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Abstract

It is a common paradigm in object detection frame-

works to treat all samples equally and target at maximiz-

ing the performance on average. In this work, we re-

visit this paradigm through a careful study on how differ-

ent samples contribute to the overall performance measured

in terms of mAP. Our study suggests that the samples in

each mini-batch are neither independent nor equally im-

portant, and therefore a better classifier on average does

not necessarily result in higher mAP. Motivated by this

study, we propose the notion of Prime Samples, those that

play a key role in driving the detection performance. We

further develop a simple yet effective sampling and learn-

ing strategy called PrIme Sample Attention (PISA) that di-

rects the focus of the training process towards such sam-

ples. Our experiments demonstrate that it is often more ef-

fective to focus on prime samples than hard samples when

training a detector. Particularly, on the MSCOCO dataset,

PISA outperforms the random sampling baseline and hard

mining schemes, e.g. OHEM and Focal Loss, consistently

by around 2% on both single-stage and two-stage detec-

tors, even with a strong backbone ResNeXt-101. Code is

available at: https://github.com/open-mmlab/

mmdetection.

1. Introduction

Modern object detection frameworks, including both

single-stage [17, 15] and two-stage [8, 7, 20], usually adopt

a region-based approach, where a detector is trained to clas-

sify and localize sampled regions. Therefore, the choice of

region samples is critical to the success of an object detec-

tor. In practice, most of the samples are located in the back-

ground areas. Hence, simply feeding all the samples, or a

random subset thereof, through a network and optimizing

the average loss is obviously not a very effective strategy.

Recent studies [17, 21, 15] showed that focusing on dif-

ficult samples is an effective way to boost the performance

of an object detector. A number of methods have been de-
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Figure 1: Left shows both a prime sample (in red color) and

a hard sample (in blue color) for an object against the ground-

truth (in white dotted). The prime sample has a high IoU with

the ground-truth and is located more precisely around the object.

Right shows the RoC curves obtained with different sampling

strategies, which suggests that attending to prime samples instead

of hard samples is a more effective strategy to boost the perfor-

mance of a detector.

veloped to implement this idea in various ways. Represen-

tative methods along this line include OHEM [21] and Fo-

cal Loss [15]. The former explicitly selects hard samples,

i.e. those with high loss values; while the latter uses a re-

shaped loss function to reweight the samples, emphasizing

the difficult ones.

Though simple and widely adopted, random sampling or

hard mining are not necessarily the optimal sampling strat-

egy in terms of training an effective detector. Particularly, a

question remains open – what are the most important sam-

ples for training an object detector. In this work, we carry

out a study on this issue with an aim to find a more effective

way to sample/weight regions.

Our study reveals two significant aspects that need to be

taken into consideration when designing a sampling strat-

egy: (1) Samples should not be treated as independent nor

as equally important. Region-based object detection is to

select a small subset of bounding boxes out of a large num-

ber of candidates to cover all objects in an image. Hence,

the decisions on different samples are competing with each

other, instead of being independent (like in a classification

task). In general, it is more advisable for a detector to yield

high scores on one bounding box around each object while
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ensuring all objects of interest are sufficiently covered, in-

stead of trying to produce high scores for all positive sam-

ples, i.e. those that substantially overlap with objects. Par-

ticularly, our study shows that focusing on those positive

samples with the highest IoUs against the ground-truth ob-

jects is an effective way towards this goal. (2) The objec-

tives of classification and localization are correlated. The

observation that those samples that are precisely located

around ground-truth objects are particularly important has

a strong implication, that is, the objective of classification

is closely related to that of localization. In particular, well-

located samples need to be well classified with high confi-

dences.

Inspired by the study, we propose PrIme Sample Atten-

tion (PISA), a simple yet effective method to sample regions

and learn object detectors, where we refer to those samples

that play a more important role in achieving high detection

performance as the prime samples. We define Hierarchical

Local Rank (HLR) as a metric of importance. Specifically,

we use IoU-HLR to rank positive samples and Score-HLR

to rank negative samples in each mini-batch. This rank-

ing strategy places positive samples with the highest IoUs

around each object and negative samples with the highest

scores in each cluster to the top of the ranked list, and di-

rects the focus of the training process to them via a simple

reweighting scheme. We also devise a classification-aware

regression loss to jointly optimize the classification and re-

gression branches. Particularly, this loss would suppress

those samples with large regression loss, thus reinforcing

attention to the prime samples.

