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Abstract. Knowledge distillation, which involves extracting the “dark
knowledge” from a teacher network to guide the learning of a student
network, has emerged as an important technique for model compression
and transfer learning. Unlike previous works that exploit architecture-
specific cues such as activation and attention for distillation, here we wish
to explore a more general and model-agnostic approach for extracting
“richer dark knowledge” from the pre-trained teacher model. We show
that the seemingly different self-supervision task can serve as a simple
yet powerful solution. For example, when performing contrastive learning
between transformed entities, the noisy predictions of the teacher network
reflect its intrinsic composition of semantic and pose information. By
exploiting the similarity between those self-supervision signals as an
auxiliary task, one can effectively transfer the hidden information from
the teacher to the student. In this paper, we discuss practical ways
to exploit those noisy self-supervision signals with selective transfer
for distillation. We further show that self-supervision signals improve
conventional distillation with substantial gains under few-shot and noisy-
label scenarios. Given the richer knowledge mined from self-supervision,
our knowledge distillation approach achieves state-of-the-art performance
on standard benchmarks, i.e., CIFAR100 and ImageNet, under both
similar-architecture and cross-architecture settings. The advantage is
even more pronounced under the cross-architecture setting, where our
method outperforms the state of the art by an average of 2.3% in accuracy
rate on CIFAR100 across six different teacher-student pairs. The code
and models are available at: https://github.com/xuguodong03/SSKD.

1 Introduction

The seminal paper by Hinton et al. [15] show that the knowledge from a large
ensemble of models can be distilled and transferred to a student network. Specifi-
cally, one can raise the temperature of the final softmax to produce soft targets
of the teacher for guiding the training of the student. The guidance is achieved by
minimizing the Kullback-Leibler (KL) divergence between teacher and student
outputs. An interesting and inspiring observation is that despite the teacher model
assigns probabilities to incorrect classes, the relative probabilities of incorrect
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Fig. 1. Difference between conventional KD [15] and SSKD. We extend the
mimicking on normal data and on a single classification task to the mimicking on
transformed data and with an additional self-supervision pretext task. The teacher’s
self-supervision predictions contain rich structured knowledge that can facilitate more
rounded knowledge distillation on the student. In this example, contrastive learning on
transformed images serves as the self-supervision pretext task. It constructs a single
positive pair and several negative pairs through image transformations t(·), and then
encourages the network to recognize the positive pair. The backbone of the teacher and
student are represented as ft and fs, respectively, while the corresponding output is
given as t and s with subscript representing the index

answers are exceptionally informative about generalization of the trained model.
The hidden knowledge encapsulated in these secondary probabilities is sometimes
known as “dark knowledge”.

In this work, we are fascinated on how one could extract richer “dark knowl-
edge” from neural networks. Existing studies focus on what types of intermediate
representations of teacher networks should student mimic. These representations
include feature map [36,37], attention map [44], gram matrix [42], and feature
distribution statistics [16]. While the intermediate representations of the network
could provide more fine-grained information, a common characteristic shared by
these medium of knowledge is that they are all derived from a single task (typi-
cally the original classification task). The knowledge is highly task-specific, and
hence, such knowledge may only reflect a single facet of the complete knowledge
encapsulated in a cumbersome network. To mine for richer “dark knowledge”, we
need an auxiliary task apart from the original classification task, so as to extract
richer information that is complementary to the classification knowledge.

In this study, we show that a seemingly different learning scheme – self-
supervised learning, when treated as an auxiliary task, can help gaining more
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rounded knowledge from a teacher network. The original goal of self-supervised
learning is to learn representations with natural supervisions derived from data
via a pretext task. Examples of pretext tasks include exemplar-based method [8],
rotation prediction [10], jigsaw [29], and contrastive learning [3,26]. To use self-
supervised learning as an auxiliary task for knowledge distillation, one can apply
the pretext task to a teacher by appending a lightweight auxiliary branch/module
to the teacher’s backbone, updating the auxiliary module with the backbone
frozen, and then extract the corresponding self-supervised signals from the
auxiliary module for distillation. An example of combining a contrastive learning
pretext task [3] with knowledge distillation is shown in Fig. 1.

