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Abstract

Spectral clustering requires robust and meaningful affin-
ity graphs as input in order to form clusters with desired
structures that can well support human intuition. To con-
struct such affinity graphs is non-trivial due to the ambi-
guity and uncertainty inherent in the raw data. In con-
trast to most existing clustering methods that typically em-
ploy all available features to construct affinity matrices with
the Euclidean distance, which is often not an accurate rep-
resentation of the underlying data structures, we propose
a novel unsupervised approach to generating more robust
affinity graphs via identifying and exploiting discriminative
features for improving spectral clustering. Specifically, our
model is capable of capturing and combining subtle sim-
ilarity information distributed over discriminative feature
subspaces for more accurately revealing the latent data dis-
tribution and thereby leading to improved data clustering,
especially with heterogeneous data sources. We demon-
strate the efficacy of the proposed approach on challenging
image and video datasets.

1. Introduction
Spectral clustering is a popular clustering method [14,

15, 24, 25], which exploits the eigen-structure of a data

affinity graph to partition data into disjoint subsets of simi-

lar samples. The performance of spectral clustering heavily

relies on the goodness of the data affinity graph as it defines

an approximation to the pairwise distances between data

samples. In most contemporary techniques, the data affin-

ity graph, e.g. a kNN graph, is constructed from a pairwise

similarity matrix measured between samples. The notion

of data similarity is often intimately tied to a specific met-

ric function, typically the �2-norm (or the Euclidean metric)

measured considering the whole feature space, with a Gaus-

sian kernel to enforce locality.

Defining pairwise similarity for effective spectral clus-

tering is fundamentally challenging [10] given complex

data that are often of high dimension, heterogeneous, while

no prior knowledge or supervision is available. Trusting

all available features blindly for measuring pairwise simi-

larities and constructing data graphs is susceptible to unre-

liable and/or noisy features, particularly so for real-world

visual data, e.g. images and videos where signals can be in-

trinsically inaccurate and unstable owing to uncontrollable

sources of variation, changes in illumination, context, oc-

clusion and background clutters [7]. Moreover, confining

the notion of similarity to the �2-norm metric implicitly

imposes unrealistic assumption on complex data structures

that do not necessarily possess the Euclidean behaviour.

Our goal is to infer robust pairwise similarity between

samples so as to construct more meaningful affinity graphs

for improved spectral clustering. To this end, we formulate

a unified and generalised data similarity inference frame-

work based on the unsupervised clustering random for-

est with three innovations. (1) Instead of considering the

complete feature space as a whole, the proposed model is

designed to avoid less informative features by measuring

between-sample proximity via discriminative feature sub-

spaces, yielding similarity graphs that better express the

underlying semantic structure in data. (2) We relax the

Euclidean assumption for data similarity inference by fol-

lowing the information-theoretic definition of data similar-

ity presented in [11], which states that different similarities

can be induced from a given sample pair if distinct proposi-

tions are taken or different questions are asked about data

commonalities. Motivated by the same idea, our model

derives pairwise similarities of arbitrary sample pairs from

an exhaustive set of comparative tests, using different fea-

ture variables with distinct inherent semantics as criteria.

Such subtle similarities distributed over discriminative fea-

ture subspaces are combined automatically and effectively

for producing robust pairwise affinity matrices. (3) The

pairwise affinity matrix generated by the proposed model

automatically possesses the local neighbourhood. Thus, no

additional Gaussian kernel is needed to enforce locality.

We demonstrate the effectiveness of the proposed ap-

proach on both image and video datasets. Specifically,

we show the advantages of using the proposed affinity
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graph learning model for clustering challenging visual data

when compared against both the baseline and the state-of-

the-art methods including the Euclidean-distance-based k
nearest neighbour (kNN) [23], Dominant Neighbourhoods

(DN) [16], Consensus of kNN (cons-kNN) [18], as well as

non-metric based unsupervised manifold forests [4, 17, 26].

