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Abstract

Neural Architecture Search (NAS) achieves significant

progress in many computer vision tasks. While many meth-

ods have been proposed to improve the efficiency of NAS,

the search progress is still laborious because training and

evaluating plausible architectures over large search space

is time-consuming. Assessing network candidates under a

proxy (i.e., computationally reduced setting) thus becomes

inevitable. In this paper, we observe that most existing prox-

ies exhibit different behaviors in maintaining the rank con-

sistency among network candidates. In particular, some

proxies can be more reliable – the rank of candidates does

not differ much comparing their reduced setting perfor-

mance and final performance. In this paper, we systemati-

cally investigate some widely adopted reduction factors and

report our observations. Inspired by these observations, we

present a reliable proxy and further formulate a hierarchi-

cal proxy strategy. The strategy spends more computations

on candidate networks that are potentially more accurate,

while discards unpromising ones in early stage with a fast

proxy. This leads to an economical evolutionary-based NAS

(EcoNAS), which achieves an impressive 400× search time

reduction in comparison to the evolutionary-based state of

the art [19] (8 vs. 3150 GPU days). Some new proxies

led by our observations can also be applied to accelerate

other NAS methods while still able to discover good can-

didate networks with performance matching those found by

previous proxy strategies.

1. Introduction

Neural Architecture Search (NAS) has received wide at-

tention and achieved significant progress in many computer

vision tasks, such as image classification [9, 19, 26, 31],

detection [6, 8, 24], and semantic segmentation [13]. Al-

∗Equal contribution.

Figure 1. The comparison of search cost and accuracy for differ-

ent NAS methods on CIFAR-10 [12]. Simply replacing the orig-

inal proxy with a more consistent and efficient one could reduce

the search cost of DARTS [16] and AmoebaNet [19]. The pro-

posed EcoNAS uses an efficient proxy with a novel hierarchical

proxy strategy, reducing around 400× search cost and achieving

competitive performance comparing with AmoebaNet [19].

though recent NAS methods [14, 16, 18] improve the search

efficiency from earlier works [30], the search progress is

still time-consuming and requires vast computation over-

head when searching in a large search space since all net-

work candidates need to be trained and evaluated.

A widely adopted approach to alleviating this problem is

by training and evaluating network candidates under prox-

ies (i.e., computationally reduced settings [16, 18, 19, 31]).

There are four common reduction factors, namely, the num-

ber of channels for CNNs (c), the resolution of input im-

ages (r), the number of training epochs (e), and the sample

ratio (s) of the full training set. These reduction factors

either reduce the computation costs of networks or reduce

the training iterations to save the search time. While in-

troducing proxies sounds appealing, a caveat is that differ-

ent reduction factors exhibit different behaviors in keeping

the rank consistency among network candidates. We ob-

serve that some architectures applied with certain reduction
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factors win in the reduced setting but perform worse in the

original setup on CIFAR-10 [12]. Some other reduction fac-

tors perform more consistently. Those consistent and effi-

cient reduced settings accelerate existing NAS methods and

achieve competitive results as shown in Fig. 1.

In this work, we investigate the behaviors of reduction

factors [c, r, s, e]. Two main observations were obtained:

(1) with the same iteration numbers, using more training

samples with fewer training epochs could be more effective

than using more training epochs and fewer training samples

in reducing the rank inconsistency; (2) reducing the resolu-

tion of input images is sometimes feasible while reducing

the channels of networks is more reliable than reducing the

resolution. The aforementioned observations motivate us to

design reliable proxies that reduce channels and input reso-

lutions while using all training samples. These new proxies

apply well to many NAS methods, including evolutionary-

based and gradient-based NAS methods [5, 16, 19]. In par-

ticular, we observe consistent search time reduction when

these new proxies are applied, while the discovered net-

works are similarly competitive to those found by the orig-

inal NAS methods.

We further formulate a novel hierarchical proxy strategy

for evolutionary-based NAS. The goal of the hierarchical

proxy strategy is to discard less promising candidates earlier

with a faster proxy and evaluate more promising candidates

with a more expensive proxy. The strategy is both effec-

tive and efficient: (1) this design saves substantial compu-

tation overhead by saving evaluation on less promising net-

works, and (2) assigning more resources to more promising

networks help us to find good architectures more precisely.