The example in Fig. 1 reveals several advantages of using self-supervised
learning as an auxiliary task for knowledge distillation (we name the combination
as SSKD). First, in conventional knowledge distillation, a student mimics a teacher
from normal data based on a single classification task. SSKD extends the notion
to a broader extent, i.e., mimicking on transformed data and on an additional self-
supervision pretext task. This enables the student to capture richer structured
knowledge from the self-supervision predictions of teacher, which cannot be
sufficiently captured by a single task. We show that such structured knowledge
not only improves the overall distillation performance, but also regularizes the
student to generalize better on few-shot and noisy-label scenarios.

Another advantage of SSKD is that it is model-agnostic. Previous knowledge
distillation methods suffer from degraded performance under cross-architecture
settings, for the knowledge they transfer is architecture-specific. For example,
when transfer the feature of ResNet50 [12] to ShuffleNet [49], student may have
trouble in mimicking due to the architecture gap. In contrast, SSKD transfers only
the last layer’s outputs, hence allowing a flexible solution space for the student
model to search for intermediate features that best suit its own architecture.
Contributions: We propose a novel framework called SSKD that leverages self-
supervised tasks to facilitate extraction of richer knowledge from teacher network
to student network. To our knowledge, this is the first work that defines the
knowledge through self-supervised tasks. We carefully investigate the influence
of different self-supervised pretext tasks and the impact of noisy self-supervised
predictions to the performance of knowledge distillation. We show that SSKD
greatly boosts the generalizability of student networks and offers significant
advantages under few-shot and noisy-label scenarios. Extensive experiments on
two standard benchmarks, CIFAR100 [22] and ImageNet [5], demonstrate the
effectiveness of SSKD over other state-of-the-art methods.

2 Related Work

Knowledge Distillation. Knowledge distillation trains a smaller network using
the supervision signals from both ground truth labels and a larger network.
Hinton et al. [15] propose to match the outputs of classifiers of two models by
minimizing the KL-divergence of the category distribution. Besides the final
layer logits, teacher network also distills compact feature representations from



4 G. Xu et al.

its backbone. FitNets [37] proposes to mimic the intermediate feature maps of
teacher network. AT [44] uses attention transfer to teach student which region
is the key for classification. FSP [42] distills the second order statistics (Gram
matrix) between different layers. AB [14] forces student to learn the binarized
values of pre-activation map. IRG [24] explores transferring the similarity between
samples. KDSVD [18] calls its method as self-supervised knowledge distillation.
Nevertheless, the study regards the teacher’s correlation maps of feature singular
vectors as self-supervised labels. The label is obtained from the teacher rather than
a self-supervised pretext task. Thus, their notion of self-supervised learning differ
from the conventional one. Our work, to our knowledge, is the first study that
investigates defining the knowledge via self-supervised pretext tasks. CRD [40] also
combines self-supervision (SS) with distillation. The difference is the purpose of SS
and how contrastive task is performed. In CRD, contrastive learning is performed
across teacher and student networks to maximize the mutual information between
two networks. In SSKD, contrastive task serves as a way to define knowledge.
It is performed separately in two networks and then matched together through
KL-divergence, which is very different from CRD.
Self-Supervised Learning. Self-supervision methods design various pretext
tasks whose labels can be derived from the data itself. In the process of solving
these tasks, the network learn useful representations. Based on pretext tasks,
SS methods can be grouped into several categories, including construction-
based methods such as inpainting [34] and colorization [48], prediction-based
methods [6,8,10,20,27,29,30,45,47], cluster-based methods [2,46], generation-based
methods [7,9,11] and contrastive-based methods [3,13,26,31,39]. Exemplar [8]
applies heavy transformation to each training image and treat all the images
generated from the same image as a separate category. Jigsaw puzzle [29] splits the
image into several non-overlapping patches and forces the network to recognise the
shuffled order. Jigsaw++ [30] also involves SS and KD. But it utilizes knowledge
transfer to boost the self-supervision performance, which solves an inverse problem
of SSKD. Rotation [20] feeds the network with rotated images and forces it to
recognise the rotation angle. SimCLR [3] applies augmentation to training samples
and requires the network to match original image and transformed image through
contrastive loss. Considering the excellent performance obtained by SimCLR [3],
we adopt it as our main pretext task in SSKD. However, SSKD is not limited to
using only contrastive learning, many other pretext tasks [8,20,29] can also serve
the purpose. We investigate their usefulness in Sec. 4.1.

