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Abstract

This document provides supplementary information
which is not elaborated in our main paper due to the con-
straints of space: Section A illustrates the detailed deriva-
tions and experimental results of the proposed DF-VAE
framework; Section B describes the supplementary infor-
mation of our real-world face forgery detection benchmark;
Section C presents more examples of our source video
data collection; Section D shows diverse perturbations in
DeeperForensics-1.0 to better simulate real-world scenar-
ios.

A. Method Details
In order to improve the obvious low quality problems of

the previous datasets, a new learning-based end-to-end face
swapping framework, DeepFake Variational Auto-Encoder
(DF-VAE), is proposed as our dataset construction method.

In the main paper, we give a brief and intuitive introduc-
tion of DF-VAE. Three key points (i.e., disentanglement,
style matching, temporal continuity) have been discussed.
In this section, we will elaborate on the details of DF-VAE
(see Figure 1 for the main framework of DF-VAE).

A.1. Disentangled Module
To be consistent with our main paper, we refer to the

identity in the driving video as the “target” face and the
identity of the face which is swapped onto the video as the
“source” face.

The disentanglement of structure and appearance is
rather difficult because appearance contains too much in-
formation. Besides, structure and appearance representa-
tion are far from being independent. As we claim in the
main paper, face swapping can be considered as a subse-
quent step of face reenactment with suitable fusion mod-
ules for the reenacted face and the background. Thus, in
the disentangled module, our main task is to animate the
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source face with similar expression as the target face, i.e.
face reenactment, without any paired data.

Let x1:T ≡ {x1, x2, ..., xT } ∈ X be a sequence of
source face video frames, and y1:T ≡ {y1, y2, ..., yT } ∈ Y
be the sequence of corresponding target face video frames.
We first simplify our problem and only consider two spe-
cific snapshots at time t, xt and yt. Let x̃t, ỹt, dt represent
the reconstructed source face, the reconstructed target face,
and the reenacted face, respectively.

Consider the reconstruction procedure of the source face
xt. Let sx denote structure representation and ax denote
appearance information. The face generator can be de-
picted as the posteriori estimate pθ (xt|sx, ax). The so-
lution of our reconstruction goal, marginal log-likelihood
x̃t ∼ log pθ (xt), by a common Variational Auto-Encoder
(VAE) [16] can be written as:

log pθ (xt) = DKL (qφ (sx, ax|xt) 󰀂pθ (sx, ax|xt))

+L (θ,φ;xt) ,
(1)

where qφ is an approximate posterior to achieve the evi-
dence lower bound (ELBO) in the intractable case, and the
second RHS term L (θ,φ;xt) is the variational lower bound
w.r.t. both the variational parameters φ and generative pa-
rameters θ. Since the first RHS term KL-divergence is non-
negative, we get:

log pθ (xt) ≥ L (θ,φ;xt)

= Eqφ(sx,ax|xt) [− log qφ (sx, ax|xt) + log pθ (xt, sx, ax)] ,

(2)

where L (θ,φ;xt) can also be written as:

L (θ,φ;xt) =−DKL (qφ (sx, ax|xt) 󰀂pθ (sx, ax))
+ Eqφ(sx,ax|xt) [log pθ (xt|sx, ax)] ,

(3)

and we need to optimize L (θ,φ;xt) w.r.t. φ and θ.
In Eq. 1, we assume that both sx and ax are latent priors

computed by the same posterior xt. However, the separa-
tion of these two variables in the latent space is rather diffi-
cult without additional conditions. Therefore, we employ a



Figure 1: The main framework of DeepFake Variational Auto-Encoder. In training, we reconstruct the source and target faces in blue and
orange arrows, respectively, by extracting landmarks and constructing an unpaired sample as the condition. Optical flow differences are
minimized after reconstruction to improve temporal continuity. In inference, we swap the latent codes and get the reenacted face in green
arrows. Subsequent MAdaIN module fuses the reenacted face and the original background resulting in the swapped face.

simple yet effective approach to disentangle these two vari-
ables.

