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Abstract

This supplementary material provides detailed network architecture and parameter settings of our Deep Curve Estimation
Network (DCE-Net), an extra ablation study (the advantage of three-channel adjustment), more ablation study results, visual
comparisons and face detection results.

1. Detailed Architecture of DCE-Net
In Fig. 1, we present the detailed network architecture and parameter settings of our Deep Curve Estimation Network

(DCE-Net). As shown, the DCE-Net contains seven convolutional layers with symmetrical skip-connection. In the first six
convolutional layers, each convolutional layer consists of 32 convolutional kernels of size 3×3 and stride 1 followed by the
ReLU activation function. The last convolutional layer consists of 24 convolutional kernels of size 3×3 and stride 1 followed
by the Tanh activation function, which produces 24 curve parameter maps for eight iterations, where each iteration requires
three curve parameter maps for the three channels (i.e., RGB channels).
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Figure 1: The architecture of Deep Curve Estimation Network (DCE-Net).
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2. Ablation Study
In this section, we report an extra ablation study, i.e., the advantage of three-channel adjustment. To investigate the

advantage of RGB three-channel adjustment, we conduct experiments to only adjust the illumination related channels in CIE
Lab and YCbCr color spaces by using the same configurations as the adjustment in RGB color space, except removing the
color constancy loss that is only available for three-channel adjustment.

Specifically, we first transfer the input low-light image from RGB color space to CIE Lab (resp. YCbCr) color space,
then feed the L (resp. Y) component to the DCE-Net for estimating a set of curve parameter maps. We compute each loss
in L (resp. Y) channel during the training. At last, we adjust the L (resp. Y) component by pixel-wise curve mapping with
the estimated curve parameter maps. After the adjustment of L (resp. Y) component, the corresponding ab (resp. CbCr)
components are adjusted accordingly (equal proportion adjustment). In Fig. 3, we show an example to show the advantage
of three-channel adjustment.

(a) Input (b) RGB (c) CIE Lab (d) YCbCr

Figure 2: Ablation study of the advantage of three-channel adjustment (RGB, CIE Lab, YCbCr color spaces).

As observed, all the results have improved brightness and contrast; however the results adjusted in CIE Lab and YCbCr
color spaces as shown in Fig. 3(c) and (d) have obvious color deviations (e.g., the color of wall) and over-saturation (e.g., the
regions of lantern). The visual comparisons imply that three-channel adjustment can preserve the inherent color and reduce
the risk of over-saturation as shown in Fig. 3(b).



3. Ablation Study Results
In this section, we provide more results of ablation study, including the advantage of three-channel adjustment, the impact

of training data, the contribution of each loss, and the effect of parameter settings.

Results of the ablation study: the advantage of three-channel adjustment. As shown in Fig. 3, both the single channel
adjustment (CIE Lab and YCbCr color spaces) and the three-channel adjustment (RGB color space) can improve the bright-
ness of the given low-light image. However, it is difficult to control the color of the enhanced result when only adjusting the
illumination related channels (i.e., L channel in CIE Lab color space and Y channel in YCbCr color space).

(a) Input (b) RGB (c) CIE Lab (d) YCbCr

Figure 3: Ablation study of the advantage of three-channel adjustment (RGB, CIE Lab, and YCbCr color spaces). Green
boxes indicate the obvious differences and amplified details.

Results of the ablation study: the impact of training data. As shown in Fig. 4(c) and (d), only using the low-light images
as the training data (i.e., Zero-DCELow and Zero-DCELargeL), the Zero-DCE tends to over-enhance the well-lit regions
(e.g., the cup). In contrast, our Zero-DCE as shown in Fig. 4(b) has a good balance between over-enhancement and under-
enhancement. In Fig. 4(e), the Zero-DCE can better recover the dark regions (e.g. the roses) when more multi-exposure data
are used as training data (i.e., Zero-DCELargeLH ).

(a) Input (b) Zero-DCE (c) Zero-DCELow (d) Zero-DCELargeL (e) Zero-DCELargeLH

Figure 4: Ablation study of the impact of training data. Red and green boxes indicate the obvious differences and
amplified details.



Results of the ablation study: the contribution of each loss. As shown, without the spatial consistency loss Lspa, Fig. 5
(c) has relatively low contrast, such as the amplified region. The exposure control loss Lexp significantly affects the exposure
level as shown in Fig. 5(d). When removing the color constancy loss Lcol, the severe color deviation appears as shown in
Fig. 5(e). As presented in Fig. 5(f), removing the illumination smoothness loss LtvA leads to obvious artifacts.

(a) Input (b) Zero-DCE (c) w/o Lspa

(d) w/o Lexp (e) w/o Lcol (f) w/o LtvA

Figure 5: Ablation study of the contribution of each loss (spatial consistency loss Lspa, exposure control loss Lexp, color
constancy loss Lcol, illumination smoothness loss LtvA ). Red boxes indicate the obvious differences and amplified details.

