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A. Two Model Examples in Introduction

In the introduction, we mentioned that some architec-
tures applied with certain reduction factors win in the re-
duced setting but perform worse in the original setup on
CIFAR-10 [5]. The normal and reduction cells for the
aforementioned models A and B are shown in Fig. A1 and
Fig. A2, respectively. The results on CIFAR-10 of the two
models in the original setting and reduced setting are shown
in Table A1. The original setting is c0r0s0e600 while the re-
duced setting is c0r0s0e30. The training details about the
two settings are provided in Section E.2. The results show
that the rank of performance evaluated in the reduced set-
ting is not guaranteed to be the same as that in the original
setting.

B. Reliability of Spearman Coefficient

The final accuracy of each network might have minor
variation due to the randomness in training. To make the
Spearman Coefficient reliable to the accuracy variation, we
adjust ρsp to make it tolerant to the small variations of ac-
curacy and re-analyze the results based on existing records.
In the new metric, if the absolute accuracy difference of two
models within an interval b are in both original and reduced
setting, they will be considered as having no ranking differ-
ence. b (0.15% in our implementation) is used to ignore the
minor accuracy variations. For instance, if the accuracy dif-
ferences of two models are 0.1 in both original and reduced
settings, then the new metric will regard these models of
having no ranking difference despite the ranking change be-
tween these two models. We find that this new ρsp is highly
consistent with previous metric (the normalized correlation
is 0.96). And the good settings in Fig. 8 are consistent with
the new metric in Fig. A3. We further test some settings
with 100 models and observe consistent results, which also
confirms the reliability.

∗Equal contribution.

C. Construction of Model Zoo
This section provides the details on constructing the

model zoo (Section 3). Each network architecture in the
model zoo is a stack of normal cells alternating with reduc-
tion cells. In each network, these two cells are all gener-
ated separately according to the common selection steps in
[7, 9, 11] and we just replace the search algorithm in these
approaches by random sampling. The number of nodes in-
side the cells is 5 and every cell receives two initial inputs.
For cell k, the two initial inputs are denoted as hk−2 and
hk−1, which are outputs of previous cells k − 2 and k − 1
or the input of images. The output of each cell is the depth-
wise concatenation of all the intermediate nodes (two initial
inputs excluded). The generation steps of each intermediate
node are as follows:

• Step 1. Randomly select an input from the input set,
which contains two initial inputs of the cell and the set
of outputs from previous nodes within the cell.

• Step 2. Randomly select another input from the same
input set as in Step 1.

• Step 3. Randomly select an operation from the op-
eration set and apply this operation to the first input
selected in Step 1.

• Step 4. Randomly select another operation to apply to
the second input selected in Step 2.

• Step 5. Add the outputs of Step 3 and Step 4 to create
the output of the current node.

The original ‘Step 5’ in [11] provides two combination
methods: element-wise addition and depth-wise concatena-
tion. However, previous work [7] mentions that the concate-
nation method are never chosen during search. Therefore,
we only use addition as the combination operation. We se-
lected 13 operations to build our operation set considering
their prevalence in the NAS literature [1, 8, 10, 11], which
are listed as below:
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Figure A1. Normal and reduction cell structures of model A
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Figure A2. Normal and reduction cell structures of model B

101.0 102.0 103.0 104.0

Acceleration Ratio (FLOPsgt/FLOPsreduce)
0.85

0.90

0.95

1.00

To
le

ra
nt

 
sp

c3r0s0e120 c4r0s0e90
c4r1s0e120

c4r1s0e60

c4r3s0e120 c4r4s0e90

c4r4s0e60

Amoeba

NASNet

Figure A3. New ρsp (Y-axis) and acceleration ratio (X-axis) of
reduced settings. Blue points show all settings, the orange ones
are good settings and the green one is adopted in EcoNAS.

Table A1. The top-1 accuracy on CIFAR-10 for two models in the
original setting (c0r0s0e600) and the reduced setting (c0r0s0e30).

Model c0r0s0e600 c0r0s0e30

A 95.27% 82.42%
B 94.58% 86.21%

• 3x3 average pooling

• 3x3 max pooling

• 5x5 max pooling

• 7x7 max pooling

• Identity

• 1x1 Convolutions

• 3x3 Convolutions

• 3x3 Separable Convolu-
tions

• 5x5 Separable Convolu-
tions

• 7x7 Separable Convolu-
tions

• 3x3 Dilated Convolu-
tions

• 1x3 then 3x1 Convolu-
tions

• 1x7 then 7x1 Convolu-
tions

D. Detailed Information About Entropy
In Fig. 5 and Fig. 6 of Section 3.3, a new measurement

called entropy is used. This section provides the details on
how entropy is calculated.