Thanks to the hierarchical proxy strategy, the proposed eco-

nomical evolutionary-based NAS (EcoNAS) enjoys nearly

400× reduced search time (8 vs. 3150 GPU days) in com-

parison to the evolutionary-based state of the art [19] while

maintaining comparable performance.

To summarize, our main contributions are as follows:

1. We conduct extensive experiments to study commonly

applied reduction factors. While inconsistency of re-

duction factors is well-known in the community, our

work presents the first attempt to analyze the behaviour

systematically.

2. Observations from the experiments lead to some fast

and reliable proxies that are applicable to a wide

range of NAS methods, including evolutionary-based

NAS [19] and gradient-based NAS methods [5, 16].

3. We present a hierarchical proxy strategy that leads to

EcoNAS, reducing the search time requirement from

thousands of GPU days to fewer than 10 GPU days.

2. Related Work

Neural Architecture Search. NAS aims at searching for

good neural networks automatically in an elaborately de-

signed search space. One common approach of NAS is to

train and evaluate each network candidates on a proxy, i.e.,

computation reduced setting, and to search architectures us-

ing either evolutionary algorithms (EA) [2, 15, 19, 20], re-

inforcement learning (RL) [14, 18, 29, 30, 31], or gradient-

based methods [16, 26]. One-Shot methods [3, 4, 9] usually

train a supernet covering the search space once and then ap-

ply search algorithms to search the best path in this supernet

as the searched architecture.

After the seminal work by Zoph and Le [30] that requires

up to hundreds of GPU days to find a good architecture,

many NAS methods [14, 16, 18] try to reduce the search

cost through different approaches. The community first

turns to searching for primary building cells rather than the

entire network [29, 31]. Based on the cell search, some ap-

proaches try to use performance prediction based on learn-

ing curves [2] or surrogate models [14] to expedite the

evaluation process. Parameter sharing between child mod-

els is also common for acceleration,e.g., in DARTS [16],

ENAS [18], and One-Shot methods [3, 4, 9]. Our EcoNAS

is an evolutionary-based NAS method [2, 15, 19, 20]. Dif-

ferent from previous works that fix the proxies when search-

ing for network architectures, we design a fast and consis-

tent proxy to reduce the search time, and apply hierarchical

proxy strategy to improve the search efficiency. It is note-

worthy that another trend of NAS is to search for efficient

architectures [5, 10, 22, 25] by adding constraints during

search process such as latency [10, 22, 25] on specific plat-

forms. This differs to our focus on reducing the search cost

by more careful and systematic proxy design.

Accelerating neural network training. Parallel comput-

ing [1, 27, 28] could significantly accelerate the training

process of deep neural networks. Although these meth-

ods save the training time to minutes, the reduction in

training time comes with the cost of thousands of GPUs,

and their computation overhead remains large. Many stud-

ies [7, 17, 23] evaluate the performance of different net-

works at reduced settings, e.g., using smaller images in Tiny

ImageNet Challenge1, using the encodings of network lay-

ers [7], reducing the number of training iterations [17], and

reducing samples [23]. These studies assume that a specific

reduced setting is sufficiently consistent thus do not evalu-

ate the influence of different reduced settings. In contrast,

we extensively evaluate influences from different reduced

settings.

3. Exploration Study

In this study, we investigate the behaviors of different

reduced settings. Previous works have not studied such be-

haviours comprehensively and systematically. To facilitate

our study, we construct a model zoo containing 50 networks

1https://tiny-imagenet.herokuapp.com
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Figure 2. Network structure overview. (a) The cell stacking

method for the whole network (N = 6). (b) The connection be-

tween cells. (c) The general cell structure, where nodes 0, 1 are

input nodes. (d) The construction of nodes 2, 3, 4 in the cell.

for comparing the rank consistency before and after apply-

ing reduced settings. Each network in the model zoo is a

stack of cells with alternating normal cells and reduction

cells [14, 18, 31], generated by random sampling. The cell

can be regarded as a directed acyclic graph consisting of

an ordered sequence of nodes. Each node is a feature map

in convolution networks and each directed edge is associ-

ated with an operation to be searched or randomly sampled.

The entire network structure and one example of the cell are

shown in Fig. 2(a) and Fig. 2(c), respectively. The details

are provided in the Appendix.

3.1. Reduction Factors

In our experiments, a reduced setting corresponds to a

combination of four factors: (1) number of channels for

CNNs (c), (2) resolution of input images (r), (3) training

epochs (e), and (4) sample ratio (s). The degree of reduc-

tion of c, r, and s is represented by a subscript 0, 1, 2, 3, 4.