3 Methodology

This section is divided into three main sections. We start with a brief review of
knowledge distillation and self-supervision in Sec. 3.1. For self-supervision, we
discuss contrastive prediction as our desired pretext task, although SSKD is not
limited to contrastive prediction. Sec. 3.2 specifies the training process of teacher
and student model. Finally, we discuss the influence of noisy self-supervised
predictions and ways to handle the noise in Sec. 3.3.
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3.1 Preliminaries

Knowledge Distillation. Hinton et al. [15] suggest that the soft targets pre-
dicted by a well-optimized teacher model can provide extra information, compar-
ing to one-hot hard labels. The relatively high probabilities assigned to wrong
categories encode semantic similarities between different categories. Forcing a
student to mimic teacher’s prediction causes the student to learn this secondary
information that cannot be expressed by hard labels alone. To obtain the soft
targets, temperature scaling is introduced in [15] to soften the peaky distribution:

pi(x; τ) = Softmax(s(x); τ) =
esi(x)/τ∑
k e

sk(x)/τ
, (1)

where x is the data sample, i is the category index, si(x) is the score logit that x
obtains on category i, and τ is the temperature. The knowledge distillation loss
Lkd measured by KL-divergence is:

Lkd = −τ2
∑
x∼Dx

C∑
i=1

pit(x; τ) log(pis(x; τ)), (2)

where t and s denote teacher and student models, respectively, C is the total
number of classes, Dx indicates the dataset. The complete loss function L of the
student model is a linear combination of the standard cross-entropy loss Lce and
knowledge distillation loss Lkd:

L = λ1Lce + λ2Lkd (3)

Contrastive Prediction as Self-Supervision Task. Motivated by the success
of contrastive prediction methods [3,13,26,31,39] for self-supervised learning, we
adopt contrastive prediction as the self-supervision task in our framework. The
general goal of contrastive prediction is to maximize agreement between a data
point and its transformed version via a contrastive loss in latent space.

Given a mini-batch containing N data points {xi}i=1:N , we apply independent
transformation t(·) (sampled from the same distribution T ) to each data point
and obtain {x̃i}i=1:N . Both xi and x̃i are fed into the teacher or student networks

to extract representations φi = f(xi), φ̃i = f(x̃i). We follow Chen et al. [3] and
add a projection head on the top of the network. The projection head is a 2-layer
multilayer perceptron. It maps the representations into a latent space where the
contrastive loss is applied, i.e., zi = MLP(φi), z̃i = MLP(φ̃i).

We take (x̃i, xi) as the positive pair and (x̃i, xk)k 6=i as the negative pair. Given
some x̃i, the contrastive prediction task is to identify the corresponding xi from
the set {xi}i=1:N . To meet the goal, the network should maximize the similarity
between positive pairs and minimize the similarity between negative pairs. In
this work, we use a cosine similarity. If we organize the similarities between {x̃i}
and {xi} into matrix form A, then we have:

Ai,j = cosine(z̃i, zj) =
dot(z̃i, zj)

||z̃i||2||zj ||2
, (4)
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Fig. 2. Training scheme of SSKD. Input images are transformed by designated
transformations to prepare data for the self-supervision task. Teacher and student
networks both contain three components, i.e., backbone f(·), classifier p(·) and SS
module c(·, ·). Teacher’s training are split into two stages. The first stage trains ft(·)
and pt(·) with a classification task, and the second stage fine-tunes ct(·, ·) with a self-
supervision task. In student’s training, we force the student to mimic teacher on both
classification output and self-supervision output, besides the standard label loss

where Ai,j represents the similarity between x̃i and xj . The loss of contrastive
prediction is:

L = −
∑
i

log

(
exp(cosine(z̃i, zi)/τ)∑
k exp(cosine(z̃i, zk)/τ)

)
= −

∑
i

log

(
exp(Ai,i/τ)∑
k exp(Ai,k/τ)

)
,

(5)
where τ is another temperature parameter (can be different from τ in Eqn. (1)).
The loss form is similar to softmax loss and can be understood as maximizing the
probability that z̃i and zi come from a positive pair. In the process of matching
{x̃i} and {xi}, the network learns transformation invariant representations. In
SSKD, however, the main goal is not to learn representations invariant to trans-
formations, but to exploit contrastive prediction as an auxiliary task for mining
richer knowledge from the teacher model.