The blue arrows in Figure 1 show the reconstruction pro-
cedure of the source face xt. Instead of feeding a single
source face xt, we sample another source face x′ to con-
struct unpaired data in the source domain. To make the
structure representation more evident, we use the stacked
hourglass networks [17] to extract landmarks of xt in the
structure extraction module and get the heatmap x̂t. Then
we feed the heatmap x̂t to the Structure Encoder Eα, and x′

to the Appearance Encoder Eβ . We concatenate the latent
representations (small cubes in red and green) and feed it to
the Decoder Dγ . Finally, we get the reconstructed face x̃t,
i.e., marginal log-likelihood of xt.

Therefore, the latent structure representation sx in Eq. 1
becomes a more evident heatmap representation x̂t, which
is introduced as a new condition. The unpaired sample x′

with the same identity w.r.t. xt is another condition, being
a substitute for ax. Eq. 1 can be rewritten as a conditional
log-likelihood:

log pθ (xt|x̂t, x
′) = DKL (qφ (zx|xt, x̂t, x

′) 󰀂pθ (zx|xt, x̂t, x
′))

+L (θ,φ;xt, x̂t, x
′) ,

(4)

similarly,

log pθ
󰀃
xt|x̂t, x

′󰀄 ≥ L(θ,φ;xt, x̂t, x
′)

= Eqφ(zx|xt,x̂t,x′)
󰀅
− log qφ

󰀃
zx|xt, x̂t, x

′󰀄+ log pθ
󰀃
xt, zx|x̂t, x

′󰀄󰀆 ,
(5)

and L(θ,φ;xt, x̂t, x
′) can also be written as:

L (θ,φ;xt, x̂t, x
′) =−DKL (qφ (zx|xt, x̂t, x

′) 󰀂pθ (zx|x̂t, x
′))

+ Eqφ(zx|xt,x̂t,x′) [log pθ (xt|zx, x̂t, x
′)] .

(6)

We let the variational approximate posterior be a multi-
variate Gaussian with a diagonal covariance structure:

log qφ (zx|xt, x̂t, x
′) ≡ logN

󰀃
zx;µ,σ

2I
󰀄
, (7)

where I is an identity matrix. Exploiting the reparam-
eterization trick [16], the non-differentiable operation of
sampling can become differentiable by an auxiliary vari-
able with independent marginal. In this case, zx ∼
qφ (zx|xt, x̂t, x

′) is implemented by zx = µ + σ󰂃 where
󰂃 is an auxiliary noise variable 󰂃 ∼ N (0, 1). Finally, the
approximate posterior qφ(zx|xt, x̂t, x

′) is estimated by the
separated encoders, Structure Encoder Eα and Appearance
Encoder Eβ , in an end-to-end training process by standard
gradient descent.

We discuss the whole workflow of reconstructing the
source face. In the target face domain, the reconstruction
procedure is the same, as shown by orange arrows in Fig-
ure 1.

During training, the network learns structure and appear-
ance information in both the source and the target domains.
It is noteworthy that even if both yt and x′ belong to arbi-
trary identities, our effective disentangled module is capable
of learning meaningful structure and appearance informa-
tion of each identity. During inference, we concatenate the



appearance prior of x′ and the structure prior of yt (small
cubes in red and orange) in the latent space, and the re-
constructed face dt shares the same structure with yt and
keeps the appearance of x′. Our framework allows concate-
nations of structure and appearance latent codes extracted
from arbitrary identities in inference and permits many-to-
many face reenactment.

In summary, DF-VAE is a new conditional variational
auto-encoder [15] with robustness and scalability. It condi-
tions on two posteriors in different domains. In the disen-
tangled module, the separated design of two encoders Eα

and Eβ , the explicit structure heatmap, and the unpaired
data construction jointly force Eα to learn structure infor-
mation and Eβ to learn appearance information.