We use entropy, denoted by ρe, to measure the mono-
tonicity of a given objective set. The entropy ρe is the
Spearman Coefficient measuring the rank difference
between the objective set and an arbitrary increasing
collection (called base set, such as {1, 2, 3, 4, 5}). The
objective set is the collection of ρsp along a certain re-
duction factor dimension, such as ρsp of reduced settings
{c0r0s0e30, c1r0s0e30, c2r0s0e30, c3r0s0e30, c4r0s0e30}
along the dimension of reduction factor c. If the absolute
value of ρe is closer to 1, it indicates that the objective
set has a more apparent increasing (ρe approximates 1) or
decreasing (ρe approximates −1) trend. Otherwise (e.g.,
ρe approximates 0) the monotonicity of the objective set
is less apparent. Since the true values of the inputs will
be transferred to the ranks, the choice of base set will not
affect the final results if it is a set of increasing numbers.

E. Experiments
E.1. Implementation Details of EcoNAS

Search space. The search space of EcoNAS consists of
8 operations, which follow the previous work [8] and are
listed as follows:
• Zeros
• 3x3 average pooling
• 3x3 max pooling
• 3x3 Separable Convolu-

tion
• Identity

• 5x5 Separable Convolu-
tion

• 3x3 Dilated Convolu-
tion

• 5x5 Dilated Convolu-
tion
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Figure A4. Normal and reduction cell structures of first-place model, whose error rate is 2.62% on CIFAR-10.
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Figure A5. Normal and reduction cell structures of second-place model, whose error rate is 2.67% on CIFAR-10.

Each cell in the network consists of 4 nodes (Fig. 2).
The generation of each node follows the 5 steps described in
Section C, except that the operation sets are different. In one
cell, the node outputs that are not used will be concatenated
together as the cell output [10, 11].

Search strategy. We use the setting of c4r4s0 and the batch
size is 384. Every network is trained on a single GPU. In ev-
ery cycle, the chosen networks will be trained for 20 epochs
and the maximum training length for each network is 60
epochs, i.e., the complete reduce setting is c4r4s0e60, which
has been found to be effective in the main text. The other
hyper-parameters remain the same as stated in Section E.2.
We use P20, P40 and P60 to denote the networks trained for
20, 40, and 60 epochs, respectively. In each cycle, 16 net-
works will be chosen from the population and be mutated,
and the top-8 and top-4 networks in P20 and P40 will con-
tinue to be trained for 20 epochs, which means that no more
than half of the networks in the P20 and P40 set will get
chance to be continually trained. When the process is fin-
ished, we only retrain and find the best model from top-5
models from P60. The searched models that achieve the
best and the second best results are shown in Figure A4 and
Figure A5, respectively.

E.2. Implementation Details on CIFAR-10

This section provides the details of training strategies for
the original and reduced settings on CIFAR-10 (Section 3

and 5.1). In the original setting, we train each network from
scratch for 600 epochs with batch size of 96. Cosine learn-
ing rate schedule is used with lrmax = 0.025 and lrmin =
0.001 and the weight decay is 3e−4 [8]. Additional en-
hancements including cutout [2], path dropout [6], and com-
mon data augmentations follow the previous work [8].

The implementation for the reduced setting follows that
for the original setting, except those as follows:

1. The number of training epochs is decided by the re-
duction factor e. But the cosine learning rate scheduler
still finishes a completed cosine cycle within the re-
duced epochs.

2. Path dropout is excluded in the reduced setting because
we empirically find that the evaluation ability of reduc-
tion settings will increase if path dropout is excluded.
The possible reason is that we use very small number
of epochs, which is not favored by path dropout.

3. The images are resized to reduced resolution after
padding and random cropping, and the cutout length
is adjusted according to the reduced resolution.

E.3. Implementation Details on ImageNet

This section provides the the details on training strate-
gies on ImageNet (Section 5.1). The networks are trained
for 150 epochs with batch size 2048 on 32 GPUs. The
learning rate also follows a cosine annealing schedule with
lrmax = 0.8 and lrmin = 0.0. We use warmup [3] to start



the learning rate from 0.2 and then increase it linearly to
0.8 in the first 2 epochs. The weight decay for all networks
is 3e−5. We also use common data augmentation methods
following [4].
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