We tested PISA with both two-stage and single-stage de-

tection frameworks. On the MSCOCO [16] test-dev, with

a strong backbone of ResNet-101-32x4d, PISA improves

Faster R-CNN [20], Mask R-CNN [9] , and RetinaNet [15]

by 2.0%, 1.5%, 1.8%, respectively. For SSD, PISA achieves

a gain of 2.1%.

Our main contributions mainly lie in three aspects: (1)

Our study leads to a new insight into what samples are im-

portant for training an object detector, thus establishing the

notion of prime samples. (2) We devise Hierarchical Lo-

cal Rank (HLR) to rank the importance of samples, and on

top of that an importance-based reweighting scheme. (3)

We introduce a new loss called classification-aware regres-

sion loss that jointly optimizes both the classification and

regression branches, which further reinforces attention to

the prime samples.

2. Related Work

Region-based object detectors. Region-based object de-

tectors transform the task of object detection into a bound-

ing box classification and regression problem. Contem-

porary approaches mostly fall into two categories, i.e.,

the two-stage and single-stage detection paradigms. Two-

stage detectors such as R-CNN [8], Fast R-CNN [7] and

Faster R-CNN [20] first generate a set of candidate pro-

posals, then randomly sample a small batch of propos-

als from all the candidates. These proposals are classi-

fied into foreground classes or background, and their lo-

cations are refined by regression. There are also some re-

cent improvements [5, 14, 9, 11, 1, 3] along this paradigm.

In contrast, single-stage detectors like SSD [17] and Reti-

naNet [15] directly predict class scores and box offsets from

anchors, without the region proposal step. Other variants in-

clude [25, 13, 26, 27]. The proposed PISA is not designed

for any specific detectors but can be easily applied to both

paradigms.

Sampling strategies in object detection. The most widely

adopted sampling scheme in object detection is random

sampling, that is, to randomly select some samples from

all candidates. Since negative samples are usually much

more than positive ones, a fixed ratio may be set for posi-

tive and negative samples during sampling, like in [7, 20].

Another popular idea is to sample hard samples that have

larger losses; this strategy can lead to better optimization

for classifiers. The principle of hard mining is proposed in

early detection work [23, 6] and also adopted by more re-

cent methods [17, 8, 21] in the deep learning era. Libra R-

CNN [18] proposes IoU-balanced Sampling as an approx-

imation of hard negative mining. Focal Loss [15] applies

different loss weights to samples, which can be seen as a

soft version of sampling. GHM [13] further improves FL by

down-weighting the gradient contribution of outliers. AP

loss[2] and DR loss[19] introduce a new perspective that

converts the classification task into a ranking task. How-

ever, the goal of hard mining and ranking loss is to boost the

average performance of a classifier and alleviate the imbal-

ance of training samples; they do not investigate the differ-

ence between detection and classification. Different from

that, PISA can achieve a biased performance on different

samples. According to our study in Sec. 3, we find that

prime samples are not necessarily the hard ones, which is

opposite to hard mining.

Relation between samples Unlike conventional detectors

that predict all samples independently, He et al. [11] pro-

pose an attention module adapted from the natural lan-

guage processing field to model relations between objects.

Though it is effective, all samples are still treated equally

and relations are learned implicitly, without understanding

what exactly the relations are. In PISA, samples are at-

tended differently according to their importance.

Improvement of NMS with localization confidence IoU-

Net [12] proposes to use localization confidence instead of

classification scores for NMS. It adds an extra branch to

predict the IoU of samples and use the localization confi-

dence, i.e., predicted IoU, for NMS. There are some major

differences between IoU-Net and our method. First, IoU-
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Figure 2: Precision-recall curve under different IoU thresholds.