Specific values for the subscript of each reduction factor, for

CIFAR-10 dataset [12], are shown in Table 1. The subscript

for e is an integer, e.g., e30 indicates 30 training epochs. The

value of c refers to the number of channels in the initial con-

volutional cell. As for the sample ratio s, we randomly se-

lect a subset from the training data according to the value of

s and then train the network on this subset. For CIFAR-10,

(c0, r0, s0, e600) corresponds to the original or conventional

setting [16], which uses 36 initial channels and 32× 32 in-

put image. All training samples are used for training with

600 epochs. In comparison, (ca, rb, sc, ex) corresponds to

a reduced setting requiring around 1/2a+b+c FLOPs, i.e.,

2a+b+c speed-up, when compared with (c0, r0, s0, ex).

3.2. Evaluation Metric

We use Spearman Coefficient, denoted as ρsp, as the

metric to evaluate the reliability of reduced settings. The

same metric is also used in [14] but it is employed for eval-

Table 1. Specific values of reduction factors for CIFAR-10 [12].

For the values of cx and rx, if
c0(r0)

(1/
√
2)x

(x is the subscript) is an

integer, the integer is taken directly (c2, r2). Otherwise, the nearest

number divisible by 4 is selected.

Reduction factor 0 1 2 3 4

c 36 24 18 12 8

r 32 24 16 12 8

s 1.0 0.5 0.25 0.125

e 30 60 90 120

(a) Small ρsp (b) Large ρsp

Figure 3. Visualization of small ρsp (a) and large ρsp (b). The x,

y coordinates of each point in the figure represent the ranks of a

certain model in the original and reduced setting, respectively. For

instance, point (31,10) means that the rank of that model is 31 in

the original setting but increases to 10 in the reduced setting.

uating the performance of accuracy predictors. In our work,

we use the metric to measure the dependence of ranks be-

tween the original setting and the reduced settings when

the reduced settings are used for ranking the models in the

model zoo. Assuming the model zoo has K networks, the

formulation of ρsp is

ρsp = 1−
6
∑K

i=1
d2i

K(K2 − 1)
, (1)

where di is the difference for network i between its rank in

the original setting and its rank in the reduced setting.

A higher Spearman Coefficient corresponds to a more

reliable reduced setting. An architecture found in a reli-

able reduced setting is more likely to remain high rank in

the original setting. For example, Fig. 3 shows two differ-

ent reduced settings, i.e., one with a small ρsp (Fig. 3(a))

and another one with a large ρsp (Fig. 3(b)) . When ρsp is

large, the dependence of ranks increases between the origi-

nal setting and the reduced setting for the same model. This

indicates that the average change of ranks when switching

from the reduced setting to the original one is small; thus,

the reduced setting is more consistent and reliable. When

ρsp is small, the rank obtained from the reduced setting is

less reliable. The models with low ranks and high ranks at

the original setting could rank highly and low at the reduced

setting more frequently, respectively.

3.3. Experimental Observations

We try different combinations of reduction factors and

investigate the rank consistency between the original and
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Figure 4. The influence of factors s and e. The Y -axis is the aver-

age ρsp for 25 different reduced settings that only differ in c and r

but have the same s and e.

X Y

Figure 5. 3D-Bar chart for reduction factors c and r. The X-Y

plane shows all the combinations of c and r, and Z-axis represents

the corresponding ρsp. We can directly compare ρsp through the

height of the bars. The values marked near the X and Y axes are

entropies, which are used to evaluate monotonic increasing or

decreasing trend for the ρsp corresponding to the change of r or c.

reduced settings by Spearman Coefficient on the CIFAR-

10 dataset [12]. The experimental setting is described in the

Appendix. Two useful observations are obtained as follows:

1) With the same iteration numbers, using more train-

ing samples with fewer training epochs is more consis-

tent than using more training epochs and fewer training

samples. We first analyze the influence of sample ratio s
and training epoch e. There are 25 combinations of c and r
for each combination of s and e as indicated in Table 1.

As shown in Fig. 4, Spearman Coefficient ρsp increases

when the number of epochs and sample ratio increases.

