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Figure 1: Motion retargeting. The movements from the source videos (first row) are transferred to a target appearance (second row).

Abstract
We present a lightweight video motion retargeting ap-

proach TransMoMo that is capable of transferring motion

of a person in a source video realistically to another video

of a target person (Fig. 1). Without using any paired data

for supervision, the proposed method can be trained in an

unsupervised manner by exploiting invariance properties

of three orthogonal factors of variation including motion,

structure, and view-angle. Specifically, with loss functions

carefully derived based on invariance, we train an auto-

encoder to disentangle the latent representations of such

factors given the source and target video clips. This al-

lows us to selectively transfer motion extracted from the

source video seamlessly to the target video in spite of struc-

tural and view-angle disparities between the source and the

target. The relaxed assumption of paired data allows our

method to be trained on a vast amount of videos needless of

manual annotation of source-target pairing, leading to im-

proved robustness against large structural variations and

extreme motion in videos. We demonstrate the effective-

ness of our method over the state-of-the-art methods such

as NKN [39], EDN [7] and LCM [3]. Code, model and

data are publicly available on our project page.1

∗Equal contribution.
1https://yzhq97.github.io/transmomo

1. Introduction

Let’s sway you could look into my eyes. Let’s sway

under the moonlight, this serious moonlight.

David Bowie, Let’s Dance

Can an amateur dancer learn instantly how to dance

like a professional in different styles, e.g., Tango, Locking,

Salsa, and Kompa? While it is almost impossible in reality,

one can now achieve this virtually via motion retargeting -

transferring the motion of a source video featuring a profes-

sional dancer to a target video of him/herself.

Motion retargeting is an emerging topic in both computer

vision and graphics due to its wide applicability to content

creation. Most existing methods [39, 27, 29] achieve mo-

tion retargeting through high-quality 3D pose estimation or

reconstruction [10]. These methods either require complex

and expensive optimization or they are error-prone given

the unconstrained videos that contain complex motion. Re-

cently, several efforts are also made to retarget motion in

2D space [3, 7, 23]. Image-based methods [15, 5] obtain

compelling results on conditional person generation. How-

ever, these methods always neglect the temporal coherence

in video and thus suffer from twinkling results. Video-based

methods [42, 7, 3] show state-of-the-art results. However,
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insufficient consideration of variances between two indi-

viduals [42, 7] or the limitation of training on synthesized

data [3] makes their result deteriorate dramatically while

encountering large structure variations or extreme motion

in web videos.

In this study, we aim to address video motion retarget-

ing via an end-to-end learnable framework in 2D space, by-

passing the need for explicit estimation of 3D human pose.

Despite recent progress in generative frameworks and mo-

tion synthesis, learning for motion retargeting in 2D space

remains challenging due to the following issues: 1) Con-

sider the large structural and view-angle variances between

the source and target videos, it is difficult to learn a direct

person-to-person mapping at the pixel level. Conventional

image-to-image translation methods tend to generate unnat-

ural motion in extreme conditions or fail on unseen exam-

ples; 2) No corresponding image pairs of two different sub-

jects performing the same motion are available to supervise

the learning of such a transfer; 3) Human motion is highly

articulated and complex, thus it is challenging to perform

motion modeling and transfer.

To address the first challenge, instead of performing di-

rect video-to-video translation at the pixel level, we decom-

pose the translation process into three steps as shown in

Fig. 2, i.e., skeleton extraction, motion retargeting on skele-

ton and skeleton-to-video rendering. The decomposition al-

lows us to focus on the core problem of motion re-targeting

using skeleton sequences as the input and output spaces. To

cope with the second and third challenges, we exploit the

invariance property of three factors: motion, structure, and

view-angle. These factors of variation are enforced to be

independent of each other, held constant when other fac-

tors vary. In particular, 1) motion should be invariant de-

spite structural and view-angle perturbations, 2) structure

of one skeleton sequence should be consistent across time

and invariant despite view-angle perturbations, and 3) view-

angle of one skeleton sequence should be consistent across

time and invariant despite structural perturbations. The in-

variance properties allow us to derive a set of purely un-

supervised loss functions to train an auto-encoder for dis-

entangling a sequence of skeletons into orthogonal latent

representations of motion, structure, and view-angle. Given

the disentangled representation, one can easily mix the la-

tent codes of motion and structure from different skeleton

sequences for motion retargeting. Taking different view-

angle as a condition to the decoder, one can generate retar-

geted motion in novel viewpoints. Since motion retargeting

is performed on the 2D skeleton space, it can be seen as

a lightweight and plug-and-play module, which is comple-

mentary to existing skeleton extraction [6, 4, 33, 46] and

skeleton-to-video rendering methods [7, 42, 41].