The solid lines correspond to the baseline, dashed lines and dotted

lines are results of reducing the classification loss by increasing

scores of positive samples. Top5 and top25 IoU-HLR samples are

respectively focused on Here.

Net aims to yield higher scores for proposals with higher

predicted IoUs. In this work, we find that a high IoU does

not necessarily mean being important for training. Par-

ticularly, the relative ranking among proposals around the

objects also play a crucial role. Second, our goal is not

to improve the NMS and we do not exploit an additional

branch to predict the localization confidence, but investigate

the sample importance and propose to pay more attention to

prime samples with the importance-based reweighting, as

well as a new loss to correlate the training of two branches.

3. Prime Samples

In this section, we introduce the concept of Prime Sam-

ples, namely those that have greater influence on the per-

formance of object detection. Specifically, we carry out a

study on the importance of different samples by revisiting

how they affect mAP, the major performance metric for ob-

ject detection. Our study shows that the importance of each

sample depends on how its IoU or score compares to that of

the others that overlap with the same object. Therefore, we

propose HLR (IoU-HLR and Score-HLR), a new ranking

strategy, as a quantitative way to assess the importance.

A Revisit of mAP. mAP is a widely adopted metric for

assessing the performance of an object detector, computed

as follows. Given an image with annotated ground-truths,

each bounding box will be marked as true positive (TP)

when: (i) the IoU between this bounding box and its near-

est ground truth is greater than a threshold θ, and (ii) there

are no other boxes with higher scores that is also a TP of

the same ground truth. All other bounding boxes are con-

sidered as false positives (FP). Then, the recall is defined as

the fraction of ground-truths that are covered by TPs, and

the precision is defined as the fraction of resulted bound-

ing boxes that are TPs. On a testing dataset, one can obtain

a precision-recall curve by varying the threshold θ, usually

ranging from 0.5 to 0.95, and compute the average preci-

sion (AP) for each class as the area under the curve. Then

mAP is defined as the mean of the AP values over all classes.

The way mAP works reveals two criteria on which pos-

itive samples are more important for an object detector. (1)

Among all bounding boxes that overlap with a ground-truth

object, the one with the highest IoU is the most important

as its IoU value directly influences the recall. (2) Across all

bounding boxes with the highest IoUs for different objects,

the ones with higher IoUs are more important, because they

are the last ones that fall below the IoU threshold θ as θ in-

creases and thus have great impact on the overall precision.

A Revisit of False Positives. One of the main sources of

false positives is misclassifying negative samples as posi-

tive, such misclassification is harmful to the precision and

will decrease the mAP. However, not all misclassified sam-

ples have direct influence on the final results. During in-

ference, if there are multiple negative samples that heav-

ily overlap with each other, only the one with the high-

est score remains while others are discarded after Non-

Maximum Suppression (NMS). In this way, if a negative

sample is close to another one with higher score, then the

negative sample becomes less important even if its score

may also be high because it will not be kept in the final re-

sults. We can learn which negative samples are important.

(1) Among all negative samples within a local region, the

one with the highest score is the most important. (2) Across

all highest-score samples in different regions, the ones with

higher scores are more important, because they are the first

ones that decrease the precision.

Hierarchical Local Rank (HLR). Based on the analy-

sis above, we propose IoU Hierarchical Local Rank (IoU-

HLR) and Score Hierarchical Local Rank (Score-HLR) to

rank the importance of positive and negative samples in a

mini-batch. This rank is computed in a hierarchical manner,

which reflects the relation both locally (around each ground

truth object or some local regions) and globally (over the

whole image or mini-batch). Notably, We compute IoU-

HLR and Score-HLR based on the final located position of

samples, other than the coordinates before regression, since

mAP is evaluated based on the regressed samples.

As shown in Figure 3, to compute IoU-HLR, we first di-

vide all samples into different groups, based on their near-

est ground truth objects. Next, we sort the samples within

each group in descending order by their IoU with the ground

truth, and get the IoU Local Rank (IoU-LR). Subsequently,

we take samples with the same IoU-LR and sort them in

descending order. Specifically, all top1 IoU-LR samples

are collected and sorted, followed by top2, top3, and so on.