Therefore, the rank consistency improves with more train-

ing epochs and/or more training samples. The increase of

ρsp from 30 epochs to 60 epochs is the most obvious, after

which the benefits brought about by more epochs become

less apparent. When comparing the reduced setting pairs

that have the same number of iterations such as cxrys0ez
and cxrys1e2z where x, y ∈ {0, 1, 2, 3, 4}, z ∈ {30, 60}),
the results show that training with less epochs but using

more samples in each epoch is a better choice than train-

ing with more epochs but fewer samples, especially when

training for more iterations. Considering the trade-off be-

tween computation consumption and benefits, we find the

combination s0e60 to be a more optimal setting than other

combinations.

2) Reducing the resolution of input images is sometimes

feasible while reducing the channels of networks is more

X Y

(a) cxr0s0ey

X Y

(b) c0rxs0ey

Figure 6. 3D-Bar chart of cxr0s0ey (a) and c0rxs0ey(b), x ∈
[0, 1, 2, 3, 4], y ∈ [30, 60, 90, 120]. We also show the values of

entropy of each dimension close to X and Y axes.

Figure 7. The change of values ρsp as the accuracy gap increases.

The X-axis is the mean difference of accuracy for networks in the

model zoo between the train and test datasets at the end of training.

The difference evaluates the degree of overfitting under different

reduced settings. The Y -axis is the corresponding ρsp for each

reduced setting.

reliable than reducing the resolution. We further analyze

the effect of reduction factors c and r with fixed s0e60 as

discovered in our previous experiments. The 3D-Bar chart

in Fig. 5 shows the changes in ρsp along the dimensions c
(X-axis) and r (Y -axis). The Z-axis represents ρsp for each

cxry setting, illustrated by the height of the bars. We use a

measurement called entropy denoted by ρe to indicate the

monotonicity of ρsp along a particular dimension of reduc-

tion factor. The details of this measurement are provided in

the Appendix. The entropy ranges from -1 to 1. The ab-

solute value of entropy close to 1 indicates that along this

dimension, the objective set has an obvious monotonous in-

creasing or decreasing trend, with only few small fluctu-

ations. On the contrary, if the absolute value of entropy
is relatively small, e.g., less than 0.5, then the monotonic

increasing or decreasing trend along this dimension is less

apparent.

As shown by the values of entropy close to the Y -axis in

Fig. 5, the trend along the reduction factor c is obvious. For

most of the fixed r settings, fewer channels lead to a better-

behaved reduced setting, except for few points e.g., c2r2.

The variation of entropy close to the X-axis indicates that

the trends along r for the fixed c are not apparent. But for

most of the cases, a smaller r will lead to a smaller ρsp,

which indicates that reducing the resolution is not reliable.

Figure 6(a) shows the effects of c and e, where the other

two factors are fixed to r0s0. The entropies close to the

Y -axis indicate that the decrease in c will increase ρsp for

the same number of epochs, which is consistent with the
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Figure 8. The rank consistency and acceleration ratios of different

reduced settings on CIFAR-10 [12]. The X-axis represents the

ratio of FLOPs at the original setting to that at the reduced setting.

The Y -axis provides the corresponding ρsp (Eq. (1)). The reduced

settings are getting more efficient along X-axis and getting more

consistent in ranking different network candidates along Y -axis.

The blue points show all the reduced settings, the orange points

are good ones, and the green point is the recommended one.

results in Fig. 5 for the same resolution. However, lower

resolution leads to smaller ρsp, which is also consistent with

the results in Fig. 5. Both Fig. 6(a) and Fig. 6(b) show that

more epochs improves ρsp, which also validates the results

in Fig. 4.

The results in Fig. 5 and Fig. 6(a) indicate that decreas-

ing the number of channels will lead to an increase of ρsp,

which means that more reliable setting can be achieved by

fewer channels with less computation and memory. Fig. 7

also illustrates this phenomenon, where smaller accuracy

difference appears with fewer channels between training

and testing dataset. This phenomenon may be caused by

overfitting when the amount of parameters for the same ar-

chitecture is reduced. We hypothesize that overfitting has

an adverse effect on the rank consistency.

4. Economical Evolutionary-Based NAS

Based on the investigations in the previous section, we

propose Economical evolutionary-based NAS (EcoNAS),

an accelerated version of the evolutionary-based state of

the art [19]. Existing evolutionary-based NAS methods [2,

15, 19, 20] suffer from large computation cost due to time

wasted on unpromising networks. Taking heed of prior ob-

servations (Sec. 3.3), we designed a more efficient and con-

sistent proxy (Sec. 4.1) that reduces the search cost by a

large margin. Then we propose a hierachical proxy strategy

that trains networks with different proxies based on their

respective accuracy. This further improves the search effi-

ciency by focusing more on good architectures and using

the most accurate ones for evolution. The search strategy

and algorithm pipeline are described in Sec. 4.2.

