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A. Implementation Details

In our experiments, the backbone for PCNet-M is
UNet [1] with a widening factor 2, and that for PCNet-C is
a UNet equipped with partial convolution layers [2]; while
note that PCNets do not have restrictions on backbone ar-
chitectures. For both PCNets, the image or mask patches
centering on an object are cropped by an adaptive square
and resized to 256x256 as inputs.

For COCOA, the PCNet-M is trained using SGD for 56K
iterations with an initial learning rate 0.001 decayed at iter-
ations 32K and 48K by 0.1. For KINS, we stop the training
process earlier at 32K. The batch size is 256 distributed on 8
GPUs (GTX 1080 TI). The hyper-parameter γ that balances
the two cases in training PCNet-M is set to 0.8. In cur-
rent experiments, we do not use RGB as an input to PCNet-
M, since we empirically find that introducing RGB through
concatenation makes little differences. It is probably be-
cause for these two datasets, modal masks are informative
enough for training; while we believe in more complicated
scenes, RGB will exert more influence if introduced in a
better way.

For PCNet-C, we modify the UNet to take in the con-
catenation of image and modal mask as the input. Apart
from the losses in [2], we add an extra adversarial loss
for optimization. The discriminator is a stack of 5 convo-
lution layers with spectral normalization and leaky ReLU
(slope=0.2). The PCNet-C is fine-tuned for 450K iterations
with a constant learning rate 10−4 from a pre-trained in-
painting network [2]. We adapt the pre-trained weights to
be compatible for taking in the additional modal mask.
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Figure 1. Performances of different approaches under a growing
occlusion ratio, evaluated on KINS testing set.

B. Discussions

B.1. Analysis on varying occlusion ratio.

Fig. 1 show the amodal completion performances of dif-
ferent approaches under varying ratios of occluded area.
Naturally, larger occlusion ratios result in lower perfor-
mances. Under high occlusion ratios, our full method (Ours
(OG)) surpasses the baseline methods by a large margin.

B.2. Does it support mutual occlusion?

As a drawback, our approach does not support cases
where two objects are mutually occluded as shown in 2,
because our approach focuses on object-level de-occlusion.

Figure 2. Mutual occlusion cases. Green boundaries show one
object occlude the other and red boundaries vice versa.
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Figure 3. (a-1) and (a-2) represent case 1 and case 2 in training,
respectively; (b) - (d) represent possible cases in testing. Among
the test cases, only the A in (b) will be completed.

For mutual occlusions, the ordering graph cannot be de-
fined, therefore fine-grained boundary-level de-occlusion is
required. It leaves an open question to scene de-occlusion
problem. Nonetheless, our approach works well if more
than two objects are cyclically occluded as shown in Fig. 7
in the main paper.

B.3. Will case 2 mislead PCNet-M?

As shown in Fig.3, one may have concerns that in case
(a-2) when not-to-complete strategy is applied, the bound-
ary between A and B\A might include a contour shown
in green where A is occluded by a real object, namely C.
Therefore, it might teach PCNet-M a wrong lesson if the
yellow shaded region is taught not to be filled.

Here we explain why it will not teach PCNet-M the
wrong lesson. First of all, PCNet-M learns to complete or
not to complete the target object conditioned on a surrogate
occluder. As shown in Fig. 3, as PCNet-M is taught to com-
plete A\B in (a-1) while not to complete A in (a-2), it has
to discover cues indicating that A is below B in (a-1) and
A is above B in (a-2). The cues might include the shape
of two objects, the shape of common boundary, junctions,
etc. In testing time, e.g. in (b) when regarding the real C as
the condition, it is easy for PCNet-M to tell that C is above
A from those cues. Therefore PCNet-M actually inclines to
case 1, when A will be completed conditioned on C.

Then which case does this not-to-complete strategy af-
fect? The case in (c) shares very similar occlusion pat-
terns with (a-2), especially in the upper right part of the
common boundary, showing strong cues that A is above C,
in which case PCNet-M will not complete A as expected.
However, case (c) is abnormal and unlikely to exist in the
real world. The situation where the not-to-complete strategy
really takes effect lies in case (d). In this case when strong
cues indicate that A is above D, the PCNet-M is taught not
to extend A across A&D boundary to invade D.

C. Visualization

As shown in Fig. 4, our approach enables us to freely ad-
just scene spatial configurations to re-compose new scenes.
The quality could be further improved with the advance of
image inpainting, since the PCNet-C shares a similar net-
work architecture and training strategy to image inpainting.
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Figure 4. Scene manipulation results based on our de-occlusion framework. Inconspicuous changes are marked with red arrows. A video
demo can be found in the project page: https://xiaohangzhan.github.io/projects/deocclusion/.
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