3.2 Learning SSKD

The framework of SSKD is shown in Fig. 2. Both teacher and student consist of
three components: a backbone f(·) to extract representations, a classifier p(·) for
the main task and a self-supervised (SS) module for specific self-supervision task.
In this work, contrastive prediction is selected as the SS task, so the SS module
ct(·, ·) and cs(·, ·) consist of a 2-layer MLP and a similarity computation module.
More SS tasks will be compared in the experiments.
Training the Teacher Network. The inputs are normal data {xi} and trans-
formed version {x̃i}. The transformation t(·) is sampled from a predefined trans-
formation distribution T . In this study, we select four transformations, i.e., color
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dropping, rotation, cropping followed by resize and color distortion, as depicted
in Fig. 2. More transformations can be included. We feed x and x̃ to the backbone
and obtain their representations φ = ft(x), φ̃ = ft(x̃).

The training of teacher network contains two stages. In the first stage, the
network is trained with the classification loss. Only the backbone ft(·) and
classifier pt(·) are updated. Note that the classification loss is not computed on
transformed data x̃ because the transformation T is much heavier than usual
data augmentation. Its goal is not to enlarge the training set but to make the x̃
visually less similar to x. It makes the contradistinction much harder, which is
beneficial to representation learning [3]. Forcing the network to classify x̃ correctly
can destroy the semantic information learned from x and hurt the performance.
In the second stage, we fix ft(·) and pt(·), and only update parameters in SS
module ct(·, ·) using the contrastive prediction loss in Eqn. (5).

The two stages of training have distinct roles. The first stage is simply the
typical training of a network for classification. The second stage, aims at adapting
the SS module to use the features from the existing backbone for contrastive
prediction. This allows us to extract knowledge from the SS module for distillation.
It is worth pointing out that the second-stage training is highly efficient given
the small MLP head, thus it is easy to prepare a teacher network for SSKD.
Training the Student Network. After training the teacher’s SS module, we
apply softmax (with temperature scale τ) to the teacher’s similarity matrix A
(Eqn. (4)) along the row dimension leading to a probability matrix Bt, with Bti,j
representing the probability that x̃i and xj is a positive pair. Similar operations
are applied to the student to obtain Bs. With Bt and Bs, we can compute the
KL-divergence loss between the SS module’s output of both teacher and student:

Lss = −τ2
∑
i,j

Bti,j log(Bsi,j). (6)

The transformed data point x̃ is the side product of contrastive prediction
task. Though we do not require the student to classify them correctly, we can
encourage the student’s classifier output ps(fs(x̃)) to be close to that of teacher’s.
The loss function is:

LT = −τ2
∑

x̃∼T (Dx)

C∑
i=1

pit(x̃; τ) log(pis(x̃; τ)). (7)

The final loss for student network is the combination of aforementioned terms,
i.e., cross entropy loss Lce, Lkd in Eqn. (2), Lss in Eqn. (6), and LT in Eqn. (7):

L = λ1Lce + λ2Lkd + λ3Lss + λ4LT , (8)

where the λi is the balancing weight.

3.3 Imperfect Self-Supervised Predictions

When performing contrastive prediction, a teacher may produce inaccurate
predictions, e.g., assigning xk to the x̃i, i 6= k. This is very likely since the



8 G. Xu et al.

backbone of the teacher is not fine-tuned together with the SS module for
contrastive prediction. Similar to conventional knowledge distillation, those
relative probabilities that the teacher assigns to incorrect answers contain rich
knowledge of the teacher. Transferring this inaccurate but structured knowledge
is the core of our SSKD.

Nevertheless, we empirically found that an extremely incorrect prediction may
still mislead the learning of the student. To ameliorate negative impacts of those
outliers, we adopt an heuristic approach to perform selective transfer. Specifically,
we define the error level of a prediction as the ranking of the corresponding
ground truth label in the classification task. Given a transformed sample x̃i and
corresponding positive pair index i, we sort the scores that the network assigns
to each {xi}i=1:N in a descending order. The rank of xi represents the error level
of the prediction about x̃i. The rank of 1 means the prediction is completely
correct. A lower rank indicates a higher degree of error. During the training of
student, we sort all the x̃ in a mini-batch in an ascending order according to error
levels of the teacher’s prediction, and only transfer all the correct predictions
and the top-k% ranked incorrect predictions. This strategy suppresses potential
noise in teacher’s predictions and transfer only beneficial knowledge. We show
our experiments in Sec. 4.1.