4.1. Efficient Proxy

To replace the original proxies in previous NAS meth-

ods [19, 31] with a more efficient one, we further analyze

the acceleration ratio for FLOPs and ρsp of the 200 re-

duced settings and provide empirical results on the good

reduced settings. We divide the acceleration ratios into dif-

ferent groups and list the reduced settings that perform best

in each group. We also compare two reduced settings in

previous works [19, 31] where the stack number N is set

to 2. In NASNet [31] the reduced setting is c0r0s0e20, and

in AmoebaNet [19] the setting is c1r0s0e25. These two re-

duced settings exhibit less consistency as shown in Fig. 8.

Figure 8 suggests that a proxy that substantially reduces

the computation overhead does not necessarily have a poor

rank consistency. There are many good reduced settings

that possess large acceleration ratio and high consistency at

the same time, just as the orange points in Fig. 8. The or-

ange points in Fig. 8 show that many recommended reduced

settings include c4, e90, e120. The observation verifies our

previous conclusion about the benefits of more epochs and

fewer channels. We adopt the reduced setting c4r4s0e60
in EcoNAS because this reduced setting exhibits relatively

higher consistency and acceleration ratios as shown by the

green point in Fig. 8. These reduced settings’ exact values

are shown in Table 1. Under this reduced setting, we en-

large the batch size from 96 to 384 to further compress the

searching time.

4.2. Hierarchical Proxy

Although we found an efficient and consistent proxy, we

observe that training and evaluating each architecture with

the same proxy still hurts the search efficiency because un-

promising networks count a lot and waste most of the search

time. An intuitive approach to this problem is to reduce the

training epochs further based on our newly designed con-

sistent proxy. This strategy could find and discard inac-

curate architectures faster, however, the best model found

from such a proxy with less training epochs might not be

as good because the consistency will degrade given fewer

training epochs. Therefore, we propose hierarchical proxy

strategy as a trade-off to precisely rank good architectures

and save time from assessing unpromising networks.

Population set. We divide the population set into three sub-

sets P1, P2, P3, which contains networks with low, middle,

and high accuracy and has small, middle, and high probabil-

ity of being chosen for mutation, respectively. For networks

in the sets from P1 to P3, the networks are trained with

faster but less consistent proxies (based on observations in

Sec. 3.3). We design these three proxies sharing the same c,
r, s but training networks with 3E, 2E, and E epochs for

P3, P2, and P1 (e.g., 90, 60, and 30 if E = 30), respec-

tively. We apply this design because it exploits the weight

sharing strategy and it is simple. For example, when several

newly mutated networks remain after training E epochs, we

only need to train them with E more epochs to rank them

more precisely rather than to train with a new proxy from

scratch. More diverse proxies for the hierarchical proxy
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Algorithm 1 EcoNAS Algorithm

1: PE = φ;P2E = φ;P3E = φ

2: � The population Pk denotes networks trained for k epochs

3: Train(model, a, b)
4: � The function that trains model, starting from epoch a, for

totally b− a epochs

5: history = φ

6: while |PE | < Ninit do � Initially, train Ninit models

7: model = RandomArchitecture()
8: model.accuracy = Train(model, 0, E)
9: Add model to PE , history

10: end while

11: for cycle = 1 to C do � Evolve for C cycles

12: for i = 1 to N0 do

13: Randomly sample model from PE ;P2E ;P3E

14: child = RandomMutate(model)
15: child.accuracy = Train(child, 0, E)
16: Add child to PE , history

17: end for

18: for model = top 1 to N1 models in PE do

19: model.accuracy = Train(model, E, 2E)
20: Move model from PE to P2E

21: end for

22: for model = top 1 to N2 models in P2E do

23: model.accuracy = Train(model, 2E, 3E)
24: Move model from P2E to P3E

25: end for

26: Remove dead from PE ;P2E ;P3E

27: end for

return Several top models in history

strategy could also be tried and we leave it to future re-

search.