A.2. Derivation
The core equations of DF-VAE are Eq. 4, Eq. 5, and

Eq. 6. We will provide the detailed mathematical deriva-
tions in this section. The previous three equations, Eq. 1,
Eq. 2 and Eq. 3, have very similar derivations therefore we
will not be repeating them.

Derivation of Eq. 4 and Eq. 5:

log pθ

󰀓
xt|x̂t, x

′󰀔

= E
qφ

󰀃
zx|xt,x̂t,x

′󰀄
󰀓
log pθ

󰀓
xt|x̂t, x

′󰀔󰀔

= E
qφ

󰀃
zx|xt,x̂t,x

′󰀄
󰀵

󰀷log
pθ

󰀓
xt, zx|x̂t, x

′
󰀔

pθ
󰀃
zx|xt, x̂t, x

′󰀄

󰀶

󰀸

= E
qφ

󰀃
zx|xt,x̂t,x

′󰀄
󰀵

󰀷log
qφ

󰀓
zx|xt, x̂t, x

′
󰀔

pθ
󰀃
zx|xt, x̂t, x

′󰀄
·

pθ

󰀓
xt, zx|x̂t, x

′
󰀔

qφ
󰀃
zx|xt, x̂t, x

′󰀄

󰀶

󰀸

=

󰁝
qφ

󰀓
zx|xt, x̂t, x

′󰀔
󰀵

󰀷log
qφ

󰀓
zx|xt, x̂t, x

′
󰀔

pθ
󰀃
zx|xt, x̂t, x

′󰀄
+ log

pθ

󰀓
xt, zx|x̂t, x

′
󰀔

qφ
󰀃
zx|xt, x̂t, x

′󰀄

󰀶

󰀸 dzx

= DKL

󰀓
qφ

󰀓
zx|xt, x̂t, x

′󰀔 󰀂pθ
󰀓
zx|xt, x̂t, x

′󰀔󰀔
+ L

󰀓
θ,φ; xt, x̂t, x

′󰀔
,

where

L
󰀃
θ,φ; xt, x̂t, x

′󰀄
= Eqφ(zx|xt,x̂t,x

′)

󰀥
log

pθ

󰀃
xt, zx|x̂t, x

′󰀄

qφ (zx|xt, x̂t, x′)

󰀦
,

DKL

󰀃
qφ

󰀃
zx|xt, x̂t, x

′󰀄 󰀂pθ

󰀃
zx|xt, x̂t, x

′󰀄󰀄 ≥ 0.

Derivation of Eq. 6:

L
󰀓
θ,φ; xt, x̂t, x

′󰀔

= E
qφ

󰀃
zx|xt,x̂t,x

′󰀄
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󰀷− log
qφ

󰀓
zx|xt, x̂t, x

′
󰀔

pθ
󰀃
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′󰀄
+ log pθ

󰀓
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′󰀔
󰀶
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= −DKL

󰀓
qφ

󰀓
zx|xt, x̂t, x

′󰀔 󰀂pθ
󰀓
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+ E
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󰀃
zx|xt,x̂t,x

′󰀄
󰁫
log pθ

󰀓
xt|zx, x̂t, x

′󰀔󰁬
.

A.3. Objective
Reconstruction loss. In the reconstruction, the source face
and target face share the same forms of loss functions. The
reconstruction loss of the source face, Lreconx , can be writ-
ten as:

Lreconx = λr1Lpixel (x̃, x) + λr2Lssim (x̃, x) . (8)

Lpixel indicates pixel loss. It calculates the Mean Abso-
lute Error (MAE) after reconstruction, which can be written
as:

Lpixel (x̃, x) =
1

CHW
󰀂x̃− x󰀂1. (9)

Lssim denotes ssim loss. It computes the Structural Sim-
ilarity (SSIM) of the reconstructed face and the original
face, which has the form of:

Lssim (x̃, x) =
(2µx̃µx + C1) (2σx̃x + C2)

(µ2
x̃ + µ2

x + C1) (σ2
x̃ + σ2

x + C2)
. (10)