These two steps result in the ranking of all samples, that is

the IoU-HLR. IoU-HLR follows the two criteria mentioned
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Figure 3: Two steps to compute HLR. Samples are first sorted by IoU(Score) locally, and then sorted again within the same-rank group.
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Figure 4: The distribution of random, hard and prime samples.

Here the top row shows positive samples and the bottom row

presents negative ones. The hard samples are the ones with top3

loss values from each image; while the prime samples are those

ranked as top3 HLRs.

above. First, it places the positive samples with higher local

ranks ahead, which are the samples that are most important

to each individual ground-truth object. Second, within each

local group, it re-ranks the samples according to IoU, which

aligns with the second criterion. Note that it is often good

enough to ensure high accuracies on those samples that top

this ranked list as they directly influence both the recall and

the precision, especially when the IoU threshold is high;

while those ranked lower in the list are less important in

terms of achieving high detection performance.

As shown in Figure 2, the solid lines are the precision-

recall curves under different IoU thresholds. We simulate

some experiments by increasing the scores of samples. With

the same budget, e.g., reducing the total loss by 10%, in-

creasing the scores of top5 and top25 IoU-HLR samples.

The results suggest that focusing only on the top samples is

better than attending to more samples equally.

We compute Score-HLR for negative samples in a simi-

lar way to IoU-HLR. Unlike positive samples that are natu-

rally grouped by each ground truth object, negative samples

may also appear on background regions, thus we first group

them into different clusters with NMS. We adopt the maxi-

mum score over all foreground classes as the score of neg-

ative samples and then follow the same steps as computing

IoU-HLR, as shown in Figure 3.

We plot the distributions of random, hard and prime sam-

ples in Figure 4, with the IoU vs. classification loss. It is

observed that hard positive samples tend to have high clas-

sification losses and scatter over a wider range along the

IoU axis, while prime positive samples tend to have high

IoUs and low classification losses. Hard negative samples

tend to have high classification losses and high IoUs, while

prime negative samples also cover some low loss samples

and have a more diverged IoU distribution. This suggests

that these two categories of samples are of essentially dif-

ferent characteristics.

4. Learn Detectors via Prime Sample Attention

The aim of object detection is not to obtain a better clas-

sification accuracy on average, but to achieve a performance

as good possible on prime samples in the set, as discussed

in Sec 3. Nevertheless, this is nontrivial. If we just use

top IoU-HLR samples for training like what OHEM does,

the mAP will drop significantly because most prime sam-

ples are easy ones and cannot provide enough gradients to

optimize the classifier.

In this work, we propose PrIme Sample Attention, a

simple and effective sampling and learning strategy that

pays more attention to prime samples. PISA consists of

two components: Importance-based Sample Reweighting

(ISR) and Classification-Aware Regression Loss (CARL).

With the proposed method, the training process is biased on

prime samples rather than evenly treat all ones. Firstly, the

loss weight of prime samples are larger than the others, so

that the classifier tends to be more accurate on these sam-

ples. Secondly, the classifier and regressor are learned with

a joint objective, thus scores of positive prime samples get

boosted relative to unimportant ones.

4.1. Importance­based Sample Reweighting

Given the same classifier, the distribution of performance

usually matches the distribution of training samples. If part

of the samples occur more frequently in the training data, a

better classification accuracy on those samples is supposed

to be achieved. Hard sampling and soft sampling are two
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Figure 5: Examples of random sampling (top) and PISA (bottom) results. The score threshold for visualization is 0.2.

different ways to change the training data distribution. Hard

sampling selects a subset of samples from all candidates to

train a model, while soft sampling assigns different weights

for all samples. Hard sampling can be seen as a special

case of soft sampling, where each sample is assigned a loss

weight of either 0 or 1.

To make fewer modifications and fit existing frame-

works, we propose a soft sampling strategy named

Importance-based Sample Reweighting (ISR), which as-

signs different loss weights to samples according to their

importance. ISR consists of positive sample reweighting

and negative sample reweighting, denoted as ISR-P and

ISR-N, respectively. We adopt IoU-HLR as the importance

measurement for positive samples and Score-HLR for neg-

ative samples. Given the importance measurement, the re-

maining question is how to map the importance to an appro-

priate loss weight.