During each evolution cycle, we use proxy with the low-

est computation cost to quickly remove the less accurate

networks from newly mutated networks. Then the remain-

ing networks, which are more accurate, will be evaluated

with slower but more consistent proxy and assigned into the

subsets P2, P3 hierarchically. When choosing networks for

mutation from the same subsets, the networks with a higher

rank are more likely to be chosen to increase the probabil-

ity of producing new accurate architectures. Such a design

saves the computation overhead by only training those net-

works with low accuracies using less epochs. Furthermore,

allocating resources to more promising architectures allows

the good ones to be found with higher precsion according

to the observation in Section 3.3. Assigning larger proba-

bilities to these networks for mutation also potentially helps

to produce more promising architectures in fewer evolution

cycles.

Algorithm pipeline. The pipeline of EcoNAS is shown in

Algorithm 1. The initial architectures are randomly gen-

erated. All the searched architectures and their accuracies

will be stored in the history set. As explained before, in

EcoNAS, there are three population sets P1, P2, and P3,

also noted as PE , P2E , P3E because they store architectures

that have been trained for E, 2E, 3E epochs, respectively.

For each evolution cycle, the following three steps are con-

ducted:

1. A batch of randomly sampled architectures from the

population sets PE , P2E , and P3E will be mutated (Algo-

rithm 1, line 12-17). Architectures with higher performance

are more likely to be chosen. We follow the mutation rules

in AmoebaNet [19] except that we remove the ‘identity’

mutation, because in EcoNAS the amount of networks at

each cycle is relatively fewer. The mutated networks are

trained from scratch for E epochs and then added to set PE .

2. Choose the top architectures from set PE and P2E to

P2E and P3E , respectively (Algorithm 1, line 18-25). These

architectures are loaded from checkpoints and trained for

E more epochs, then those top architectures are more pre-

cisely ranked and moved to the corresponding subsets.

3. Remove dead architectures from set PE , P2E and P3E

to force the algorithm to focus on newer architectures [19].

5. Experiments

Implementation Details. For EcoNAS, the number of

nodes (Fig. 2) within one architecture is four and we set

the stack number N = 6 to build the networks. We

found in our experiments that N = 2, a setting used in

previous works [19, 31] is detrimental to the rank consis-

tency (Fig. 8). Our searching experiments are conducted on

CIFAR-10 [12] and we split 5k images from the training set

as validation set. The search space is similar to that in [16].

Initially, P1 has 50 randomly generated architectures, while

P2 and P3 are empty. At each cycle, 16 architectures sam-

pled from Pk, k ∈ [E, 2E, 3E] will be mutated. We set the

number of cycles C to 100 and training epoch E to 20. All

the experiments and search cost calculation are conducted

using NVIDIA GTX 1080Ti GPUs.

5.1. Overall Results on CIFAR-10 and ImageNet

The searching process yields several candidate convolu-

tional cells and these cells are evaluated on two datasets,

CIFAR-10 [12] and ImageNet [21] for image classification

tasks. Unlike previous works [19, 29], which select dozens

or hundreds of cells to evaluate, we only pick up the top-

5 cells from history to evaluate the performance of our

search algorithm. Retraining top-5 cells saves the retrain-

ing overhead and is enough in our experiments; the reason

is analyzed in Section 5.3.

Results on CIFAR-10. For the task of CIFAR-10, we set

N = 6 and the initial channel c = 36. The networks

are trained from scratch for 600 epochs with batch size

96. Other hyper-parameters follow previous works [16, 26].

The experimental results on CIFAR-10 are shown in Table

2. The best model found by our algorithm achieves a test
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Table 2. CIFAR-10 test errors of EcoNAS and the state-of-the-art

networks. The ‘Error’ refers to top-1 error rate and ‘Cost’ refers

to the number of GPU days.

Network Error (%) Params. (M) Cost

DenseNet-BC[11] 3.46 25.6 -

NASNet-A [31] 2.65 3.3 1800

Amoeba-A [19] 3.34±0.06 3.2 3150

Amoeba-B [19] 2.55±0.05 2.8 3150(TPU)

Hierarchical Evo [15] 3.75±0.12 15.7 300

PNAS[14] 3.41±0.09 3.2 225

ENAS[18] 2.89 4.6 0.5

DARTS(1st order)[16] 2.94 2.9 1.5

DARTS(2nd order)[16] 2.83±0.06 3.4 4

SNAS[26] 2.85±0.02 2.8 1.5

EcoNAS 2.62±0.02 2.9 8

Table 3. ImageNet Test errors of EcoNAS and the state-of-the-art

networks. The ‘Error’ refers to top-1 error rate and ‘Cost’ refers

to the number of GPU days.