There are several existing studies designed for gen-

eral representation disentanglement in video [20, 38, 13].

While these methods have shown impressive results on con-

strained scenarios. It is difficult for them to model articu-

lated human motion due to the highly non-linear and com-

plex kinematic structures. Instead, our method is designed

specifically for representation disentanglement in human

videos.

We summarize our contributions as follows: 1) We pro-

pose a novel Motion Retargeting Network in 2D skeleton

space, which can be trained end-to-end with unlabeled web

data. 2) We introduce novel loss functions based on invari-

ance to endow the proposed network with the ability to dis-

entangle representation in a purely unsupervised manner. 3)

Extensive experiments demonstrate the effectiveness of our

method over other state-of-the-art approaches [7, 3, 39], es-

pecially under in-the-wild scenarios where motion are com-

plex.

2. Related Work

Video Motion Retargeting. Hodgins and Pollard [19] pro-

posed a control system parameter scaling algorithm to adapt

simulated motion to new characters. Lee and Shin [26]

decomposed the problem into inter-frame constraints and

intra-frame relationships and modeled them by Inverse

Kinematics problem and B-spline curve separately. Choi

and Ko [11] proposed a real-time method based on inverse

rate control that computes the changes in joint angles. Tak

and Ko [36] proposed a per-frame filter framework to gener-

ate physically plausible motion sequences. Recently, Ville-

gas et al. [39] designed a recurrent neural network architec-

ture with a Forward Kinematics layer to capture high-level

properties of motion. However, the target to be animated

of the aforementioned approaches is typically an articulated

virtual character and their results critically depend on the

accuracy of 3D pose estimation. More recently, Aberman

et al. [3] propose to retarget motion in 2D space. How-

ever, since their training relies on synthetic paired data, the

performance is likely to degrade under the unconstrained

scenarios. Instead, our method can be trained on pure un-

labeled web data, which makes the method robust to the

challenging in-the-wild motion transfer task.

There exist a few attempts to address the video mo-

tion retargeting problem. Liu et al. [27] designed a novel

GAN [16] architecture with an attentive discriminator net-

work and better conditioning inputs. However, this method

relies on 3D reconstruction of the target person. Aberman et

al. [2] proposed to tackle video-driven performance cloning

in a two-branch framework. Chan et al. [7] proposed a sim-

ple but effective method to obtain temporal coherent video

results. Wang et al. [42] achieves results of similar qual-

ity to Chan et al. with more complex shape representation

and temporal modelling. However, The performance of

all these methods degrades dramatically when large varia-

tions happened between two individuals with no consider-

ation [2, 41, 42] or a simple rescaling [7] to address body
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Figure 2: Motion retargeting pipeline Our method achieves motion retargeting in three stages. 1.Skeleton Extraction: 2D body joints

are extracted from source and target videos using an off-the-shelf model. 2.Motion Retargeting Network: our model decomposes the joint

sequences and recombines the elements to generate a new joint sequence, which can be viewed at any desired view-angle. 3.Skeleton-to-

Video Rendering: Retargeted video is rendered using the output joint sequence, with an available image-to-image translation method.

variations.

Unsupervised Representation Disentanglement. There is

a vast literature [25, 28, 21, 34, 45, 44] on disentangling

factors of variation. Bilinear models [37] were an early ap-

proach to separate content and style for images of faces and

text in various fonts. Recently, InfoGAN [9] learned a gen-

erative model with disentangled factors based on Genera-

tive Adversarial Networks (GAN). β-VAE [18] and DIP-

VAE [24], build on variational Auto-Encoders (VAEs) to

disentangle interpretable factors in an unsupervised way.

