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Abstract. This document provides the supplementary information that
is not elaborated in our main paper due to the space constraints: Sec. A
details the different applications we have explored. Sec. B describes de-
tails of the datasets used in our experiments. Sec. C provides additional
implementation details. Sec. D presents several supplementary ablation
studies. Sec. E shows more examples of the images generated by our
method.

A Application Exploration

We have introduced a Two-Stream Image-to-image Translation (TSIT) frame-
work in the main paper. The proposed framework is simple and versatile for var-
ious image-to-image translation tasks under both unsupervised and supervised
settings. We have considered three important and representative applications
of conditional image synthesis: arbitrary style transfer (unsupervised), semantic
image synthesis (supervised), and multi-modal image synthesis (enriching gen-
eration diversity). We employ a two-stream network, namely “content” stream
and “style” stream, on these applications.

For the unsupervised arbitrary style transfer application, we feed the content
image to the content stream and the style image to the style stream, and let
the networks learn different levels of feature representations of the content and
style. The proposed feature transformations, FADE and FAdaIN, adaptively fuse
content and style feature maps, respectively, at different scales in the generator.
In contrast to prior works, our method is more adaptable to style transfer tasks in
diverse scenarios (e.g., natural images, real-world scenes, and artistic paintings).

We further expand the application of our method to cater to semantic image
synthesis under the supervised setting. The definition of “content” and “style”
can be more general: all the images that provide semantic structure information
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can be content images, and all the images representing the global style distri-
bution can be considered as style images. Therefore, when we inject semantic
segmentation masks to the content stream and the corresponding real images to
the style stream, semantic image synthesis task in the supervised setting can be
handled. Despite a rather large domain gap in this task, our framework yields
comparable or even better results over the state-of-the-art task-specific methods,
suggesting the high adaptability of our approach.

It is noteworthy to highlight that the newly proposed feature transformations
and the symmetrical two-stream network can effectively disentangle the seman-
tic structure and style information. Thanks to the clean disentanglement, the
high-level multi-modal nature of the images can be captured by our framework,
contributing to high-fidelity multi-modal image synthesis.

B Dataset Details

In this section, we discuss the detailed information of all the datasets we explored,
including the source, preprocessing, number of images, resolution, etc.

For arbitrary style transfer under the unsupervised setting, paired data are
not needed. We perform style transfer tasks in diverse scenarios (e.g., natural
images, real-world scenes, and artistic paintings).

– Yosemite summer → winter. We use this unpaired dataset provided by
[12], containing rich natural images collected via Flickr API. We perform
season transfer using this dataset, with 1, 231 summer images and 962 winter
images for training. The resolution is 256× 256.

– BDD100K day → night. We conduct time translation on BDD100K [10]
dataset, which is captured at diverse locations in the United States. All the
images are in real-world scenes, mostly street/road scenes. We classify the
dataset into different times. The training set contains 12, 454 daytime images
and 22, 884 nighttime images. The original images are scaled to 512× 256.

– Photo → art. We utilize the art dataset collected in [12]. The art images
of this dataset were downloaded from Wikiart.org. The dataset consists of
photographs and diverse artistic paintings (Monet: 1, 074; Cézanne: 584; van
Gogh: 401; Ukiyo-e: 1, 433). To test the robustness of the models for arbitrary
style transfer, we combine all the artistic styles, yielding 6, 853 photos and
3, 492 paintings for training. All the images are uniformly resized to 256×256.

For semantic image synthesis under the supervised setting, we follow [6, 7]
and select several challenging datasets.

– Cityscapes. Cityscapes [1] dataset contains street scene images mostly col-
lected in Germany, with 2, 975 images for training and 500 images for eval-
uation. The dataset provides instance-wise, dense pixel annotations of 30
classes. All the image sizes are adjusted to 512× 256.

– ADE20K. We use ADE20K [11] dataset consisting of challenging in-the-
wild images with fine annotations of 150 semantic classes. The sizes of train-
ing and validation sets are 20, 210 and 2, 000, respectively. All the images
are scaled to 256× 256.
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For multi-modal image synthesis, we use BDD100K [10] dataset, details of
which have been described earlier.

– BDD100K sunny → different time/weather conditions. We further
classify the images in BDD100K [10] dataset into different time and weather
conditions, constituting a training set of 10, 000 sunny images and 10, 000
images of other time and weather conditions (night: 2, 500; cloudy: 2, 500;
rainy: 2, 500; snowy: 2, 500). The resolution is 512× 256.

C Additional Implementation Details

We provide more implementation details in this section, including the network
architecture specifics, detailed feature shapes, hyperparameters, etc.
Network architecture specifics. Our framework consists of four components:
content stream, style stream, generator, and discriminators. The first three com-
ponents maintain a symmetrical structure, using fully convolutional networks.
The number of residual blocks k (i.e., downsampling/upsampling times) in the
content/style stream and the generator equals to 7. Let inc, outc, kn, s, p de-
note the input channel, the output channel, the kernel size, the stride, and the
zero-padding amount, respectively.

