Learning to Cluster Faces via Confidence and Connectivity Estimation Supplementary Material

Lei Yang¹, Dapeng Chen², Xiaohang Zhan¹, Rui Zhao², Chen Change Loy³, Dahua Lin¹ ¹The Chinese University of Hong Kong

²SenseTime Group Limited, ³Nanyang Technological University

{yl016, zx017, dhlin}@ie.cuhk.edu.hk, {chendapeng, zhaorui}@sensetime.com, ccloy@ntu.edu.sg

1. Pseudo-code of the proposed algorithm

We provide a pseudo-code to illustrate the steps of the proposed method.

Algorithm 1 Clustering via Confidence and Connectivity Estimation

Input: Graph \mathcal{G} , portion of vertices using GCN-E ρ , number of connections M, cut-off threshold τ

Output: Clusters C1: Vertex confidence $\mathbf{V} = \text{GCN-V}(\mathcal{G})$

- 2: S = GETCANDIDATESET(V)
- 3: $\mathcal{H} = \text{GetHighConFidenceVertexSet}(\mathbf{V}, \rho)$
- 4: for $i \in \mathcal{H}$ do
- 5: Edge connectivity $\mathbf{E}_i = \text{GCN-E}(\mathcal{G}(\mathcal{S}_i), M)$
- 6: end for
- 7: for $i \in \mathcal{V} \setminus \mathcal{H}$ do
- 8: Edge connectivity $\mathbf{E}_i = MAX(\mathcal{E}(\mathcal{S}_i), M)$
- 9: **end for**
- 10: Clusters C = CONNECTTOCLUSTERS(**E**, τ)
- 11: return C

2. Detailed settings of compared methods

(1) K-means [4], minimizes the total intra-cluster variance with a given number of clusters. For N = 584K of MS-Celebe-1M or DeepFashion, we employ K-means by adopting the *ground-truth* number of clusters. For $N \ge 1.74M$, we use mini-batch K-means with batch size 1,000.

(2) HAC [6], adopts *single* strategy for bottom-up merging in our experiments. The distance threshold is set to 0.72 for different scale of MS-Celeb-1M. For DeepFashion, we tune the distance threshold from 0.1 to 0.9 with a step 0.1 and find 0.4 gives the best result.

(3) **DBSCAN** [3], has two important hyper-parameters, namely, *radius* and *minPts*. For higher efficiency, we apply KNN DBSCAN, which only considers its K nearest neighbors for density computation. We set K = 80, radius = 0.25, minPts = 1 for 584K, 1.74M and 2.89M of MS-

Celeb-1M. When the number of unlabeled images is larger than 4.05M, we have to decrease the distance threshold τ from 0.25 to 0.2, otherwise the pairwise precision will go down to 1.46%. For DeepFashion, we set K = 4, radius = 0.1, minPts = 2.

(4) MeanShift [2], fails to yield results in a reasonable time even on 584K of MS-Celeb-1M. Therefore, we only apply the approach in DeepFashion. We tune the *bandwidth* from 0.1 to 0.9 and find 0.5 gives the best result.

(5) Spectral [5], has $N \times N$ space complexity, incurring excessive memory demands even on the smallest setting of MS-Celeb-1M (584K). We employ spectral clustering on DeepFashion by setting the number of clusters to 3,991, which is the ground-truth number of clusters.

(6) ARO [1], depends on the number of nearest neighbors K. For the reported results of MS-Celeb-1M, we use K = 80 for all scales. When increasing K to 500, it takes 21h to yield $F_P = 54.47$ on 584K of MS-Celeb-1M. For DeepFashion, we vary K from 5 to 30 and the best result appears when K = 10.

(7) CDP [9], adopts a dynamic threshold algorithm to partition the affinity graph efficiently, which relies on an initial threshold τ , a threshold step $\Delta \tau$, maximum size of clusters s_{max} and K for constructing KNN affinity graph. For all scales of MS-Celeb-1M, we set $\tau = 0.7$, $\Delta \tau = 0.05$, $s_{max} = 300$ and K = 80. For DeepFashion, we set $\tau = 0.5$, $\Delta \tau = 0.05$, $s_{max} = 200$ and K = 2.