Other approaches explore general methods for learn-

ing disentangled representations from video. Whitney et

al. [43] used a gating principle to encourage each dimen-

sion of the latent representation to capture a distinct mode

of variation. Villegas et al. [40] used an unsupervised ap-

proach to factoring video into content and motion. Den-

ton et al. [13] proposed to leverage the temporal coher-

ence of video and a novel adversarial loss to learn a disen-

tangled representation. MoCoGAN [38] employs unsuper-

vised adversarial training to learn the separation of motion

and content. Hsieh et al. [20] proposed an auto-encoder

framework, which combines structured probabilistic mod-

els and deep networks for disentanglement. However, the

performance of these methods are not satisfactory on hu-

man videos, since they are not designed specifically for dis-

entanglement of highly articulated and complex objects.

Person Generation. Various machine learning algorithms

have been used to generate realistic person images. The

generation process could be conditionally guided by skele-

ton keypoints [5, 30] and style codes [31, 15, 12]. Our

method is complementary to the image-based person gen-

eration approaches and can further boost the temporal co-

herence of them since it performs motion retargeting on the

2D skeletons space only.

3. Methodology

As illustrated in Fig. 2, we decompose the translation

process into three steps, i.e., skeleton extraction, motion re-

targeting and skeleton-to-video rendering. In our frame-

work, motion retargeting is the most important compo-

nent in which we introduce our core contribution (i.e.,

invariance-driven disentanglement). Skeleton extraction

and skeleton-to-video rendering are replaceable and can

thus benefit from recent advances in 2D keypoints estima-

tion [4, 6, 46] and image-to-image translation [22, 42, 41].

The Motion Retargeting Network decomposes 2D joint

input sequences as a motion code that represents the move-

ments of the actor, a structure code that represents the body

shape of the actor and a view-angle code that represents the

camera angle. The decoder takes any combination of the la-

tent codes and produces a reconstructed 3D joint sequence,

which automatically isolates view from motion and struc-

ture.

For transferring motion from a source video to a target

video, we first use an off-the-shelf 2D keypoints detector to

extract joint sequences from videos. By combining the mo-

tion code encoded from the source sequence and the struc-

ture code encoded from the target sequence, our model then

yields a transferred 3D joint sequence. The transferred se-

quence is then projected back to 2D with any desired view-

angle. Finally, we convert the 2D joint sequence frame-by-

frame to a pixel-level representation, i.e., label maps. These

label maps are fed into a pre-trained image-to-image gener-

ator to render the transferred video.

3.1. Motion Retargeting Network

Here, we detail the encoders and decoders for an input

sequence x ∈ R
T×2N where T is the length of the sequence

and N is the number of body joints.

The motion encoder uses several layers of one dimen-
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Figure 3: Limb-scaling process. We show a step-by-step limb-

scaling process on a joint sequence x starting from the root joint

(pelvis). At each step, the scaled limbs are highlighted with red.

This example scales all limbs with the same factor γi = 2, but the

scaling factors are randomly generated at training time.

sional temporal convolution to extract motion information:

Em(x) = m ∈ R
M×Cm , where M is the sequence length

after encoding and Cm is the number of channels. Note that

the motion code m is variable in length so as to preserve

temporal information.

The structure encoder has a similar network structure

Es(x) = s ∈ R
M×Cs , with the difference that the final

structure code is obtained after a temporal max pooling:

Ēs(x) = s̄ = maxpool(s), therefore s̄ ∈ R
Cs . Effec-

tively, the process of obtaining the structure code can be

interpreted as performing multiple body shape estimations

in sliding windows: Es(x) = [s1, s2, ..., sM ], and then ag-

gregating the estimations. Assuming the viewpoint is also

stationary (i.e. all the temporal variances are caused by the

movements of the actor), the view code Ēv(x) = v̄ ∈ R
Cv

is obtained the same way we obtained the structure code.

The decoder takes the motion, body and view codes as

input and reconstructs a 3D joint sequence G(m, s̄, v̄) =

X̂ ∈ R
T×3N through convolution layers, in symmetry

with the encoders. Our discriminator D is a temporal con-

volutional network that is similar to our motion encoder:

D(x) ∈ R
M .