In the content/style stream, we use a series of content/style residual blocks
with the nearest neighbor downsampling. The scale factor of downsampling is
2. By default, we use instance normalization [8] for the content/style resid-
ual blocks, and the negative slope of Leaky ReLU is 0.2. Thus, the struc-
ture of Content/Style ResBlk(inc, outc) is: Downsample(2)−Conv(inc, inc, kn3×
3, s1, p1)−IN− LReLU(0.2)−Conv(inc, outc, kn3 × 3, s1, p1)−IN− LReLU(0.2)
with the learned skip connection Conv(inc, outc, kn1×1, s1, p0)−IN− LReLU(0.2).

In the generator, we construct several FADE residual blocks with the near-
est neighbor upsampling. The scale factor of upsampling is 2. FAdaIN layers
are applied before each FADE residual block. The FADE residual block con-
tains a FADE submodule, which performs element-wise denormalization using a
learned affine transformation defined by the modulation parameters γ and β. Let
normc, featc indicate the normalized channel and the injected feature channel,
respectively. Then, the convolutional layers in FADE(normc, featc) can be rep-
resented as: Conv(featc, normc, kn3 × 3, s1, p1). By default, we adopt SyncBN
for the generator, and the negative slope of Leaky ReLU is 0.2. The structure of
FADE ResBlk(inc, outc) is: FADE(inc, inc)−LReLU(0.2)−Conv(inc, inc, kn3×
3, s1, p1)−FADE(inc, inc)−LReLU(0.2)−Conv(inc, outc, kn3× 3, s1, p1)−Upsa-
mple(2) with the learned skip connection FADE(inc, inc)−LReLU(0.2)−Conv(inc,
outc, kn1× 1, s1, p0).

As mentioned in the main paper, we exploit the same multi-scale patch-based
discriminators as [9, 7]. The detailed network architectures and the layers used
for feature matching loss [9] are also identical.
Feature shapes. In the content/style stream, we put an input layer at the
entrance. The feature channel is adjusted to 64 after the input layer, while the
resolution remains unchanged. Then, the feature channels after each of the k(7)
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residual blocks are: 128, 256, 512, 1024, 1024, 1024, 1024. Since the scale factor
of downsampling is 2 (as described in the network architecture specifics above),
the resolution of the features is halved after each residual block. The generator
feature shapes are strictly corresponding and opposite to that of content/style
stream. The discriminator feature shapes are identical to that in [9, 7], where
the resolution is halved on every step of the pyramid.

Additional training details. For perceptual loss, we use the feature recon-
struction loss that requires a content target [4].

In the arbitrary style transfer and multi-modal image synthesis tasks, the
content target is the content image. The loss weights are λP = 1, λFM = 1, and
the batch size is 1. We train our models for 200 epochs on Yosemite summer →
winter, 10 epochs on BDD100K day→ night, 40 epochs on Photo→ art, and 20
epochs on BDD100K sunny → different time/weather conditions. The models
are trained on 1 NVIDIA Tesla V100 GPU, with around 10 GB memory con-
sumption. For multi-modal image synthesis, similar to [3], at the inference phase
we run the generator network in exactly the same manner as during the training
phase. For the cross validation of SPADE [7], the hyperparameters obtaining the
best generation results are λP = 10, λFM = 10.

In the semantic image synthesis task, the content target is the ground truth
real image. The corresponding loss weights are λP = 20, λFM = 10, and the
batch size is 16. We perform 200 epochs of training on Cityscapes and ADE20K.
The models are trained on 2 NVIDIA Tesla V100 GPUs, each with about 32 GB
memory consumption. We also find that in semantic image synthesis, weaken-
ing/removing the style stream can sometimes contribute to a performance boost.
Besides, exploiting variational auto-encoders [5] can help in certain cases. For
the cross validation of MUNIT [2], since the loss functions are very different
from ours, we use its default hyperparameters in unsupervised image-to-image
translation.

D Supplementary Ablation Studies

We ablate the key modules (i.e., content stream (CS), style stream(SS)) and the
proposed feature transformations in the main paper. We perform multi-modal
image synthesis to clearly show the effectiveness of different components. Due
to the space constraints, we only provide qualitative evaluation results. In this
section, we will first show the quantitative evaluation results of key component
ablation studies in the main paper. Then, we will dig deeper and present more
supplementary ablation study results.