(8) L-GCN [7], adopts the pseudo label propagation algorithm of CDP. In addition to τ , $\Delta \tau$ and s_{max} , it requires K at each hop K_h to construct instance pivot graph and active connections c for aggregating the predictions. For 584K and 1.74M of MS-Celeb-1M, we set $K_0 = 80, K_1 = 10$], $c = 10, \tau = 0.6, \Delta \tau = 0.05$ and $s_{max} = 300$. For $N \geq 2.89M$, we increase τ to 0.7 and s_{max} to 900, while keeping other hyper-parameters the same. For DeepFashion, we set $K_0 = 5, K_1 = 5, c = 5, \tau = 0.5, \Delta \tau = 0.05$ and $s_{max} = 300$.

(9) LTC [8], For N = 584K of MS-Celeb-1M, we adopt the same strategy of LTC, which sets different K and τ , generating a large number of proposals iteratively. For $N \geq 1.74M$, to control the computational budget, we set $K = 80, s_{max} = 300, \Delta \tau = 0.05$ and generate cluster proposals using 5 thresholds ranging from 0.55 to 0.75 with a step of 0.05, without resorting to the iterative scheme. For DeepFashion, we set $K = 5, s_{max} = 100, \tau = [0.55, 0.6]$. Adding proposals generated with $\tau = [0.65, 0.7]$ only increases the F_P from 29.14 to 29.5, while increasing the runtime from 13s to 27s.

(10) Ours (V), the proposed method mainly relies on two hyper-parameters, namely K and cut off threshold τ_c . For all settings, we set $\tau_c = 0.8$. To construct the KNN graph, we set K = 80 for MS-Celeb-1M and K = 5 for Deep-Fashion, respectively. For GCN-V, one hidden layer is adopted with a hidden dimension of 512.

(11) Ours (V + E), introduces GCN-E module to select top ρ vertices for connectivity estimation and top-M prediction for connection. For both MS-Celeb-1M and DeepFashion, we set $\rho = 0.7$ for training and $\rho = 0.8$ for inference. M is set to 1 for all settings. To better evaluate the neighborhood of each vertex, we can use different K nearest neighbors for GCN-V and GCN-E. For MS-Celeb-1M, we use K = 80 for both GCN-V and GCN-E. For DeepFashion, we use K = 5 for GCN-V and K = 80 for GCN-E.

References

- Clustering millions of faces by identity. *TPAMI*, 40(2):289– 303, 2018.
- [2] Dorin Comaniciu and Peter Meer. Mean shift analysis and applications. In *Proceedings of the Seventh IEEE International Conference on Computer Vision*, volume 2, pages 1197–1203. IEEE, 1999. 1
- [3] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In *KDD*, 1996. 1
- [4] Stuart Lloyd. Least squares quantization in pcm. *IEEE transactions on information theory*, 28(2):129–137, 1982. 1
- [5] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. In Advances in neural information processing systems, pages 849–856, 2002. 1
- [6] Robin Sibson. Slink: an optimally efficient algorithm for the single-link cluster method. *The computer journal*, 16(1):30–34, 1973.
- [7] Zhongdao Wang, Liang Zheng, Yali Li, and Shengjin Wang. Linkage based face clustering via graph convolution network. In *Proceedings of the IEEE Conference on Computer Vision* and Pattern Recognition, pages 1117–1125, 2019.
- [8] Lei Yang, Xiaohang Zhan, Dapeng Chen, Junjie Yan, Chen Change Loy, and Dahua Lin. Learning to cluster faces on an affinity graph. In *Proceedings of the IEEE Conference* on Computer Vision and Pattern Recognition, pages 2298– 2306, 2019. 1
- [9] Xiaohang Zhan, Ziwei Liu, Junjie Yan, Dahua Lin, and Chen Change Loy. Consensus-driven propagation in massive unlabeled data for face recognition. In *ECCV*, 2018.