3.2. InvarianceDriven Disentanglement

The disentanglement of motion, structure and view is

achieved leveraging the invariance of each of these factors

to the changes in the other twos. We design loss terms to

restrict changes when perturbations are added, while the

entire network tries to reconstruct joint sequences from de-

composed features. Structural perturbation is added through

limb scaling, i.e. manually shortening or extending the

length of the limbs. View perturbation is introduced through

rotating the reconstructed 3D sequence and projecting it

back to 2D. Motion perturbation needs not be explicitly

added since motion itself is varying through time. We first

describe the ways perturbations are added and then detail

the definitions of the loss terms derived from three invari-

ances, i.e., motion, structure and view-angle invariance.

Limb Scaling as Structural Perturbation. For an in-

put 2D sequence x ∈ R
T×2N , we create a structurally-

perturbed sequence by elongating or shortening the limbs
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Figure 4: Rotation as view perturbation. This figure illustrates

the process of taking an input 2D sequence x, reconstructing a 3D

sequence X̂ using our motion retargeting network and projecting

it back to 2D, with rotation as view-angle perturbation.

of the performer, as illustrated in Figure 3. It is done in

such a way that the created sequence is effectively the same

motion performed by a different actor. The length of a limb

is extended/shortened by the same ratio across all frames, so

limb-scaling does not introduce ambiguity between motion

and body structure. Specifically, the limb-scaled sequence

x′ is created by applying the limb-scale function frame-by-

frame: x′

t = δ(xt;γ, γg), where xt is the tth frame in the in-

put sequence, δ is the limb scaling function, γ = [γ1, γ2, ...]
are the local scaling factors and γg is the global scaling fac-

tor. Modeling the human skeleton as a tree and joints as its

nodes, we define the pelvis joint as the root. For each frame

in the sequence, starting from the root, we recursively move

the joints and all their dependent joints (child nodes) on the

direction of the limb by distance (γi− 1)L
(t)
i , where L

(t)
i is

the original length of the limb in the tth frame. After all local

scaling factors have been applied, the global scaling factor

γg is directly multiplied with all the joint coordinates.

3D Rotation as View Perturbation. Let φ be a rotate-and-

project function, i.e., for a 3D coordinate p = [x y z]T :

φ(p, θ;n) =

[

R11(n, θ) R12(n, θ) R13(n, θ)
R21(n, θ) R22(n, θ) R23(n, θ)

]





x

y

z





R(n, θ) ∈ SO
3 is a rotation matrix obtained using Ro-

drigues’ rotation formula and n is a unit vector represent-

ing the axis around which we rotate. In practice, n is an

estimated vertical direction of the body. It is computed us-

ing four points: left shoulder, right shoulder, left pelvis and

right pelvis. Note that φ(p, θ) is differentiable with respect

to p.

As shown in Fig. 4, we create several rotated sequences

from the reconstructed 3D sequence X̂:

x̂(k) = φ(X̂,
k

K + 1
π), k = 1, 2, ...,K

and K is number of projections. Loss terms enforcing dis-

entanglement will be described later in this chapter.
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Figure 5: Cross reconstruction process. This figure illustrates

the process of cross-reconstruction using a 2D input sequence x

and its limb-scaled variant x′.

3.2.1 Invariance of Motion

Motion should be invariant despite structural and view-

angle perturbations. To this end, we designed the following

loss terms.

Cross Reconstruction Loss. Recall that we use limb scal-

ing to obtain data of the same movements performed by

“different” actors x and x′. We cross reconstruct the two

sequences, as shown in Fig.5. The cross reconstruction in-

volves encoding, swapping and decoding, namely:

x̂′ = φ
[

G(Em(x′), Ēs(x), Ēv(x)), 0
]

x̂′′ = φ
[

G(Em(x), Ēs(x
′), Ēv(x

′)), 0
]

,

where x′ is the limb-scaled version of x. Since x and x′

have the same motion, we expect x̂′ to be the same as x;

x̂′′ to be the same as x′. Therefore, the cross reconstruction

loss is defined as

Lcrs =
1

2NT

(

1

2
|x− x̂′|+

1

2
|x′ − x̂′′|

)