We first transform the rank to a real value with a linear

mapping. According to its definition, HLR is computed sep-

arately within each class (N foreground classes and 1 back-

ground class). For class j, supposing there are nj samples

in total with their corresponding HLR {r1, r2, . . . , rnj
},

where 0 ≤ ri ≤ nj − 1, we use a linear function to trans-

form each ri to ui as shown in Equ. 1. Here ui denotes the

importance value of the i-th sample of class j. nmax de-

notes the max value of nj over all classes, which ensures

that the samples at the same rank of different classes will be

assigned the same ui.

ui =
nmax − ri

nmax

(1)

A monotone increasing function is needed to further cast the

sample importance ui to a loss weight wi. Here we adopt

an exponential form as Equ. 2, where γ is the degree factor

indicating how much preference will be given to important

samples and β is a bias that decides the minimum sample

weight.

wi = ((1− β)ui + β)γ (2)

With the proposed reweighting scheme, the cross-

entropy classification loss can be rewritten as Equ. 3, where

n and m are the numbers of positive and negative samples;

s and ŝ denote the predicted score and classification tar-

get, respectively. Note that simply adding loss weights will

change the total value of losses and the ratio between the

loss of positive and negative samples, so we normalize w to

w′ in order to keep the total loss unchanged.

Lcls =

n∑

i=1

w′

iCE(si, ŝi) +

m∑

j=1

w′

jCE(sj , ŝj)

w′

i = wi

∑n

i=1
CE(si, ŝi)∑n

i=1
wiCE(si, ŝi)

w′

j = wj

∑m

j=1
CE(sj , ŝj)∑m

i=j wjCE(sj , ŝj)

(3)

4.2. Classification­Aware Regression Loss

Re-weighting the classification loss is a straightforward

way to focus on prime samples. Besides that, we de-

velop another method to highlight the prime samples, mo-

tivated by the earlier discussion that classification and lo-

calization is correlated. We propose to jointly optimize

the two branches with a Classification-Aware Regression

Loss (CARL). CARL can boost the scores of prime sam-

ples while suppressing the scores of other samples. The re-

gression quality determines the importance of a sample and

we expect the classifier to output higher scores for impor-

tant samples. The optimization of two branches should be

correlated rather than being independent.

Our solution is to add a classification-aware regression

loss, so that gradients are propagated from the regression

branch to the classification branch. To this end, we pro-

pose CARL as shown in Equ. 4. pi denotes the predicted

probability of the corresponding ground truth class and di
denotes the output regression offset. We use an exponential

function to transform the pi to vi, and then rescale it accord-

ing to the average value of all samples. L is the commonly
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used smooth L1 loss.

Lcarl =
n∑

i=1

ciL(di, d̂i)

ci =
vi

1

n

∑n

i=1
vi

vi = ((1− b)pi + b)k

(4)

It is obvious that the gradient of ci is proportional to

the original regression loss L(di, d̂i). In the supplemen-

tary, we prove that there is a positive correlation between

L(di, d̂i) and the gradient of pi. Namely, samples with

greater regression loss will receive large gradients for the

classification scores, which means stronger suppression on

the classification scores. In another view, L(di, d̂i) reflects

the localization quality of sample i, thus can be seen as

an estimation of IoU and further seen as an estimation of

IoU-HLR. Approximately, top-ranked samples have low re-

gression loss, thus the gradients of classification scores are

smaller. With CARL, the classification branch gets super-

vised by the regression loss. The scores of unimportant

samples are greatly suppressed, while the attention to prime

samples are reinforced.

5. Experiments

5.1. Experimental Setting

Dataset and evaluation metric. We conduct experiments

on the challenging MS COCO 2017 dataset [16]. It consists

of two subsets: the train split with 118k images and val

split with 5k images. We use the train split for training and

report the performance on val and test-dev. The standard

COCO-style AP metric is adopted, which averages mAP of

IoUs from 0.5 to 0.95 with an interval of 0.05.

