative ap-

proaches as shown in Fig. 5.

We first examine how effective the proposed CAS is for

anomaly detection. Specifically our approach was com-

pared with a method that use the same TD-PGM but with

the conventional LL score, denoted as TDMI+SL+LL. As

can be seen from Fig. 4, using the LL-based abnormality

score, the true anomalies are overwhelmed by the noise col-

lected from the large number of regions and thus difficult to

detect. The poor performance is also evident from its ROC

curve in Fig. 5. In contrast, the proposed CAS effectively

alleviated the effect of noise, thus offering much more su-

perior anomaly detection performance.

We further investigate how anomaly detection perfor-

mance can be affected when the global time-delayed de-

pendencies among regional activities are not learned ac-

curately. More specifically, TD-PGMs were learned using

MI+SL, xCCA without SL, XCCA+SL respectively as de-

scribed above. CAS was then used for anomaly detection.

These three methods are denoted as MI+SL+CAS, xCCAw-

ithoutSL+CAS, and xCCA+SL+CAS respectively. For

xCCAwithoutSL+CAS, the structure discovered by xCCA

cannot be applied directly since the structure is not acyclic.

We therefore followed steps described in Sec. 3.3.1 to gen-

erate an optimal dependence tree with pairwise correlations

for comparison. It is evident from Fig. 5 that without accu-

rate dependencies learned using our TDML+SL, all three

methods yielded much poorer performance. In particu-

lar, the missing time-delayed dependencies shown in Fig. 3

caused missed detections of true anomalies whilst those re-

dundant dependencies resulted in false positives.

Figure 6. Example frames from detection output using the pro-

posed framework on analysing anomalies caused by atypical long

queues. The plot depicts the associated cumulative abnormality

scores produced by different methods over the period. In ground

truth, anomalies occurred at frames (5741-5853) and (5915-6376).



Figure 7. Global anomaly due to faulty train, which first occurred

in Cam 6 and Cam 7 (not shown here), and later propagated to

Cam 5 and Cam 4. In ground truth, anomalies occurred at frames

(15340-15680).

An example of anomaly detection using the proposed ap-

proach is given in Fig. 6. The contributing anomalous re-

gions are highlighted in red following the method described

in Sec. 3.4 with P = 0.8. The atypical long queue led to a

robust detection using our approach. In comparison, other

methods yielded a weaker response or no response at all.

Another example of anomaly detection using our ap-

proach is shown in Fig. 7. This anomaly was Case 7 in Ta-

ble 1. As can be seen in Fig. 7, our approach detected the

anomaly across Cam 4, Cam 5 and Cam 6 successfully.

Specifically, our model first detected abnormal crowd dy-

namics in Cam 6, i.e. all train passengers were asked to get

off the train. From frame 15340 to frame 15680, passengers

were disallowed to use the downward escalator and there-

fore started to accumulate at the escalator entry zone in Cam

4. The congestion led to a high CAS in Region 25. A large

volume of crowd in Region 34 of Cam 5 was expected due

to the high crowd density in Region 26 of Cam 4. However,

the fact that Region 34 was empty violated the model’s ex-

pected time delayed dependency, therefore causing a high

CAS in Region 34. The proposed approach also associated

the anomaly occurred in Region 34 with Region 26, which

has an immediate and direct causal effect to it.

We also followed the method proposed in [19] to con-

struct a CHMM with each chain corresponded to a region.

However, the model is computationally intractable on our

platform (dual-Core 3GHz processor with 4GB of RAM)

due to the high space complexity during the inference stage.

5. Conclusions

We presented a novel approach to learn time delayed ac-

tivity dependencies for global anomaly detection in multiple

disjoint cameras. Time delayed dependencies are learned

globally using a new two-stage structure learning method.

Extensive experiments demonstrate that the new approach

outperforms methods that disregard the time delay factor or

without learning dependency structure globally. Finally, the

proposed cumulative abnormality score has yielded supe-

rior result in achieving robust and reliable anomaly detec-

tion compared to conventional log-likelihood score.
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