. (1)

Structural Invariance Loss. This signal is to ensure that

the motion codes are invariant to structural changes. x

and x′ have the same motion but different body structures,

therefore we expect the motion encoder to have the same

output:

L
(s)
inv m =

1

MCm

|Em(x)− Em(x′)| . (2)

Rotation Invariance Loss. Similarly, to ensure that the

motion code is invariant to rotation, we add:

L
(v)
inv m =

1

KMCm

K
∑

k=1

∣

∣

∣
Em(x)− Em(x̂(k))

∣

∣

∣
, (3)

where x̂(k) is the kth rotated variant.

3.2.2 Invariance of Structure

Body structure should be consistent across time and invari-

ant view-angle perturbations.

Triplet Loss. The triplet loss is added to exploit the time-

invariant property of the body structure and thereby bet-

ter enforce disentanglement. Recall that the body encoder

produces multiple body structure estimations Es(x) =
[s1, s2, ..., sM ], Es(x

′) = [s′1, s
′

2, ...s
′

M ] before averaging

them. The triplet loss is designed to map estimations from

the same sequence to a small neighborhood while alienat-

ing estimations from different sequences. Let us define an

individual triplet loss term:

τ(st1 , st2 , s
′

t2
) = max

{

0, s(st1 , s
′

t2
)− s(st1 , st2) +m

}

,

(4)

where s(·, ·) denotes the cosine similarity function and m =
0.2 is our margin. The total triplet loss for the invariance of

structure is defined as

Ltrip s =
1

2M

∑

t1,t2

[

τ(st1 , st2 , s
′

t2
) + τ(s′t1 , s

′

t2
, st2)

]

, (5)

where t1 6= t2.

Rotation Invariance Loss. This signal is to ensure that the

structure codes are invariant to rotation:

Linv s =
1

KCs

K
∑

i=1

∣

∣

∣
Ēs(x)− Ēs(x̂

(k))
∣

∣

∣
, (6)

where x̂(k) is the kth rotated variant.

3.2.3 Invariance of View-Angle

View-angle of one skeleton sequence should be consistent

through time invariant despite structural perturbations.

Triplet Loss. Similarly, triplet loss is designed to map view

estimations from the same sequence to a small neighbor-

hood while alienating estimations from rotated sequences.

Continuing to use the definition of a triplet term in Eq.4:

Ltrip =
1

2MK

∑

k,t1,t2

[

τ(vt1 ,vt2 ,v
(k)
t2

) + τ(v
(k)
t1

,v
(k)
t2

,vt2)
]

,

(7)

where v(k) = Ēv(x̂
(k)), t1 6= t2.

Structural Invariance Loss This signal is to ensure that the

view code is invariant to structural change:

Linv v =
1

Cv

∣

∣Ēv(x)− Ēv(x
′)
∣

∣ , (8)

where x′ is the limb-scaled version of x.

3.2.4 Training Regularization

The loss terms defined above are designed to enforce disen-

tanglement. Besides them, some basic loss terms are needed
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for this representation learning process.

Reconstruction Loss. Reconstructing data is the funda-

mental functionality of auto-encoders. Recall that our de-

coder outputs reconstructed 3D sequences. Our reconstruc-

tion loss minimizes the difference between real data and 3D

reconstructions projected back to 2D.

Lrec =
1

2NT

∣

∣

∣
x− φ(X̂, 0)

∣

∣

∣
, (9)

i.e. we expect X̂ to be the same as the input x when we

directly remove the z coordinates from X̂.

Adversarial Loss. The unsupervised recovery of 3D mo-

tion from joint sequences is achieved through adversar-

ial training. Reconstructed 3D joint sequences are rotated

and projected back to 2D and a discriminator is used to

measure the domain discrepancy between the projected 2D

sequences and real 2D sequences. The feasibility of re-

covering static 3D human pose from 2D coordinates with

adversarial learning has been verified in several works

[35, 14, 8, 32]. We want the reconstructed 3D sequence

X̂ to look right after we rotate it and project it back to 2D,

therefore the adversarial loss is defined as.