Implementation details. We implement our methods based

on MMDetection [4]. ResNet-50 [10], ResNeXt-101-

32x4d [24], and VGG16 [22] are adopted as backbones in

our experiments. Unless otherwise specified, we follow the

default setting in MMDetection, and detailed settings are

described in the supplementary material.

5.2. Results

Overall results. We evaluate the proposed PISA on both

two-stage and single-stage detectors, on two popular bench-

marks. We use the same hyper-parameters of PISA for all

backbones and datasets. The results on MS COCO dataset

are shown in Table 1. PISA achieves consistent mAP im-

provements on all detectors with different backbones, in-

dicating its effectiveness and generality. Specifically, it

improves Faster R-CNN, Mask R-CNN and RetinaNet by

2.1%, 1.8% and 1.4%, respectively, with a ResNet-50 back-

bone. Even with a strong backbone like ResNeXt-101-

32x4d, similar improvements are observed. On SSD300

and SSD512, the gain is 2.0% and 2.1%, respectively. As

shown on Table 2, PISA adds a computational overhead of

0.07 ∼ 0.14 s/iter for training, but there is no additional pa-

rameters so the inference time remains the same as that of

the baseline.

On the PASCAL VOC dataset, PISA also outperforms

the baselines, as shown in Table 3. PISA not only brings

performance gains under the VOC evaluation metric that

uses 0.5 as the IoU threshold, but performs significant bet-

ter under the COCO metric that uses the average of multiple

IoU thresholds. This implies that PISA is especially benefi-

cial to high IoU metrics and makes more accurate prediction

on precisely located samples.

Comparison of different sampling methods. To inves-

tigate the effects of different sampling methods, we apply

random sampling (R), hard mining (H), and PISA (P) on

positive and negative samples. Hard mining here refers to

the OHEM 1:3 variant adopted in [15], which fixes the ratio

of positive and negative samples to 1:3. In this way, we can

apply different sampling methods to positive and negative

samples, which allows a more detailed study. We also eval-

uate the original OHEM implementation (denoted as H∗),

which forward all 2000 proposals and select 512 samples

with the highest loss, without limitation of positive sample

ratio. Faster R-CNN is adopted as the baseline method. As

shown in Table 4, PISA outperforms random sampling and

hard mining in all cases. We find that hard mining is ef-

fective when applied to negative samples, but hampers the

performance when applied to positive samples. For posi-

tive samples, PISA achieves 1.6% and 2.0% higher mAP

than random sampling and hard mining, respectively. For

negative samples, PISA surpasses them by 0.9% and 0.4%,

respectively. When applying to both positive and negative

samples, PISA leads to 2.1%, 1.7% and 1.3% improvements

compared to random sampling, hard mining and OHEM, re-

spectively. It is noted that the gain mainly originates from

the AP of high IoU thresholds, such as AP75. This indi-

cates that attending prime samples helps the classifier to be

more accurate on samples with high IoUs. We demonstrate

some qualitative results of PISA and the baseline in Fig-

ure 5. PISA results in less false positives and higher scores

for positive prime samples.

5.3. Analysis

We perform a thorough study on each component of

PISA and explain how it works compared with random sam-

pling and hard mining.

Component Analysis. Table 5 shows the effects of each

component of PISA. We can learn that ISR-P, ISR-N and

CARL improve the mAP by 0.7%, 0.9%, and 1.0%, respec-

tively. ISR (ISR-P + ISR-N) boots mAP by 1.5%. Applying

PISA only to positive samples (ISR-P + CARL) increases

mAP by 1.6%. With all 3 components, PISA achieves a
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Table 1: Results of different detectors on COCO test-dev.