4 Experiments

The experiments section consists of three parts. We first conduct ablation study to
examine the effectiveness of several components of SSKD in Sec. 4.1. Comparison
with state-of-the-art methods is conducted in Sec. 4.2. In Sec. 4.3, we further
show SSKD’s advantages under few-shot and noisy-label scenarios.

Evaluations are conducted on CIFAR100 [22] and ImageNet [5] datasets,
both of which are widely used as the benchmarks for knowledge distillation.
CIFAR100 consists of 60, 000 32 × 32 colour images, with 50, 000 images for
training and 10, 000 images for testing. There are 100 classes, each contains 600
images. ImageNet is a large-scale classification dataset, containing 1, 281, 167
images for training and 50, 000 images for testing.

4.1 Ablation Study

Effectiveness of Self-Supervision Auxiliary Task. The motivation behind
SSKD is that teacher’s inaccurate self-supervision output encodes rich structured
knowledge of teacher network and mimicking this output can benefit student’s
learning. To examine this hypothesis, we train a student network whose only
training signals come from teacher’s self-supervision output, i.e., set λ1,λ2, λ3 in
Eqn. (8) to be 0, and observe whether student can learn good representations.

We first demonstrate the utility by examining the student’s feature distri-
bution. We select vgg13 [38] and vgg8 as the teacher and student networks,
respectively. The CIFAR100 [22] training split is selected as the training set.
After the training, we use the student backbone to extract features (before logits)
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(a) t-SNE visualization (b) The effects of LT and Lss

Fig. 3. Effectiveness of Self-Supervision Auxiliary Task. Mimicking the self-
supervision output benefits the feature learning and final classification performance.
(a) t-SNE visualization of learned features by mimicking teacher’s self-supervision
output. Each color represents one category. (b) The consistent improvement across all
four tested teacher-student network pairs demonstrates the effectiveness of including
self-supervision task as an auxiliary task

of CIFAR100 test set. We randomly select 9 categories out of 100 and visualize
the features with t-SNE. The results are shown in Fig. 3(a). Though the accuracy
of teacher’s contrastive prediction is only around 50%, mimicking this inaccurate
output still makes student learn highly clustered patterns, showing that teacher’s
self-supervision output does transfer meaningful structured knowledge.

To test the effectiveness of designed LT and Lss, we compare three variants
of SSKD with CIFAR100 on four teacher-student pairs. The three variants are:
1) conventional KD, 2) KD with additional loss LT (KD+LT ), 3) full SSKD
(KD+LT+Lss). The results are shown in Fig. 3(b). On all four different teacher-
student pairs, LT and Lss boost the accuracies by a large margin, showing the
effectiveness of our designed components.

Influence of Noisy Self-Supervision Predictions. As discussed in Sec. 3.3,
removing some extreme outliers are beneficial for SSKD. Some transformed
samples with large error levels may play a misleading role. To examine this
conjecture, we compare several students that receive different proportions of
incorrect predictions from teacher. Specifically, we sort all the transformed x̃ in
a mini-batch according to their error levels in an ascending order. We transfer
all the correct predictions. For incorrect predictions, we only transfer top-k%
samples with the smallest error levels. A higher k value indicates a higher number
of predictions with larger error levels being transferred to student network.
Experiments are conducted on CIFAR100 with three teacher-student pairs. The
results are shown in Table 1. The general trend shows that incorrect predictions
are beneficial (k = 0 yields the lowest accuracies). Removing extreme outliers
help to give a peak performance between k = 50 and k = 75 across different
acchitectures. When comparing with other methods in Sec. 4.2 and 4.3, we fix
k = 75 for all the teacher-student pairs.
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Table 1. Influence of Noisy Self-Supervision Predictions to Student accura-
cies(%), when transferring the top-k% smallest error-level samples. As more samples
with large error level are transferred, the performances go through a rise-and-fall process.
The baseline with k = 0 is equivalent to transferring only correct predictions

Teacher-Student pair k = 0 k = 25 k = 50 k = 75 k = 100

vgg13→vgg8 74.19 74.36 74.76 75.01 74.77
resnet32×4→ShuffleV2 77.65 77.72 77.96 78.61 77.97
wrn40-2→ wrn16-2 75.27 75.34 75.97 75.63 75.53