λr1 and λr2 are two hyperparameters that control the
weights of two parts of the reconstruction loss. For the tar-
get face, we have the similar form of reconstruction loss:

Lrecony
= λr1Lpixel (ỹ, y) + λr2Lssim (ỹ, y) . (11)

Thus, the full reconstruction loss can be written as:

Lrecon = Lreconx
+ Lrecony

. (12)

KL loss. Since DF-VAE is a new conditional variational
auto-encoder, reparameterization trick is utilized to make
the sampling operation differentiable by an auxiliary vari-
able with independent marginal. We use the typical KL loss
in [16] with the form of:

LKL (qφ (z) , pθ (z)) =
1

2

J󰁛

j=1

󰀃
1 + log

󰀃
(σj)

2󰀄− (µj)
2 − (σj)

2󰀄,

(13)

where J is the dimensionality of the latent prior z, µj and
σj are the j-th element of variational mean and s.d. vectors,
respectively.
MAdaIN loss. The MAdaIN module is jointly trained with
the disentangled module in an end-to-end manner. We apply
MAdaIN loss for this module, in a similar form as described
in [10]. We use the VGG-19 [20] to compute MAdaIN loss
to train Decoder Dδ:

LMAdaIN = Lc + λmaLs. (14)

Lc denotes the content loss, which is the Euclidean dis-
tance between the target features and the features of the
swapped face. Lc has the form of:

Lc = 󰀂o− c󰀂2, (15)

where o = mb
t · dt, c = mb

t · dt. mb
t is the blurred mask

described in the main paper.



Ls represents the style loss, which matches the mean
and standard deviation of the style features. Like [10], we
match the IN [22] statistics instead of using Gram matrix
loss which can produce similar results. Ls can be written
as:

Ls =

L󰁛

i=1

󰀂µ(Φi(o))− µ(Φi(s))󰀂2

+

L󰁛

i=1

󰀂σ(Φi(o))− σ(Φi(s))󰀂2,

(16)

where o = mb
t · dt, s = mb

t · yt. mb
t is the blurred mask. Φi

denotes the layer used in VGG-19 [20]. Similar to [10], we
use relu1 1, relu2 1, relu3 1, relu4 1 layers with
equal weights.

λma is the weight of style loss to balance two parts of
MAdaIN loss.
Temporal loss. We have given a detailed introduction of
temporal consistency constraint in our main paper. The
form of temporal loss is the same as the newly proposed
temporal consistency constraint. We will not repeat it here.
Total objective. DF-VAE is an end-to-end many-to-many
face swapping framework. We jointly train all parts of the
networks. The problem can be described as the optimization
of the following total objective:

Ltotal = λ1Lrecon + λ2LKL + λ3LMAdaIN + λ4Ltemporal,
(17)

where λ1, λ2, λ3, λ4 are the weight hyperparameters of four
types of loss functions introduced above.

A.4. Implementation Details
The whole DF-VAE framework is end-to-end. We use

the pretrained stacked hourglass networks [17] to extract
landmarks. The numbers of stacks and blocks are set to
4 and 1, respectively. We exploit FlowNet 2.0 network [11]
to estimate optical flows. The typical AdaIN network [10]
is applied to our style matching and fusion module. The
learning rate is set to 0.00005 for all parts of DF-VAE. We
utilize Adam [14] and set β1 = 0.5, β2 = 0.999. All the
experiments are conducted on NVIDIA Tesla V100 GPUs.