Method Backbone AP AP50 AP75 APS APM APL

Two-stage detectors

Faster R-CNN ResNet-50 36.7 58.8 39.6 21.6 39.8 44.9

Faster R-CNN ResNeXt-101 40.3 62.7 44.0 24.4 43.7 49.8

Mask R-CNN ResNet-50 37.5 59.4 40.7 22.1 40.6 46.2

Mask R-CNN ResNeXt-101 41.4 63.4 45.2 24.5 44.9 51.8

Faster R-CNN w/ PISA ResNet-50 38.8(+2.1) 59.3 42.7 22.1 41.7 48.8

Faster R-CNN w/ PISA ResNeXt-101 42.3(+2.0) 62.9 46.8 24.8 45.5 53.1

Mask R-CNN w/ PISA ResNet-50 39.3(+1.8) 59.6 43.5 22.1 42.3 49.4

Mask R-CNN w/ PISA ResNeXt-101 42.9(+1.5) 63.2 47.4 24.9 46.2 54.0

Single-stage detectors

RetinaNet ResNet-50 35.9 56.0 38.3 19.8 38.9 45.0

RetinaNet ResNeXt-101 39.0 59.7 41.9 22.3 42.5 48.9

SSD300 VGG16 25.7 44.2 26.4 7.0 27.1 41.5

SSD512 VGG16 29.6 49.5 31.2 11.7 33.0 44.1

RetinaNet w/ PISA ResNet-50 37.3(+1.4) 56.5 40.3 20.3 40.4 47.2

RetinaNet w/ PISA ResNeXt-101 40.8(+1.8) 60.5 44.2 23.0 44.2 51.4

SSD300 w/ PISA VGG16 27.7(+2.0) 45.3 29.2 8.3 29.1 44.1

SSD512 w/ PISA VGG16 31.7(+2.1) 50.5 33.9 13.0 35.1 46.1

Table 2: Training speed (s/iter) with backbone ResNeXt-

101 on 8 Tesla V100 GPUs.

Method Faster R-CNN Mask R-CNN RetinaNet

Baseline 0.672 0.759 0.632

PISA 0.805 0.898 0.707

Table 3: Results of different detectors on VOC2007 test.

Method Backbone AP(VOC) AP(COCO)

Faster R-CNN ResNet-50 79.1 48.4

Faster R-CNN w/ PISA ResNet-50 81.2 52.3

RetinaNet ResNet-50 79.0 51.8

RetinaNet w/ PISA ResNet-50 79.3 54.0

SSD300 VGG16 77.8 49.5

SSD300 w/ PISA VGG16 78.4 51.4

Table 4: Comparison of different sampling strategies. Re-

sults are evaluated on COCO val.

pos neg AP AP50 AP75 APS APM APL

R R 36.4 58.4 39.1 21.6 40.1 46.6

H R 36.0 58.3 38.7 21.1 39.5 45.8

P R 38.0 58.5 41.7 22.4 41.6 48.3

R H 36.9 58.2 40.1 21.2 40.7 48.5

R P 37.3 58.8 40.6 21.7 40.6 48.7

H H 36.8 58.2 39.8 21.2 40.4 48.5

H∗ H∗ 37.2 58.7 40.5 22.0 40.6 48.2

P P 38.5 58.8 42.3 22.2 41.5 50.8

total gain of 2.1%.

Ablation experiments of hyper-parameters. For both ISR

and CARL, we use an exponential transformation func-

tion of Equ. 2 and 2 hyper-parameters (γP , βP for ISR-P,

γN , βN for ISR-N, and k, b for CARL) are introduced. The

exponential factor γ or k controls the steepness of the curve,

while the constant factor β or b affects the minimum value.

When performing ablation study on hyper-parameters of

Table 5: Effectiveness of components of PISA.

ISR-P ISR-N CARL AP AP50 AP75 APS APM APL

36.4 58.4 39.1 21.6 40.1 46.6

X 37.1 58.7 40.3 21.7 40.9 47.1

X 37.3 58.8 40.6 21.7 40.6 48.7

X 37.4 57.9 41.2 22.1 41.1 47.7

X X 37.9 59.4 41.6 21.7 41.2 49.7

X X 38.0 58.5 41.7 22.4 41.6 48.3

X X X 38.5 58.8 42.3 22.2 41.5 50.8

Table 6: Varying γ, β in ISR and k, b in CARL.