Quantitative evaluation of key component ablation studies. We conduct
quantitative evaluation on ablation studies of the key components in multi-modal
image synthesis task. As shown in Table 1, using the full model we introduced,
the lowest FID score and highest IS score have been achieved. This means the
generated images by our full model are the most photorealistic, clearest, and
of the highest diversity. Without any key module of TSIT, the quantitative
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Table 1. The quantitative evaluation on ablation studies of the key modules (i.e.,
content stream (CS), style stream (SS)) and the feature transformations in multi-modal
image synthesis task. A lower FID and a higher IS indicate better performance.

multi-modal image synthesis
Metrics full model w/o CS w/o SS w/o FADE w/o FAdaIN

FID ↓ 85.876 89.429 86.263 86.463 89.795
IS ↑ 2.934 2.851 2.734 2.881 2.890

Table 2. The quantitative evaluation on ablation studies of CS/SS feature channels
for unsupervised arbitrary style transfer (day → night). A lower FID and a higher IS
indicate better performance.

arbitrary style transfer (day → night)
Metrics full model channels÷ 2 channels÷ 4

FID ↓ 79.697 82.357 95.199
IS ↑ 2.203 2.142 2.101

Table 3. The quantitative evaluation on ablation studies of CS/SS feature channels
for supervised semantic image synthesis (Cityscapes). A higher mIoU, a higher pixel
accuracy (accu) and a lower FID indicate better performance.

semantic image synthesis (Cityscapes)
Metrics full model channels÷ 2 channels÷ 4

mIoU ↑ 65.9 61.0 56.6
accu ↑ 94.4 93.7 93.0
FID ↓ 59.2 71.8 74.4

Table 4. The quantitative evaluation on ablation studies of CS/SS feature channels for
multi-modal image synthesis. A lower FID and a higher IS indicate better performance.

multi-modal image synthesis
Metrics full model channels÷ 2 channels÷ 4

FID ↓ 85.876 93.258 97.297
IS ↑ 2.934 2.851 2.813

performance will drop. This verifies the necessity of these components for our
method.

Feature channel ablation studies. We also study how the number of fea-
ture channels in the two streams (i.e., content stream (CS) and style stream
(SS)) affects the image synthesis results. We conduct quantitative evaluation of
feature channel ablation studies, covering all of the discussed tasks. Note that
we should change the channels in CS/SS at the same time to maintain a sym-
metrical structure. As presented in Table 2, Table 3 and Table 4, in different
tasks under either unsupervised or supervised setting, the best performance is
achieved by the full model of TSIT. As we reduce the channel numbers in the
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Table 5. The quantitative evaluation on ablation studies of feature-level (FAdaIN)/
image-level (AdaIN) injection for unsupervised arbitrary style transfer (day → night).
A lower FID and a higher IS indicate better performance.

arbitrary style transfer (day → night)
Metrics feature-level image-level

FID ↓ 79.697 80.618
IS ↑ 2.203 2.182

Table 6. The quantitative evaluation on ablation studies of feature-level (FADE)/
image-level (SPADE) injection for supervised semantic image synthesis (Cityscapes).
A higher mIoU, a higher pixel accuracy (accu) and a lower FID indicate better perfor-
mance.

semantic image synthesis (Cityscapes)
Metrics feature-level image-level

mIoU ↑ 65.9 59.7
accu ↑ 94.4 93.3
FID ↓ 59.2 60.1

two-stream network, the image synthesis quality gradually degrade. For more
channels, memory consumption will increase exponentially.
Feature-level/Image-level injection ablation studies. To verify the impor-
tance of the feature-level injection, We further conduct feature-level/image-level
injection ablation studies. TSIT performs feature-level injections from the con-
tent/style stream to the generator to adapt to diverse tasks. In comparison, the
direct injection of resized images (i.e., the direct application of AdaIN in arbi-
trary style transfer, and SPADE in semantic image synthesis) can be regarded as
the image-level injections. We provide quantitative evaluation results under this
setting. As shown in Table 5 and Table 6, compared to our feature-level injection
scheme, the image-level injection leads to a performance drop. This suggests the
significance of feature-level injection in TSIT.

E More Examples of Generated Images

We show more examples of generated results by our method in Fig. 1 and Fig. 2.
Several generated images of arbitrary style transfer, covering diverse scenarios,
are presented in Fig. 1. We also show more synthesized exmaples of semantic
image synthesis in Fig. 2. These examples feature both outdoor and indoor
scenes, generated from the corresponding semantic segmentation label maps. All
the images synthesized by our proposed method are very photorealistic.
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Fig. 1. More examples of images generated by our method in the arbitrary style transfer
task (unsupervised). Rows 1-3 show Yosemite summer→ winter season transfer results.
Rows 4-6 are BDD100K day → night translation results. Rows 7-9 present photo →
art style transfer results.
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Fig. 2. More examples of images generated by our method in the semantic image
synthesis task (supervised). Row 1 and 2 show generated results on Cityscapes dataset.
Row 3 and 4 are outdoor synthesized results on ADE20K dataset. Row 5 and 6 present
indoor synthesized results on ADE20K dataset.