Ladv =
1

K

K
∑

k=1

Ex∼px
[
1

2
logD(x) +

1

2
log(1−D(x̂(k)))]

(10)

3.2.5 Total Loss

The proposed motion retargeting network can be trained

end-to-end with a weighted sum of the loss terms defined

above:

L = λrecLrec + λcrsLcrs + λadvLadv + λtrip(Ltrip s + Ltrip v)

+ λinv(L
(s)
inv m + L

(v)
inv m + Linv s + Linv v)

4. Experiments

4.1. Setup

Implementation details. We perform the proposed train-

ing pipeline on the synthetic Mixamo dataset [1] for quan-

titative error measurement and fair comparison. For in-the-

wild training, we collected a motion dataset named Solo-

Dancer from online videos. For skeleton-to-video render-

ing, we recorded 5 target videos and use the synthesis

pipeline proposed in [7]. The trained generator is shared

by all the motion retargeting methods.

Evaluation metrics. We evaluate the quality of motion re-

targeting for both skeleton and video, as retargeting results

on skeleton would largely influence the quality of generated

videos. For skeleton keypoints, we perform evaluations on

a held-out test set from Mixamo (with ground truth avail-

able) using mean square error (MSE) as the metric. For

generated videos, we evaluate the quality of frames with

FID score [17] and through a user study.

Figure 6: Motion retargeting results. Top to bottom: input

source frame, extracted source skeleton, transformed skeleton,

generated frame.

4.2. Representation Disentanglement

We train the model on unconstrained videos in-the-wild,

and the model automatically learns the disentangled rep-

resentations of motion, body, and view-angle, which en-

ables a wide range of applications. We test motion retar-

geting, novel-view synthesis and latent space interpolation

to demonstrate the effectiveness of the proposed pipeline.

Motion retargeting. We extract the desired motion from

the source skeleton sequence, then retarget the motion to

the target person. Videos from the Internet vary drastically

in body structure as shown in Fig. 6. For example, Spider-

man has very long legs but the child has short ones. Our

method, no matter how large the structural gap between the

source and the target, is capable of generating a skeleton se-

quence precisely with the same body structure as the target

person while preserving the motion from the source person.

Novel-view synthesis. We can explicitly manipulate the

view of decoded skeleton in the 3D space, rotating it be-

fore projecting it down to 2D. We show an example in Fig.

7. This enables us to see the motion-transferred video at any

desired view-angle.

Latent space interpolation. The learned latent represen-

tation is meaningful when interpolated, as shown in Fig. 8.

Both the motion and the the body structure change smoothly

between the videos, demonstrating the effectiveness of our

model in capturing a reasonable coverage of the manifold.

4.3. Comparisons to StateoftheArt Methods

We compare the motion retargeting results of our method

with the following methods (including one intuitive method

and three state-of-the-art methods) both quantitatively and
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Figure 7: Novel view synthesis results. The first row shows the continuous rotation of generated skeleton, and the second row shows the

corresponding rendering results.

Figure 8: Latent space interpolation results. Linear interpola-

tion is tested for body structure (horizontal axis) and motion (ver-

tical axis).
Table 1: Quantitative Results. MSE and MAE are joint position

errors measured on Mixamo, reported in the original scale of the

data. FID measure the quality of rendered images. Users evaluate

the consistency between source videos and generated videos. We

report the percentage of users who prefer our model and our in-

the-wild trained model, respectively.

Method MSE MAE FID User User (wild)

LN 0.0886 0.1616 48.37 81.7% 82.9%

NKN [39] 0.0198 0.0781 67.32 84.5% 86.3%

EDN [7] 0.1186 0.2022 40.56 75.2% 77.1%

LCM [3] 0.0151 0.0749 37.15 68.5% 71.6%

Ours 0.0131 0.0673 31.26 - -

Ours (wild) 0.0121 0.0627 31.29 - -

qualitatively. 1) Limb Normalization is an intuitive

method that calculates a scaling factor for each limb and ap-

plies local normalization. 2) Neural Kinematic Networks

(NKN) [39] uses detected 3D keypoints for unsupervised

motion retargeting. 3) Everybody Dance Now (EDN) [7]

applies a global linear transformation on all the keypoints.

