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1. Pseudo-code of the proposed algorithm

We provide a pseudo-code to illustrate the steps of the
proposed method.

Algorithm 1 Clustering via Confidence and Connectivity Estimation

Input: Graph G, portion of vertices using GCN-E ρ, num-
ber of connections M , cut-off threshold τ

Output: Clusters C
1: Vertex confidence V = GCN-V(G)
2: S = GETCANDIDATESET(V)
3: H = GETHIGHCONFIDENCEVERTEXSET(V, ρ)
4: for i ∈ H do
5: Edge connectivity Ei = GCN-E(G(Si), M )
6: end for
7: for i ∈ V \ H do
8: Edge connectivity Ei = MAX(E(Si), M )
9: end for

10: Clusters C = CONNECTTOCLUSTERS(E, τ )
11: return C

2. Detailed settings of compared methods

(1) K-means [4], minimizes the total intra-cluster variance
with a given number of clusters. For N = 584K of MS-
Celebe-1M or DeepFashion, we employ K-means by adopt-
ing the ground-truth number of clusters. For N ≥ 1.74M ,
we use mini-batch K-means with batch size 1, 000.
(2) HAC [6], adopts single strategy for bottom-up merging
in our experiments. The distance threshold is set to 0.72 for
different scale of MS-Celeb-1M. For DeepFashion, we tune
the distance threshold from 0.1 to 0.9 with a step 0.1 and
find 0.4 gives the best result.
(3) DBSCAN [3], has two important hyper-parameters,
namely, radius and minPts. For higher efficiency, we apply
KNN DBSCAN, which only considers itsK nearest neigh-
bors for density computation. We set K = 80, radius =
0.25,minPts = 1 for 584K, 1.74M and 2.89M of MS-

Celeb-1M. When the number of unlabeled images is larger
than 4.05M, we have to decrease the distance threshold τ
from 0.25 to 0.2, otherwise the pairwise precision will go
down to 1.46%. For DeepFashion, we setK = 4, radius =
0.1,minPts = 2.
(4) MeanShift [2], fails to yield results in a reasonable time
even on 584K of MS-Celeb-1M. Therefore, we only apply
the approach in DeepFashion. We tune the bandwidth from
0.1 to 0.9 and find 0.5 gives the best result.
(5) Spectral [5], has N × N space complexity, incurring
excessive memory demands even on the smallest setting of
MS-Celeb-1M (584K). We employ spectral clustering on
DeepFashion by setting the number of clusters to 3, 991,
which is the ground-truth number of clusters.
(6) ARO [1], depends on the number of nearest neigh-
bors K. For the reported results of MS-Celeb-1M, we use
K = 80 for all scales. When increasing K to 500, it takes
21h to yield FP = 54.47 on 584K of MS-Celeb-1M. For
DeepFashion, we vary K from 5 to 30 and the best result
appears when K = 10.
(7) CDP [9], adopts a dynamic threshold algorithm to par-
tition the affinity graph efficiently, which relies on an initial
threshold τ , a threshold step ∆τ , maximum size of clus-
ters smax and K for constructing KNN affinity graph. For
all scales of MS-Celeb-1M, we set τ = 0.7, ∆τ = 0.05,
smax = 300 and K = 80. For DeepFashion, we set
τ = 0.5, ∆τ = 0.05, smax = 200 and K = 2.
(8) L-GCN [7], adopts the pseudo label propagation algo-
rithm of CDP. In addition to τ , ∆τ and smax, it requires K
at each hop Kh to construct instance pivot graph and active
connections c for aggregating the predictions. For 584K
and 1.74M of MS-Celeb-1M, we set K0 = 80,K1 = 10],
c = 10, τ = 0.6, ∆τ = 0.05 and smax = 300. For
N ≥ 2.89M , we increase τ to 0.7 and smax to 900, while
keeping other hyper-parameters the same. For DeepFash-
ion, we set K0 = 5,K1 = 5, c = 5, τ = 0.5, ∆τ = 0.05
and smax = 300.
(9) LTC [8], For N = 584K of MS-Celeb-1M, we adopt
the same strategy of LTC, which sets different K and τ ,



generating a large number of proposals iteratively. For
N ≥ 1.74M , to control the computational budget, we set
K = 80, smax = 300,∆τ = 0.05 and generate cluster pro-
posals using 5 thresholds ranging from 0.55 to 0.75 with a
step of 0.05, without resorting to the iterative scheme. For
DeepFashion, we set K = 5, smax = 100, τ = [0.55, 0.6].
Adding proposals generated with τ = [0.65, 0.7] only in-
creases the FP from 29.14 to 29.5, while increasing the
runtime from 13s to 27s.
(10) Ours (V), the proposed method mainly relies on two
hyper-parameters, namely K and cut off threshold τc. For
all settings, we set τc = 0.8. To construct the KNN graph,
we set K = 80 for MS-Celeb-1M and K = 5 for Deep-
Fashion , respectively. For GCN-V, one hidden layer is
adopted with a hidden dimension of 512.
(11) Ours (V + E), introduces GCN-E module to select top
ρ vertices for connectivity estimation and top-M prediction
for connection. For both MS-Celeb-1M and DeepFashion,
we set ρ = 0.7 for training and ρ = 0.8 for inference. M is
set to 1 for all settings. To better evaluate the neighborhood
of each vertex, we can use different K nearest neighbors
for GCN-V and GCN-E. For MS-Celeb-1M, we use K =
80 for both GCN-V and GCN-E. For DeepFashion, we use
K = 5 for GCN-V and K = 80 for GCN-E.
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