Results of the ablation study: the effect of parameter settings. In Table 1, we report the quantitative comparisons of
different parameter settings of our Zero-DCE. Comparing the input with the Zero-DCE3−32−8, it indicates that the Zero-
DCE3−32−8 can improve the quantitative performance in spite of only using three convolutional layers. The Zero-DCE7−32−1

achieves the worst quantitative performance due to the limited adjustment capability of only one-time iteration (i.e., n=1),
which implies the importance of the iterations. When increasing the numbers of feature maps of each layer from 16 to 32,
the quantitative performance is improved (i.e., Zero-DCE7−16−8 and Zero-DCE7−32−8). When increasing the numbers of
iterations from 8 to 16, the average PSNR value is slightly improved (i.e., Zero-DCE7−32−8 and Zero-DCE7−32−16).



Table 1: Quantitative comparisons in terms of full-reference image quality assessment metrics ((PSNR, dB), SSIM, MAE)).
This comparisons are carried out on the Part2 subset of SICE dataset [1]. l-f-n represents the proposed Zero-DCE with l
convolutional layers, f feature maps of each layer (except the last layer), and n iterations.

Method PSNR↑ SSIM↑ MAE↓
Input 10.71 0.33 209.65

Zero-DCE3−32−8 14.50 0.56 119.40
Zero-DCE7−16−8 15.67 0.58 111.01
Zero-DCE7−32−1 12.21 0.42 172.89
Zero-DCE7−32−8 16.21 0.59 98.78
Zero-DCE7−32−16 16.79 0.57 98.70



4. Visual Comparison Results
In this section, we present more visual comparison results on different datasets (DICM, LIME, MEF, NPE, VV, Part2

subset) as shown in Figs. 6, 7, 8, 9, 10, 11.

(a) Input (b) Zero-DCE

(c) SRIE [2] (d) LIME [3]

(e) Li et al. [7] (f) RetinexNet [11]

(g) Wang et al. [9] (h) EnlightenGAN [4]

Figure 6: Visual comparisons on DICM set [5]. Our Zero-DCE enhances the low-light regions and well preserves the inherent
color and structure details. Red and green boxes indicate the obvious differences and amplified details.



(a) Input (b) Zero-DCE

(c) SRIE [2] (d) LIME [3]

(e) Li et al. [7] (f) RetinexNet [11]

(g) Wang et al. [9] (h) EnlightenGAN [4]

Figure 7: Visual comparisons on LIME set [3]. Our Zero-DCE produces more clear details (e.g., the region in the red box).
Red boxes indicate the obvious differences and amplified details.



(a) Input (b) Zero-DCE

(c) SRIE [2] (d) LIME [3]

(e) Li et al. [7] (f) RetinexNet [11]

(g) Wang et al. [9] (h) EnlightenGAN [4]

Figure 8: Visual comparisons on MEF set [8]. Our Zero-DCE well uncovers the structure details in the dark regions and does
not introduce extra color artifacts. Red boxes indicate the obvious differences and amplified details.



(a) Input (b) Zero-DCE

(c) SRIE [2] (d) LIME [3]

(e) Li et al. [7] (f) RetinexNet [11]

(g) Wang et al. [9] (h) EnlightenGAN [4]

Figure 9: Visual comparisons on NPE set [10]. Our Zero-DCE introduces less halo artifacts and over-exposure than the
compared methods. Red and green boxes indicate the obvious differences and amplified details.



(a) Input (b) Zero-DCE

(c) SRIE [2] (d) LIME [3]

(e) Li et al. [7] (f) RetinexNet [11]

(g) Wang et al. [9] (h) EnlightenGAN [4]

Figure 10: Visual comparisons on VV set. Our Zero-DCE does not over-/under-enhance the low-light regions (e.g., the face)
and preserves the good contrast of the original image (e.g., the mountain). Red and green boxes indicate the obvious
differences and amplified details.



(a) Input (b) Zero-DCE

(c) SRIE [2] (d) LIME [3]

(e) Li et al. [7] (f) RetinexNet [11]

(g) Wang et al. [9] (h) EnlightenGAN [4]

Figure 11: Visual comparisons on Part2 subset [1]. Our Zero-DCE produces more clear details and does not introduce
blocking artifacts as shown in the green boxes of the compared methods. Red and green boxes indicate the obvious
differences and amplified details.



5. Visual Face Detection Results
In this section, we present more visual face detection results for the low-light images from the DARK FACE dataset [12]

in Fig. 12 and also provide more face detection results for the input images before and after enhanced by our Zero-DCE in
Fig. 13.

Observing Fig. 12(a) and (b), after enhanced by our Zero-DCE, the face detector, Dual Shot Face Detector (DSFD) [6], can
detect more faces than the raw low-light image as the input. By contrast, the results in Fig. 12(c), (e), (g) and (f) loss several
faces that can be detected in our result. In addition, the result of Fig. 12(d) mistakenly detects the bicycle handlebar as a face
as shown in the bottom right corner. Similarly, the result of Fig. 12(f) mistakenly detects a head (the face is invisible) as a
face as shown in the leftmost side. Besides, in Fig. 13, it is obvious that our Zero-DCE effectively improves the performance
of the face detector.



(a) Input (b) Zero-DCE

(c) SRIE [2] (d) LIME [3]

(e) Li et al. [7] (f) RetinexNet [11]

(g) Wang et al. [9] (h) EnlightenGAN [4]

Figure 12: Visual face detection comparisons. Best viewed with zoom-in on a digital display.



(a) Inputs (b) Zero-DCE

Figure 13: Visual face detection results before and after enhanced by our Zero-DCE.
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