Table 2. Influence of Different Self-Supervision Tasks. Self-supervised (SS) per-
formance denotes the linear evaluation accuracy on ImageNet. Student accuracies
(vgg13→vgg8) derived from the corresponding SS methods are positively correlated
with the performance of the SS method itself. The SS performances are obtained
from [3,20,26]

SS method Exemplar [8] Jigsaw [29] Rotation [20] Contrastive [3]

SS performance 31.5 45.7 48.9 69.3

Student performance 74.57 74.85 75.01 75.48

Influence of Different Self-Supervision Tasks. Different pretext tasks in
self-supervision would result in different qualities of extracted features. Similarly,
distillation with different self-supervision tasks also lead to students with different
performances. Here, we examine the influence of SS method’s performance on
SSKD. We employ the commonly used linear evaluation accuracy as our metric.
In particular, each method first trains a network with its own pretext task. A
single layer classifier is then trained by using the representations extracted from
the fixed backbone. In this way, the classification accuracies represent the quality
of SS methods. In Table 2, we compare four widely used self-supervision methods:
Exemplar [8], Rotation [20], Jigsaw [29] and Contrastive [3]. We list the linear
evaluation accuracies each method obtains on ImageNet with ResNet50 [12]
network and also student’s accuracies when they are incorporated, respectively,
into KD. We find that the performance of SSKD is positively correlated with the
corresponding SS method.

4.2 Benchmark

CIFAR100. We compare our method with representative knowledge distillation
methods, including: KD [15], FitNet [37], AT [44], SP [41], VID [1], RKD [32],
PKT [33], AB [14], FT [19], CRD [40]. ResNet [12], wideResNet [43], vgg [38],
ShuffleNet [49] and MobileNet [17] are selected as the network backbones. For
all competing methods, we use the implementation of [40]. For a fair comparison,
we combine all competing methods with conventional KD [15] (except KD itself).
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Table 3. KD between
Similar Architectures.
Top-1 accuracy (%) on
CIFAR100. Bold and
underline denote the
best and the second best
results, respectively. We
denote by * methods
that we re-run using
author-provided code.
SSKD obtains the best
results on four out of five
teacher-student pairs

Teacher wrn40-2 wrn40-2 resnet56 resnet32×4 vgg13
Student wrn16-2 wrn40-1 resnet20 resnet8×4 vgg8

Teacher 76.46 76.46 73.44 79.63 75.38
Student 73.64 72.24 69.63 72.51 70.68

KD [15] 74.92 73.54 70.66 73.33 72.98
FitNet [37] 75.75 74.12 71.60 74.31 73.54

AT [44] 75.28 74.45 71.78 74.26 73.62
SP [41] 75.34 73.15 71.48 74.74 73.44
VID [1] 74.79 74.20 71.71 74.82 73.96

RKD [32] 75.40 73.87 71.48 74.47 73.72
PKT [33] 76.01 74.40 71.44 74.17 73.37
AB [14] 68.89 75.06 71.49 74.45 74.27
FT [19] 75.15 74.37 71.52 75.02 73.42

CRD* [40] 76.04 75.52 71.68 75.90 74.06

Ours 76.04 76.13 71.49 76.20 75.33

And we omit “+KD” notation in all the following tables (except for Table 5) and
figures for simplicity. 3

We compare performances on 11 teacher-student pairs to investigate the
generalization ability of each method. Following CRD [40], we split these pairs
into 2 groups according to whether teacher and student have similar architecture
styles. The results are shown in Table 3 and Table 4. In each table, the second
partition after the header show the accuracies of the teacher’s and student’s
performance when they are trained individually, while the third partition show
the student’s performance after knowledge distillation.

For teacher-student pairs with a similar architecture, SSKD performs the best
in four out of five pairs (Table 3). The gap between SSKD and the best-performing
competing methods is 0.52% (averaged on five pairs). Notably, in all six teacher-
student pairs with different architectures, SSKD consistently achieves the best
results (Table 4), surpassing the best competing methods by a large margin with
an average absolute accuracy difference of 2.14%. Results on cross-architecture
pairs clearly demonstrate that our method does not rely on architecture-specific
cues. Instead, SSKD distills knowledge only from the outputs of the final layer of
teacher model. Such strategy allows a larger solution space for student model to
search intermediate representations that best suit its own architecture.