Architecture Error (%) Params. (M) Cost

NASNet-A[31] 26.0 5.3 1800

NASNet-B[31] 27.2 5.3 1800

NASNet-C[31] 27.5 4.9 1800

AmoebaNet-A[19] 25.5 5.1 3150

AmoebaNet-B[19] 26.0 5.3 3150

AmoebaNet-C[19] 24.3 6.4 3150

DARTS[16] 26.9 4.9 4

SNAS[26] 27.3 4.3 1.5

EcoNAS 25.2 4.3 8

error of 2.60%, a rate that is on par with state-of-the-art

evolution-based method and is much lower than most Rein-

forcement Learning (RL)-based methods. Importantly, the

model uses about 400× less computation resources. Under

the same magnitude of computational complexity, our result

is superior to gradient-based methods [16, 26] and weight

sharing method [18].

Results on ImageNet. To evaluate the transferability of the

cells searched by EcoNAS, we transfer the architectures to

ImageNet, where we only change the stack number N to

14 and enlarge the initial channel c to 48. As shown in Ta-

ble 3, the best architecture found by EcoNAS on CIFAR-10

generalizes well to ImageNet. EcoNAS achieves top-1 error

that outperforms the previous works that consume the same

magnitude of GPUs [16, 26]. EcoNAS also surpasses mod-

els with similar amount of parameters (i.e., having fewer

than 5M parameters) found by reinforcement learning [31]

and evolution algorithms [19], which require about 200×
more GPU resources.

5.2. Ablation Study of EcoNAS

Reduced setting for NAS using evolutionary algorithms.

We evaluate the reduced setting on the conventional evo-

lutionary algorithms in Table 4. AmoebaNet [19], NAS-

Table 4. Ablation study of EcoNAS. Reduced setting c1r0s0e25 is

used in AmoebaNet [19] and c0r0s0e20 is used in NASNet [31].

We use c4r4s0e60 in EcoNAS. ‘H.P.’ denotes whether our pro-

posed hierarchical proxy strategy is used. ‘Cost’ denotes the num-

ber of GPU days used. ‘Sp’ denotes the Spearman Coefficient.

‘Error’ refers to top-1 error rate.

Reduced Setting H.P. Cost Sp Params. (M) Error (%)

AmoebaNet [19] 3150 0.70 3.2 3.34
c4r4s0e35 (Ours) 12 0.74 3.2 2.94

NASNet [31] � 21 0.65 2.9 3.20
c3r2s1e60 � 12 0.79 2.6 2.85

c4r4s0e60 (Ours) � 8 0.85 2.9 2.60

Table 5. Results of applying new reduced settings to other NAS

methods. ‘Error’ indicates top-1 error rate of DARTS on CIFAR-

10 [12] and of ProxylessNAS on ImageNet-1k [21]. ‘Cost’ indi-

cates the number of GPU days used.

Method Setup Cost Params. (M) Error (%)

DARTS [16]

c2r0s0(1st)[16] 1.5 3.2 3.00
c2r0s0(2nd)[16] 4 3.3 2.76
c4r2s0(Ours) 0.3 4.5 2.80

ProxylessNAS [5]

c0r0s0-S [5] 8 4.1 25.4
c0r0s0-L [5] 8 6.9 23.3
c2r2s0 (Ours) 4 5.3 23.2

Net [31], and our EcoNAS use the same search space but

they have different in search algorithm design. By simply

replacing the reduced setting of AmoebaNet [19] to more

consistent ones, its computational costs are remarkably re-

duced and the accuracies of searched models also increase,

with and without applying hierarchical proxy strategy.

Reduced setting for other NAS methods. We further eval-

uate the effectiveness of the newly discovered reduced set-

tings on other NAS methods, e.g., gradient-based meth-

ods [5, 16]. We report the top-1 error rates of DARTS [16]

on CIFAR-10 [12] and ProxylessNAS [5] on ImageNet-

1k [21], as shown in Table 5. Directly reducing the channels

and the input resolutions by half accelerates these methods

and finds models that keep comparable accuracy in compar-

ison to those searched by the original proxies. This validates

our observation reported in Sec. 3.3 and the effectiveness of

our newly designed reduced setting.