γP βP AP γN βN AP k b AP

0.5 0.0 36.9 0.5 0.0 37.3 0.5 0.0 37.3

1.0 0.0 36.9 1.0 0.0 37.2 1.0 0.0 37.4

2.0 0.0 37.1 2.0 0.0 37.1 2.0 0.0 N/A

2.0 0.1 37.0 0.5 0.1 37.2 1.0 0.1 37.4

2.0 0.2 36.8 0.5 0.2 37.1 1.0 0.2 37.4

2.0 0.3 36.9 0.5 0.3 37.2 1.0 0.3 37.2

ISR-P, ISR-N or CARL, we do not involve other compo-

nents. A larger γ and a smaller β mean a larger gap be-

tween prime samples and unimportant samples, so that we

focus more on prime samples. The opposite case means we

pay more equal attention to all samples. Through a coarse

search, we adopt γP = 2.0, γN = 0.5, βP = βN = 0 for

ISR, and k = 1.0, b = 0.2 for CARL. We also observe

that the performance is not very sensitive to those hyper-

parameters.

What samples do different sampling strategies prefer?

To understand how ISR works, we study the sample distri-

bution of different sampling strategies from the aspects of

IoU and loss. Sample weights are taken into account when

obtaining the distribution. Results are shown in Figure 6.

For positive samples, we learn that samples selected by hard
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Figure 6: IoU and Loss distribution of random, hard, and

prime samples.
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Figure 7: Effects of ISR on samples scores. Left: average

scores of positive samples vary with IoU-HLR. Right: av-

erage scores of negative samples vary with Score-HLR.

mining and PISA diverge from each other. Hard samples

have high losses and low IoUs, while prime samples come

with high IoUs and low losses, indicating that prime sam-

ples tend to be easier for classifiers. For negative samples,

PISA presents an intermediate preference between random

sampling and hard mining. Unlike random sampling that fo-

cuses more on low IoU and easy samples, and hard mining

that attends to relatively high IoU and hard samples, PISA

maintains the diversity of samples.

How does ISR affect classification scores? ISR assigns

larger weights to prime samples, but does it achieve the bi-

ased classification performance as expected? In Figure 7,

we plot the score distribution of positive and negative sam-

ples w.r.t. different HLRs. For positive samples, the scores

of top-ranked samples are higher than the those of baseline,

while that of lower-ranked samples are lower. The result

demonstrates that ISR-P biases the classifier, thus boosting

the prime samples while suppressing others. For negative

samples, the scores of all samples are lower than those of

the baseline, especially for top-ranked samples. This im-

plies that ISR-N has a strong suppression for false positives.

How does CARL affect classification scores? CARL cor-

relates the classification and localization branches by intro-

ducing the classification scores to the regression loss. The

gradient will suppress the scores of samples with lower re-

gression quality, but highlight the prime samples that are
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Figure 8: Effects of CARL on the scores of positive samples

vary with IoU interval.

Table 7: Comparison of ISR with different importance met-

rics.

ISR Metric AP AP50 AP75 APS APM APL

Loss Rank 36.3 58.0 39.3 21.4 40.1 46.4

IoU∗ 36.5 58.4 39.5 21.6 40.3 46.4

IoU 36.8 58.6 40.0 21.9 41.3 47.2

IoU-HLR 37.1 58.7 40.3 21.7 40.9 47.1

localized more accurately. Figure 8 shows the scores of

samples of different IoUs. Compared with the FPN base-

line, CARL boosts scores of high IoU samples but decreases

scores of low IoU samples as expected.

Is IoU-HLR better than other metrics? The results prove

that for positive sampling, IoU-HLR is an effective impor-

tance metric while loss is not, but is it better than others? We

test other metrics for ISR, including loss rank, IoU, and IoU

before regression (denoted as IoU∗). The results are shown

in Table 7, which suggests (1) the performance is more re-

lated to IoU instead of loss, and (2) using the locations after

regression is important, and (3) IoU-HLR is better than IoU.

These results match our intuition and analysis in Sec. 3.

6. Conclusion

We study on what are the most important samples for

training an object detector and establishing the notion

of prime samples. We present PrIme Sample Attention

(PISA), a simple and effective sampling and learning strat-

egy to highlight important samples. On both MS COCO and

PASCAL VOC datasets, PISA achieves consistent improve-

ments over random sampling and hard mining counterparts.
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