ImageNet. Limited by computation resources, we only conduct one teacher-
student pair on ImageNet, i.e., ResNet34 as teacher and ResNet18 as student.
As shown in Table 5, for both Top-1 and Top-5 error rates, our SSKD obtains
the best performances. The results on ImageNet demonstrate the scalability of
SSKD to large-scale dataset.

3 For experiments on CIFAR100, since we add the conventional KD with competing
methods, the results are slightly better than those reported in CRD [40]. More details
on experimental setting are provided in the supplementary material.
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Table 4. KD between Different Architectures. Top-1 accuracy (%) on CIFAR100.
Bold and underline denote the best and the second best results, respectively. We denote
by * methods that we re-run using author-provided code. SSKD consistently obtains
the best results on all pairs

Teacher vgg13 ResNet50 ResNet50 resnet32×4 resnet32×4 wrn40-2
Student MobileNetV2 MobileNetV2 vgg8 ShuffleV1 ShuffleV2 ShuffleV1

Teacher 75.38 79.10 79.10 79.63 79.63 76.46
Student 65.79 65.79 70.68 70.77 73.12 70.77

KD [15] 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [37] 68.58 68.54 73.84 74.82 75.11 75.55

AT [44] 69.34 69.28 73.45 74.76 75.30 75.61
SP [41] 66.89 68.99 73.86 73.80 75.15 75.56
VID [1] 66.91 68.88 73.75 74.28 75.78 75.36

RKD [32] 68.50 68.46 73.73 74.20 75.74 75.45
PKT [33] 67.89 68.44 73.53 74.06 75.18 75.51
AB [14] 68.86 69.32 74.20 76.24 75.66 76.58
FT [19] 69.19 69.01 73.58 74.31 74.95 75.18

CRD* [40] 68.49 70.32 74.42 75.46 75.72 75.96

Ours 71.53 72.57 75.76 78.44 78.61 77.40

Table 5. Top-1/Top-5 error (%) on ImageNet. Bold and underline denote the
best and the second best results, respectively. The competing methods include CC [35],
SP [41], Online-KD [23], KD [15], AT [44], and CRD [40]. The results of competing
methods are obtained from [40]

Teacher Student CC SP Online-KD KD AT CRD CRD+KD Ours

Top-1 26.70 30.25 30.04 29.38 29.45 29.34 29.30 28.83 28.62 28.38
Top-5 8.58 10.93 10.83 10.20 10.41 10.12 10.00 9.87 9.51 9.33

Teacher-Student Similarity. SSKD can extract richer knowledge by mimick-
ing self-supervision output and make student much more similar to teacher than
other KD methods. To examine this claim, we analyze the similarity between
student and teacher networks using two metrics, i.e., KL-divergence and CKA sim-
ilarity [21]. Small KL-divergence and large CKA similarity indicate that student
is similar to teacher. We use vgg13 and vgg8 as teacher and student, respectively,
and use CIFAR100 as the training set. We compute the KL-divergence and
CKA similarity between teacher and student on three sets, i.e., test partitions of
CIFAR100, STL10 [4] and SVHN [28]. As shown in Table 6, our method achieves
the smallest KL-divergence and the largest CKA similarity on CIFAR100 test
set. Compared to CIFAR100, STL10 and SVHN have different distributions that
have not been seen during training, therefore more difficult to mimic. However,
the proposed SSKD still obtains the best results in all the metrics except KL-
divergence in STL10. From this similarity analysis, we conclude that SSKD can
help student mimic teacher better and get a larger similarity to teacher network.
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Table 6. Teacher-Student Similarity. KL-divergence and CKA-similarity [21] be-
tween student and teacher networks. Bold and underline denote the best and the
second best results, respectively. All the models are trained on CIFAR100 training set.
↓ (↑) indicates the smaller (larger) the better. SSKD wins in five out of six comparisons

Dataset CIFAR100 test set STL10 test set SVHN test set

Metric KL-div(↓) CKA-simi(↑) KL-div(↓) CKA-simi(↑) KL-div(↓) CKA-simi(↑)
KD [15] 6.91 0.7003 16.28 0.8234 15.21 0.6343
SP [41] 6.81 0.6816 16.07 0.8278 14.47 0.6331
VID [1] 6.76 0.6868 16.15 0.8298 12.60 0.6502
FT [19] 6.69 0.6830 15.95 0.8287 12.53 0.6734