2. Related Work
A large body of work has been conducted on spec-

tral clustering with focus on different aspects and applica-

tions [20, 15, 14, 25, 5, 24, 8, 19]. In general, existing ap-

proaches to improving spectral clustering performance can

be classified into two paradigms: (1) How to improve data

grouping when the method of generating a data affinity ma-

trix is fixed [20, 15, 24]. For example, Xiang and Gong [24]

propose to identify informative and relevant eigenvectors of

a data affinity matrix; (2) How to construct robust affinity

graphs so as to improve the clustering results using stan-

dard spectral clustering algorithms [25, 23, 16, 18]. Our

approach is related to the second paradigm.

Approaches to adapting to the local data structures for

improving the robustness of affinity graphs have been pro-

posed [25, 23]. Particular focus has been spent on learn-

ing an adaptive scaling factor σ for the Gaussian ker-

nel (also known as radial basis function or heat kernel)

exp
(
−dist2(xi,xj)

σ2

)
, when computing the similarity be-

tween samples xi and xj . These methods, however, are still

susceptible to the presence of noisy and irrelevant features.

To mitigate the above issue, Pavan and Pelillo [16] pro-

pose a graph-theoretic algorithm for forming tight neigh-

bourhoods via selecting the maximal cliques (or maximis-

ing average pairwise affinity), with the hope of construct-

ing graphs with fewer false affinity edges between sam-

ples. More recently, a kNN based graph generation method

is proposed in [18] where the consensus information from

multiple kNNs is used for discarding noisy edges and iden-

tifying strong local neighbourhoods. In contrast to all the

aforementioned methods that blindly trust all available vari-

ables, the proposed graph inference method exploits dis-

criminative and informative features for measuring more ro-

bust data pairwise similarities. The resulting affinity matrix

is thus more robust against noisy real-world visual data.

Random forest-based affinity graph construction has

been attempted in [21, 4, 26]. The intuition is that tree leaf

nodes contain discriminative data partitions, which could

be exploited for generating robust affinity graphs. We show

that the above approaches are special cases of our affinity

inference method. Specifically, we propose a generalised

model, which is not only capable of learning discriminative

feature subspaces for robust affinity graph construction as

in previous methods, but also able to further exploit the hi-

erarchical structure of random forest to better capture subtle

and weak data proximity.

3. Robust Affinity Graph Construction

The proposed affinity graph construction approach is

built upon clustering random forests, which are an unsu-

pervised form of random forests. A clustering forest is an

ensemble of Tclust binary decision trees learned indepen-

dently from each other, each with a training set Xt ⊂ X
drawn randomly from the whole training dataset X =
{xi}N

i=1,xi ∈ R
d, where N denotes the sample number

in X and d the feature dimension of data sample. The pro-

posed model has a few important merits:

1. Our model is purely unsupervised without requiring

any ground truth annotations, since it is based on clus-

tering forests rather the more popular supervised clas-

sification or regression random forests [2, 4].

2. By virtue of the random subspace feature selection

during training forests, the pairwise affinity matrix

generated by our model is less susceptible to corrup-

tion of noisy and irrelevant features.

3. Each decision tree in the forest hierarchically en-

codes an exhaustive set of comparative tests or split

functions, which implicitly define different notions of

between-sample similarities. Our model is capable of

extracting and combining these subtle similarities at

distributed discriminative subspaces for learning ro-

bust pairwise affinity matrices.

Below, we first briefly describe how to train individual deci-

sion trees of a clustering forest, with particular focus on its

discriminative feature selection (Sec. 3.1). We then discuss

how to derive robust pairwise similarities from the trained

forest (Sec. 3.2).

3.1. Clustering Decision Tree Training

Each decision tree of a clustering forest contains a set

of internal (or split) and leaf (or terminal) nodes organised

in a hierarchical fashion. Every internal node is associated

with a question or split function, which attempts to partition

the arriving training data into left or right child nodes. By

adopting the pseudo two-class algorithm [2, 13], the train-

ing of a clustering forest can be accomplished using a sim-

ilar strategy of learning a classification forest. Specifically,

the learning of a clustering/classification forest involves the

optimisation of a binary split function in every split node.