A.5. User Study of Methods
In addition to user study based on datasets to examine

the quality of DeeperForensics-1.0 dataset, we also carry
out a user study to compare DF-VAE with state-of-the-art
face manipulation methods. We will present the user study
of methods in this section.
Baselines. We choose three learning-based open-source
methods as our baselines: DeepFakes [1], faceswap-GAN
[2], and ReenactGAN [25]. These three methods are repre-
sentative, which are based on different architectures. Deep-
Fakes [1] is a well-known method based on Auto-Encoders
(AE). It uses a shared encoder and two separated decoders

DeepFakes DF-VAE (Ours)

DeepFakes vs Ours

DF-VAE (Ours)faceswap-GAN

faceswap-GAN vs Ours ReenactGAN vs Ours

ReenactGAN DF-VAE (Ours)

319 390

72

2891 2820

3138

Figure 2: Results of user study comparing methods. The bar charts
show the number of users who give preference in each compared
pair of manipulated videos.

to perform face swapping. faceswap-GAN [2] is based on
Generative Adversarial Networks (GAN) [6], which has a
similar structure as DeepFakes [1] but also uses a paired dis-
criminators to improve face swapping quality. ReenactGAN
[25] makes a boundary latent space assumption and uses a
transformer to adapt the boundary of source face to that of
target face. As a result, ReenactGAN can perform many-
to-one face reenactment. After getting the reenacted faces,
we use our carefully designed fusion method to obtain the
swapped faces. For a fair comparison, DF-VAE utilizes the
same fusion method when compared to ReenactGAN [25].

Results. We randomly choose 30 real videos from
DeeperForensics-1.0 as the source videos and 30 real videos
from FaceForensics++ [18] as the target videos. Thus, each
method generates 30 fake videos. Same as the user study
based on datasets, we conduct the user study based on meth-
ods among 100 professional participants who specialize in
computer vision research. Because there are correspond-
ing fake videos, we let the users directly choose their pre-
ferred fake videos between those generated by other meth-
ods and those generated by DF-VAE. Finally, we got 3210
answers for each compared pair. The results are shown in
Figure 2. We can see that DF-VAE shows an impressive ad-
vantage over the baselines, underscoring the high quality of
DF-VAE-generated fake videos.

A.6. Quantitative Evaluation Metrics

Fréchet Inception Distance (FID) [8] is a widely exploited
metric for generative models. FID evaluates the similarity
of distribution between the generated images and the real
images. FID correlates well with the visual quality of the
generated samples. A lower value of FID means a better
quality.

Inception Score (IS) [19] is an early and somewhat widely
adopted objective evaluation metric for generated images.
IS evaluates two aspects of generation quality: articulation
and diversity. A higher value of IS means a better quality.

Table 1 shows the FID and IS scores of our method com-
pared to other methods. DF-VAE outperforms all the three
baselines in quantitative evaluations by FID and IS.



��
��
�

�

��
��

�
�

��
�




	�
�

��
�




	�
�

��
�




	�
�

Figure 3: Many-to-many (three-to-three) face swapping by a single model with obvious reduction of style mismatch problems. This figure
shows the results between three source identities and three target identities. The whole process is end-to-end.

Table 1: The FID and IS scores of DeepFakes [1], faceswap-GAN
[2], ReenactGAN [25], and DF-VAE (Ours).

Method FID IS
DeepFakes [1] 25.771 1.711

faceswap-GAN [2] 24.718 1.685
ReenactGAN [25] 26.325 1.690
DF-VAE (Ours) 22.097 1.714

A.7. Many-to-Many Face Swapping
By a single model, DF-VAE can perform many-to-many

face swapping with obvious reduction of style mismatch
and facial boundary artifacts (see Figure 3 for the face swap-
ping between three source identities and three target identi-
ties). Even if there are multiple identities in both the source
domain and the target domain, the quality of face swapping
does not degrade.

A.8. Ablation Studies
Ablation study of temporal loss. Since the swapped faces
do not have the ground truth, we evaluate the effectiveness
of temporal consistency constraint, i.e., temporal loss, in a
self-reenactment setting. Similar to [13], we quantify the re-
rendering error by Euclidean distance of per pixel in RGB
channels ([0, 255]). Visualized results are shown in Fig-
ure 4. Without the temporal loss, the re-rendering error is
higher, hence demonstrating the effectiveness of temporal