RKD [32] 6.68 0.7010 16.14 0.8290 13.78 0.6503
FitNet [37] 6.63 0.6826 15.99 0.8214 16.34 0.6634

AB [14] 6.51 0.6931 15.34 0.8356 11.13 0.6532
AT [44] 6.61 0.6804 16.32 0.8204 15.49 0.6505

PKT [33] 6.73 0.6827 16.17 0.8232 14.08 0.6555
CRD [40] 6.34 0.6878 14.71 0.8315 10.85 0.6397

Ours 6.24 0.7419 14.91 0.8521 10.58 0.7382

4.3 Further Analysis

Few-Shot Scenario. In a real-world setting, the number of samples available for
training is often limited [25]. To investigate the performance of SSKD under few-
shot scenarios, we conduct experiments on subsets of CIFAR100. We randomly
sample images of each class to form a new training set. We train student model
using newly crafted training set, while maintaining the same test set. Vgg13 and
vgg8 are chosen as teacher and student model, respectively. We compare our
student’s performance with KD [15], AT [44] and CRD [40]. The percentages of
reserved samples are 25%, 50%, 75% and 100%. For a fair comparison, we employ
the same data for different methods.

The results are shown in Fig. 4(a). In all data proportions, SSKD achieves
the best result. As training samples decrease, the superiority of our method
becomes more apparent, e.g., ∼ 7% absolute improvement in accuracy compared
to all competing methods when the percentage of reserved samples are 25%.
Previous methods mainly focus on learning various intermediate features of
teacher or exploring the relations between samples. The excessive mimicking
leads to overfitting on the training set. In SSKD, the transformed images and
self-supervision task endow the student model with structured knowledge that
provides strong regularization, hence making it generalizes better to test set.
Noisy-Label Scenario. Our SSKD forces student to mimic teacher on both
classification task and self-supervision task. The student learns more well rounded
knowledge from the teacher model than relying entirely on annotated labels. Such
strategy strengthens the ability of student to resist label noise. In this section,
we investigate the performance of KD [15], FT [19], CRD [40] and SSKD when
trained with noisy label data. We choose vgg13 and vgg8 as the teacher and
student models, respectively. We assume the teacher is trained with clean data
and will be shared by all students. This assumption does not affect evaluation
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(a) Few-shot scenario (b) Noisy-label scenario

Fig. 4. Accuracies on CIFAR100 test set under few-shot and noisy-label
scenarios. (a) Students are trained with subsets of CIFAR100. SSKD achieves the
best results in all cases. The superiority is especially striking when only 25% of the
training data is available. (b) Students are trained with data with perturbed labels.
The accuracies of FT and CRD drop dramatically as noisy labels increase, while SSKD
is much more stable and maintains a high performance in all cases

on robustness of different distillation methods. When training student models,
we randomly perturb the labels of certain portions of training data and use the
original test data for evaluation. We introduce same disturbances to all methods.
Since the loss weight of cross entropy on labels affects how well a model resists
label noise, we use the same loss weight for all methods for a fair comparison.
We set the percentage of disturbed labels to be 0%, 10%, 30% and 50%. Results
are shown in Fig. 4(b). SSKD outperforms competing methods in all noise ratios.
As noise data increase, the performance of FT and CRD drop dramatically.
KD and SSKD are more stable. Specifically, accuracy of SSKD only drop by a
marginal 0.45% when the percentage of noise data increases from 0% to 50%,
demonstrating the robustness of SSKD against noisy data labels. We attribute
the robustness to the structured knowledge offered by self-supervised tasks.

5 Conclusion

In this work, we proposed a novel framework called SSKD, the first attempt
that combines self-supervision with knowledge distillation. It employs contrastive
prediction as an auxiliary task to help extracting richer knowledge from teacher
network. A selective transfer strategy is designed to suppress the noise in teacher
knowledge. We examined our method by conducting thorough experiments on
CIFAR100 and ImageNet using various architectures. Our method achieves state-
of-the-art performances, demonstrating the effectiveness of our approach. Further
analysis showed that our SSKD can make student more similar to teacher and
work well under few-shot and noisy-label scenarios.
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