Hierarchical proxy strategy. We evaluate the hierar-

chical proxy strategy on the conventional evolutionary

method [19] in Table 4. The reduced settings c4r4s0e60
and c4r4s0e35 train the same number of models (1k) for the

same number of epochs (35k) with or without the hierar-

chical proxy strategy, respectively. Both the search cost and

error rate are reduced after applying the hierarchical proxy

strategy. The results suggest the search efficiency of hierar-

chical proxy strategy and its effectiveness in finding better

networks using less search time.
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Figure 9. Ability to retain top models for reduced settings with

different ρsp.

5.3. Analysis

Ability of reliable proxies to retain top models. We fur-

ther evaluate the ability of the reduced settings in retaining

good models. If a top-10 model at the original setting is a

top-15 or top-20 model at the reduced setting, it will be con-

sidered as a ‘good model retained’. We divide the reduced

settings into different groups according to their correspond-

ing ρsp and calculate the average number of good models

retained for reduced settings in the same group. As ρsp in-

creases, the number of good models retained also increases

(Fig. 9), suggesting that reduced settings with better consis-

tency can keep more good models in the top positions.

Figure 9 also indicates that reliable proxies can reduce

not only the search cost but also the retraining overhead.

Previous works need to select the best model after retrain-

ing hundreds of top models searched under proxies (e.g.,

100 [29] for BlockQNN and 250 for NASNet [31]), Amoe-

baNet [19] also needs to retrain 20 models. One of the rea-

sons for this phenomenon is that previous works adopt less

reliable proxies as shown in Fig. 8. Since the ranks of net-

works under the proxies are less consistent with their actual

ranks under the original setting, they need to select more

networks for retraining to find the optimal one. According

to the conclusion obtained from Fig. 9, a more consistent

reduced setting retains more top models, thus allows the

search algorithm to retrain fewer networks to obtain com-

petitive accuracy. With a more reliable proxy, EcoNAS only

retrains top-5 networks and remarkably saves computation

overhead for retraining models, which is usually overlooked

in most NAS literature.

Diversity of structures by hierarchical training strat-

egy. EcoNAS adopts hierachical training strategy to as-

sign newly mutated networks into three population sets and

sample networks for mutation from these sets with different

probabilities. Under this scheme, both the good and bad

models enjoy chances to mutate so that the architectures in

the next evolution cycle will not be trapped in a few local

optimal structures. We evaluate the average accuracy of net-

works in the three poulation sets during evolution cycles

as shown in Fig. 10. The difference of average accuracy

for networks in PE , P2E , and P3E are apparent and do not

deviate much during evolution cycles, but the average ac-

curacy for networks in those sets increase gradually, which

Figure 10. Average validation accuracy at different cycles for mod-

els in PE , P2E , P3E , respectively (E = 20).

verifies the diversity of structures in those population sets.

The diversity of structures allows the search algorithms

to find accurate architectures with fewer search costs by po-

tentially helping to explore the search space more compre-

hensively. Since hierarchical training strategy provides the

diversity of structures in the population sets, EcoNAS ob-

tains similar competitive architectures after evaluating 1k

models. As a comparison, BlockQNN [29] evaluates 11k

models, AmoebaNet [19] evaluates 20k models, and NAS-

Net [31] evaluates 45k models.

6. Conclusion

In this work, we systematically study the behaviors of

different reduced settings on maintaining the rank consis-

tency in Neural Architecture Search. By conducting ex-

tensive experiments on different combinations of reduction

factors, we observe that (1) with the same iteration numbers,

using more training samples with fewer training epochs is

more consistent than using more training epochs and fewer

training samples; (2) reducing the resolution of input im-

ages is sometimes feasible while reducing the channels of

networks is more reliable than reducing the resolution.

We also propose Economical evolutionary-based NAS

(EcoNAS) that can reduce the search time by about 400× in

comparison to the evolutionary-based state of the art [19].

In EcoNAS, we first design a new, fast, and consistent proxy

to accelerate the search process based on the aforemen-

tioned observations, which also reduces the retraining over-

head by retaining more top models. Then we propose to

use a hierarchical proxy strategy to assess architectures with

different proxy based on their accuracy. This new strategy

improves search efficiency and is capable of finding accu-

rate architectures with less search overhead while exploring

the search space more comprehensively.

Last but not least, we find some proxies led by our

obeservations are also applicable to other NAS methods [5,

16]. These proxies further reduce the search time while

the discovered models achieve comparable or better perfor-

mance. We wish our work could inspire the community

to further explore more practical proxies and search algo-

rithms to improve the efficiency of NAS.
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