The binary split function is defined as

h(x,ϑ) =

{
0, if xϑ1 < ϑ2,

1, otherwise.
(1)

This split function is parameterised by two parameters ϑ =
(ϑ1, ϑ2): (i) a feature dimension ϑ1 ∈ {1, . . . , d}, and (ii)

a feature threshold ϑ2 ∈ R. All arrival samples S of a split

node s will be channelled to either the left l or right r child

nodes, according to the output of Eqn. (1).
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Figure 1. The pipeline of data clustering, with focus on the hierarchical neighbourhoods along a tree path in a clustering tree, which are formed by selecting

and employing discriminative features. We exploit the hierarchical tree structures and neighbourhoods for robust data pairwise similarity inference.

The optimal split parameter ϑ∗ is chosen via

ϑ∗ = argmax
Θ

ΔI, (2)

where Θ =
{
ϑi

}mtry(|S|−1)

i=1
represents a parameter set over

mtry randomly selected features. The cardinality of a set is

given by | · |. Typically, a greedy search strategy is exploited

to identify ϑ∗. The information gain ΔI is formulated as

ΔI = Is − |L||S| Il − |R||S| Ir, (3)

where L and R denote the sets of data routed into l and r,

and L ∪ R = S. The information criterion I can be either

the entropy or the Gini impurity [3]. In this study, we use

the Gini impurity due to its simplicity and efficiency.

By doing so, an internal node s selects the most discrim-
inative (i.e. maximising the information gain) feature from

mtry candidates as its split variable and exploits it to parti-

tion the training data S. This process is repeated throughout

the whole tree training stage until some stopping criterion

is satisfied, e.g. the number of training samples S arriving

at a node is equal to or smaller than a threshold φ. Af-

ter the node splitting process stops, leaf nodes are formed.

Importantly, each internal node is attached to an identified

discriminative feature as its split variable.

3.2. Structure-Aware Robust Affinity Inference

The above training procedure allows us to partition data

with very complex distributions at the discovered discrimi-

native feature subspaces. Each split function (Eqn. (1)) en-

codes a different notion of between-sample similarity, de-

fined by its split variable and threshold.

To quantify data similarities for generating a robust pair-

wise affinity matrix, we propose a structure-aware affinity
inference model (ClustRF-Strct) based on clustering ran-

dom forest. The model takes into account the whole tree

hierarchical structures, i.e. a tree path from the root until

leaf nodes traversed by data samples x (Fig. 1-(a)). Specif-

ically, given the t-th clustering tree, we channel a sample

pair (xi,xj) from the root node γ until reaching their re-

spective leaf nodes �i and �j . Subsequently, two tree paths

composed by the root node γ, internal and leaf nodes can be

generated:

Pi = {γ, si
1, . . . , s

i
κ, . . . , �

i}, (4)

Pj = {γ, sj
1, . . . , s

j
κ, . . . , �

j}, (5)

with si
κ and sj

κ denoting the κ-th internal nodes traveled by

xi and xj , respectively.

Intuitively, a sample pair (xi,xj) is considered dissimi-

lar if they are split at the very beginning, e.g. from the root

node γ. On the other hand, if the samples travel together

passing the same set of internal nodes till the identical leaf

node, i.e. P i = Pj , their similarity is high. Beyond the two

extreme cases above, there exist intermediate similarities:

let λ the length of which Pi and Pj overlaps (Fig. 1-(a)),

i.e. ⎧⎨
⎩

si
κ = sj

κ if κ = {1, . . . , λ},
si
κ �= sj

κ if κ = {λ+ 1, . . . },
�i �= �j .

(6)

Clearly, a larger value in λ signifies more split tests both

samples (xi,xj) have gone through together, implying

higher similarity shared between them. A lower value in

λ suggests subtle and weak similarity between xi and xj .