4) Learning Character-Agnostic Motion (LCM) [3] per-

forms disentanglement at the 2D space in a fully-supervised

manner.

For the fairness of the comparison, we train and test all

the models on a unified Mixamo dataset, but note that our

model is trained with less information, using neither 3D in-

formation [39] nor the pairing between motion and skele-

tons [3]. In addition, we train a separate model with in-

the-wild data only. All the methods are evaluated with the

aforementioned evaluation metrics.

Our method outperforms all the compared methods in

terms of both numerical joint position error and quality of

generated image. EDN and LN are naive rule-based meth-

ods, the former does not estimate the body structure and

the latter is bound to fail when the actor is not facing the

camera directly. Despite that NKN is able to transfer mo-

tion with little error on the synthesized dataset, it suffers on

in-the-wild data due to the unreliability of 3D pose estima-

tion. LCM is trained with a finite set of characters, there-

fore its capacity of generalization is limited. In contrast,

our method uses limb-scaling to augment the training data,

exploring all possible body structures in a continuous space.

It is noteworthy that our method enables training on ar-

bitrary web data that previous methods are not able to.

The fact that the model trained on in-the-wild data (i.e.,

Solo-Dancer Dataset) achieved the lowest error (in Table 1)

demonstrates the benefits of training on in-the-wild data.

For complex motion such as the one shown in Fig. 10, the

model learned from wild data performs better, as wild data

features a larger diversity of motion. These results show the

superiority of our method in learning from unlimited real-

world data, while supervised methods rely on strictly paired

data that are hard to expand.

In summary, we attribute the superior performance of our

method to the following reasons: 1) Our disentanglement

is directly performed in 2D space, which circumvents the

imprecise process of 3D-keypoints detection from in-the-

wild videos. 2) Our explicit invariance-driven loss terms

maximize the utilization of information contained in the

training data, evidenced by the largely increased data effi-

ciency compared to implicit unsupervised approaches [39].

3) Our limb scaling mechanism improves the model’s abil-

ity to handle extreme body structures. 4) In-the-wild videos

provide an unlimited source of motion, compared to limited

movements in synthetic datasets like Mixamo [1].
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Source Target Ours LCM NKN EDN LN

Figure 9: Qualitative comparison with state-of-the-art methods. Each column on the right represents a motion retargeting method.

Source Ours Ours (wild)

Figure 10: Results of our in-the-wild trained model. Qualita-

tive comparison for models trained with our method on Mixamo

and Solo-Dancer separately. The first column gives two challeng-

ing motion sources, and the other columns show corresponding

results.
Table 2: Ablation Study Results.

Method w/o crs w/o trip w/o adv Ours (full)

MSE 0.0392 0.0154 0.0136 0.0131

MAE 0.1259 0.0708 0.0682 0.0673

4.4. Ablation study

We train some ablated models to study the impact of the

individual loss terms. The results are shown in Table 2.

We design three ablated models. The w/o crs model is cre-

ated by removing the cross reconstruction loss. The w/o trip

model is created by removing the triplet loss. The w/o adv

model is created by removing the adversarial loss. Remov-

ing the cross reconstruction loss has the most detrimental

effect to the 2D retargeting performance of our model, evi-

denced by the doubling of MSE. Removal of the triplet loss

increased the MSE by about 16%. Although removing the

adversarial loss does not significantly affect the 2D retarget-

ing performance of our model, the rotated sequences look

less natural without it.

5. Conclusion

In this work, we propose a novel video motion retarget-

ing approach, in which motion can be successfully trans-

ferred in scenarios where large variations of body-structure

exist between the source and target person. The proposed

motion retargeting network runs on 2D skeleton input only,

makes it a lightweight and plug-and-play module, which is

complementary to existing skeleton extraction and skeleton-

to-video rendering methods. Leveraging three inherent in-

variance properties in temporal sequences, the proposed

network can be trained with unlabeled web data end-to-end.

Our experiments demonstrate the promising results of our

methods and the effectiveness of the invariance-driven con-

straints.
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