consistency constraint.
Ablation study of different components. We conduct fur-
ther ablation studies w.r.t. different components of our DF-
VAE framework under many-to-many face swapping set-
ting (see Figure 5). The source and target faces are shown
in Column 1 and Column 2. In Column 3, our full method,
DF-VAE, shows high-fidelity face swapping results. In Col-
umn 4, style mismatch problems are very obvious if we
remove the MAdaIN module. If we remove the hourglass
(structure extraction) module, the disentanglement of struc-
ture and appearance is not very thorough. The swapped face
will be a mixture of multiple identities, as shown in Column
5. When we perform face swapping without constructing
unpaired data in the same domain (see Column 6), the dis-
entangled module will completely reconstruct the faces on
the side of Eβ , thus the disentanglement is not established
at all. Therefore, the quality of face swapping will degrade
if we remove any component in DF-VAE framework.

B. Supplementary Information of Benchmark

In this section, we will provide some supplementary in-
formation of our real-world face forgery detection bench-
mark. First, we will elaborate on the basic information
of five baselines in our benchmark in Section B.1. Then,
we will provide evaluation results of face forgery detection
model performance w.r.t. dataset size in Section B.2.



Table 2: The binary detection accuracy of the baseline methods on DeeperForensics-1.0 standard test set (std) / hidden test set (hidden)
when trained on the standard training set with different dataset sizes. FS denotes the full dataset size of the standard training set reported
in the main paper. FS ÷ x indicates the reduction of dataset size to 1/x of the full dataset size.

Method C3D [21] TSN [23] I3D [4] ResNet+LSTM [7, 9] XceptionNet [5]
Test (acc) std hidden std hidden std hidden std hidden std hidden

FS (Full Size) 98.50 74.75 99.25 77.00 100.00 79.25 100.00 78.25 100.00 77.00
FS ÷ 2 97.50 75.00 98.75 78.50 100.00 78.13 100.00 78.88 100.00 76.75
FS ÷ 4 96.00 75.25 99.25 76.50 99.50 77.00 100.00 78.25 100.00 76.50
FS ÷ 8 92.25 72.13 91.25 70.88 95.00 73.50 98.25 75.63 100.00 76.13
FS ÷ 16 84.25 66.88 84.75 69.50 95.25 74.25 98.50 76.25 100.00 74.88
FS ÷ 32 62.50 54.50 68.00 58.25 80.50 67.88 95.50 74.13 95.00 71.38
FS ÷ 64 61.25 53.88 52.75 50.00 62.00 57.25 90.75 70.25 88.50 67.75

B.1. Details of Benchmark Baselines
We elaborate on five baselines used in our face forgery

detection benchmark in this section. Our benchmark con-
tains four video-level face forgery detection methods, C3D
[21], Temporal Segment Networks (TSN) [23], Inflated 3D
ConvNet (I3D) [4], and ResNet+LSTM [7, 9]. One image-
level detection method, XceptionNet [5], which achieves
the best performance in FaceForensics++ [18], is evaluated
as well.

• C3D [21] is a simple but effective method, which in-
corporates 3D convolution to capture the spatiotempo-
ral feature of videos. It includes 8 convolutional, 5
max-pooling, and 2 fully connected layers. The size of
the 3D convolutional kernels is 3× 3× 3. When train-
ing C3D, the videos are divided into non-overlapped
clips with 16-frames length, and the original face im-
ages are resized to 112× 112.

• TSN [23] is a 2D convolutional network, which splits
the video into short segments and randomly selects a
snippet from each segment as the input. The long-
range temporal structure modeling is achieved by the
fusion of the class scores corresponding to these snip-
pets. In our experiment, we choose BN-Inception [12]
as the backbone and only train our model with the
RGB stream. The number of segments is set to 3 as de-
fault, and the original images are resized to 224× 224.

• I3D [4] is derived from Inception-V1 [12]. It inflates
the 2D ConvNet by endowing the filters and pooling
kernels with an additional temporal dimension. In the
training, we use 64-frame snippets as the input, whose
starting frames are randomly selected from the videos.
The face images are resized to 224× 224.

