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Abstract

This document provides supplementary information
which is not elaborated in our manuscript due to space lim-
its. Section 1 gives details about the implementation of the
three stages of our method. Section 2 describes the datasets
and evaluation metrics we use in our experiments. Section 3
provides some additional results of ablation study. We also
present a video demo which includes more results on the
project page 1.

1. Implementation details
1.1. Skeleton Extraction

We use a pretrained DensePose model [1] for skeleton
extraction, missing keypoints are complemented by nearest-
neighbor interpolation. The extracted skeleton sequences
are smoothed using a gaussian kernel with a temporal stan-
dard deviation σ = 2. We use N = 15 joints for a skeleton,
detailed skeleton format will be given in our Github reposi-
tory.

1.2. Motion Retargeting Network

The sizes of the latent representations are Cm = 128,
Cs = 256 and Cv = 8. Our encoders down-sample the in-
put sequences to an eighth of its original length, therefore
M = T

8 . For limb-scaling, we use global and local scal-
ing factors randomly sampled from [0.5, 2] (uniformly dis-
tributed). For view perturbations we use K = 3. Our mo-
tion retargeting network is trained 200, 000 steps with batch
size 64 and learning rate α = 0.0002 using Adam [6] opti-
mization algorithm. The weights of the loss terms are given

∗Equal contribution.
1https://yzhq97.github.io/transmomo

as follows: λrec = 10, λcrs = 4, λadv = 2, λtrip = 10, λinv =
2. These parameters are determined through quantitative
and qualitative experiments on a validation set.

1.3. Skeleton-to-Video Rendering

For skeleton-to-video rendering, we recorded target
videos of 5 subjects as training data (none of the recorded
subjects is an author of this work). We use the synthesis
pipeline proposed in [4]. Each generator is trained on the
target video for 40 epochs and the output size is 512× 512.

2. Experimental Details

2.1. Dataset

In-the-wild dataset. For training on unlabeled web data,
we collected a motion dataset named Solo-Dancer. We
downloaded from YouTube 8 categories of 337 dancing
videos, each one of the videos features only a single dancer.
The total length of the videos add up to 11.5 hours. We
then used an off-the-shelf 2D keypoints detector [3] to ex-
tract keypoints frame-by-frame to be used as our training
data.

Sythesized dataset. We also perform the proposed unsu-
pervised training pipeline on the synthetic Mixamo dataset
[2] in order to quantitatively measure the transfer results
with ground truth and baseline methods. The training set
comprises of 32 characters, each character has 800 se-
quences and a total of 1.2 hours for each character.

https://yzhq97.github.io/transmomo


Figure 1. Visualization of retargeting error computation with
our model. In this figure, we plotted input joint sequences (red)
on the diagonal. Off the diagonal are the retargeted sequences
(blue) from our model as well as the groud truth (yellow), where
their overlapping areas become green. In this figure, sequences
on the same row are expected to perform the same motion, while
sequences on the same column are expected to share the same body
structure.

2.2. Evaluation Metrics

MSE and MAE. For an inferred sequence x̂ and a
groundtruth sequence x

MSE =
1

2NT

∑
i,t

(xi,t − x̂i,t)
2

where i is the subscript of body joints and t is the subscript
of time. Similarly,

MAE =
1

2NT

∑
i,t

|xi,t − x̂i,t|

These two metrics are measured in the original scale of
Mixamo dataset. The errors are computed after hip-
alignment, as visualized in Figure 1.

FID. We calculate the Frechet Inception Distance
(FID) [5] to evaluate the quality of generated frames. FID
measures the perceptual distance between the generated
frames and the real target frames, and smaller number rep-
resents higher visual consistency.

Source w/o crs w/o trip w/o adv Ours (full)

Figure 2. Qualitative results of ablation study. The first column
gives the motion sources, and the other columns show correspond-
ing results.

User study. For the quality of retargeted videos, we ask
100 volunteers to perform subjective pairwise A/B tests.
For each method (4 baseline and 2 ours), we test 90 retar-
geted videos with the combination of 30 source and 3 target
individuals. All the videos are 10 seconds in length. Par-
ticipants choose which video has better motion consistency
(between source videos and retargeted videos) in a pair
of retargeted videos from two different methods. Source
videos are also given to testers for reference. For each base-
line method, 90 retargeted videos are compared 100 times
by different participants against our model. Our model has
two variants with different training sets (i.e., Mixamo and
SoloDancer), the results are shown in Table 1 in main paper
as “User” and “User (wild)” respectively.

3. Qualitative Ablation Study
Besides testing standard MSE, we render the retargeted

video for further comparison. As can be empirically ob-
served in Fig. 2, the full model produces the results of the
best quality. The cross reconstruction loss plays an essen-
tial role for disentanglement. The results without triplet loss
show slightly degraded quality on the frame level. How-
ever, it is important to note that the triplet loss is used to
smooth the structure and view code temporally, therefore
stabilizing the generated video. The adversarial loss im-
proves the plausibility of generated joint sequences, mak-
ing them look more natural and realistic. Recall that the
adversarial loss is added on randomly rotated output joint
sequences to make the rotated output sequences indistin-
guishable from real data.

References
[1] Densepose: Dense human pose estimation in the wild.

https://github.com/facebookresearch/
DensePose/. 1

[2] Mixamo. https://www.mixamo.com/. 1
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