• ResNet+LSTM [7, 9] is based on ResNet [7] architec-
ture. As a 2D convolutional framework, ResNet [7] is
used to extract spatial features (the output of the last
convolutional layer) for each face image. In order to
encode the temporal dependency between images, we
place an LSTM [9] module with 512 hidden units af-
ter ResNet-50 [7] to aggregate the spatial features. An

additional fully connected layer serves as the classi-
fier. All the videos are downsampled with a ratio of 5,
and the images are resized to 224×224 before feeding
into the network. During training, the loss is the sum-
mation of the binary entropy on the output at all time
steps, while only the output of the last frame is used
for the final classification in inference.

• XceptionNet [5] is a depthwise-separable-convolution
based CNN, which has been used in [18] for image-
level face forgery detection. We exploit the same
XceptionNet model as [18] but without freezing the
weights of any layer during training. The face images
are resized to 299× 299. In the test phase, the predic-
tion is made by averaging classification scores of all
frames within a video.

B.2. Evaluation of Dataset Size
We include additional evaluation results of face forgery

detection methods w.r.t. dataset size, as shown in Table 2.
The experiments are conducted on DeeperForensics-1.0 in
this setting. All the models are trained on the standard train-
ing set with different dataset sizes.

The reduction of dataset size hurts the accuracy of all the
baselines on either standard test set (std) or hidden test set
(hidden). This justifies that a larger dataset size can be help-
ful for detection model performance. It is noteworthy that
accuracy drops little if we do not reduce the dataset size sig-
nificantly. These observations concerning dataset size are in
line with that of [18, 24].

In contrast to previous works, we also find that the
image-level detection method is less sensitive (i.e., has a
stronger ability to remain high accuracy) to dataset size than
pure video-level method. One possible explanation for this
is that despite a significant reduction of video samples, there
still exist enough image samples (frames in total) for the
image-level method to achieve good performance.

C. More Examples of Data Collection
In this section, we show more examples of our exten-

sive source video data collection (see Figure 6). Our high-



quality collected data vary in identities, poses, expressions,
emotions, lighting conditions, and 3DMM blendshapes [3].
The source videos will also be released for further research.

D. Perturbations
We also show some examples of perturbations in

DeeperForensics-1.0. Seven types of perturbations and the
mixture of two (Gaussian blur, JPEG compression) / three
(Gaussian blur, JPEG compression, white Gaussian noise
in color components) / four (Gaussian blur, JPEG compres-
sion, white Gaussian noise in color components, change
of color saturation) perturbations are shown in Figure 7.
These perturbations are very common distortions existing
in real life. The comprehensiveness of perturbations in
DeeperForensics-1.0 ensures its diversity to better simulate
fake videos in real-world scenarios.
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Figure 4: The quantitative evaluation of the effectiveness of temporal loss. Similar to [13], we use the re-rendering error in a self-
reenactment setting, where the ground truth is known. The error maps show Euclidean distance of per pixel in RGB channels ([0, 255]).
The mean errors are shown above the images. The corresponding color scale w.r.t. error values is shown on the right side of the images.

Source Target Full DF-VAE w/o MAdaIN w/o hourglass w/o unpaired

Figure 5: The ablation studies of different components in DF-VAE framework in the many-to-many face swapping setting. Column 1 and
Column 2 show the source face and the target face, respectively. Column 3 shows the results of the full method. Column 4, 5, 6 show the
results when removing MAdaIN module, hourglass (structure extraction) module, and unpaired data construction, respectively.



Figure 6: More examples of the source video data collection. Our high-quality collected data vary in identities, poses, expressions,
emotions, lighting conditions, and 3DMM blendshapes [3].
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Figure 7: Seven types of perturbations and the mixture of two (Gaussian blur, JPEG compression) / three (Gaussian blur, JPEG compression,
white Gaussian noise in color components) / four (Gaussian blur, JPEG compression, white Gaussian noise in color components, change
of color saturation) perturbations in DeeperForensics-1.0.