To capture different strengths of data similarities, we derive

a principled and generalised tree structure aware data pair-

wise similarity inference method, ClustRF-Strct, as

at
i,j =

∑λ
κ=1 wκ∑M
κ=1 wκ

, (7)

where M = max(|Pi|, |Pj |) − 1, and wκ is the weight

assigned to the corresponding tree node (i.e. either sκ or

�) on the longer tree path. Note that the root node γ is

not considered in computing the similarity since all samples

share the same root node. The pairwise similarity at
i,j de-

fines the individual elements of a tree-level affinity matrix

At ∈ RN×N . To combine consensus from multiple deci-

sion trees in the forest, we generate the final smooth affinity

matrix A ∈ RN×N as

A =
1

Tclust

∑Tclust

t=1
At. (8)
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ClustRF-Strct is regarded as a generic affinity inference

model since distinct strategies of defining node weights

wi can produce different affinity graph construction meth-

ods/instantiations, as we will describe below.

3.2.1 Variant I - The Binary Affinity Model

We show that the methods proposed in [4, 17, 26] are spe-

cial cases of the proposed ClustRF-Strct. All these methods

share the same mechanism in estimating a pairwise similar-

ity matrix using a clustering random forest. We name these

methods collectively as the binary affinity inference model
(ClustRF-Bi), since they derive pairwise affinity based only

on whether or not (binary) two samples fall into the same

leaf node of a tree.

Prior to discussing their relationship to our approach, we

review the underlying mechanism of ClustRF-Bi in mea-

suring pairwise similarity between data samples given a

learned clustering forest. Recall that each individual tree

of a forest partitions the training samples at its leaves �(x):
R

d → L ⊂ N, where � represents a leaf node index and L

refers to the set of all leaves in a given tree. For each tree,

the ClusterRF-Bi model first computes a tree-level N × N
affinity matrix At with elements defined as

at
i,j = exp−distt(xi,xj), with (9)

distt(xi,xj) =

{
0, if �(xi) = �(xj),
+∞, otherwise.

(10)

With Eqn. (9), the ClustRF-Bi assigns the maximal sim-

ilarity at
i,j = 1 to a sample pair (xi, xj) if Pi = Pj

(i.e. completely overlapping), and the minimum similarity

at
i,j = 0 to them otherwise, regardless of any partial overlap

in their tree paths. This formulation is equivalent to setting

wκ = 0 for every internal node, wκ = 1 for all leaf nodes

in Eqn. (7). Hence, this mechanism is a special case of our

ClustRF-Strct. A potential problem with ClustRF-Bi is that

it may lose the weak and subtle proximity of sample pairs

proportional to the degree of path overlap. We will show in

our experiments in Sec. 5 that considering only completely

overlapping path pairs, i.e. Pi\Pj = ∅, as in ClustRF-Bi,

is not sufficient for producing satisfactory data clusters.

3.2.2 Variant II - The Uniform Structure Model

To address the limitation of ClustRF-Bi in losing weak

similarity between data samples, we propose to consider

the non-completely-overlapping path pairs as well while

measuring tree-level data similarities using the proposed

ClustRF-Strct model. In particular, we treat all tree nodes as

uniformly important by setting wκ = 1 in Eqn. (7). There-

fore, Eqn. (7) can be rewritten as

at
i,j =

λ

max(|Pi|, |Pj |)− 1
. (11)

We call this model as ClustRF-Strct-Unfm. With Eqn. (11),

all partially overlapped path pairs also contribute to the sim-

ilarity estimation between samples. As shown in the exper-

iments (Sec. 5), this new formulation captures weak data

similarities encoded in the tree structures, and thus is capa-

ble of better revealing the underlying data structure than the

conventional ClustRF-Bi model.

3.2.3 Variant III - The Adaptive Structure Model

The ClustRF-Strct-Unfm is capable of capturing subtle and

weak data proximity through exploiting the path sharing

mechanism of sample pairs in the hierarchical structure of

the forest. Nevertheless, the uniform node weighting im-

plies an implicit assumption that all tree nodes (e.g. sκ or

�) are equally important in defining similarity. In reality

this may not be true, particularly with data of complex dis-

tributions, since different nodes reside at distinct layers of

the tree hierarchy with dissimilar properties, e.g. the size

and structure of the arrival training samples. To characterise

such node (or data subset) properties, we propose an adap-
tive structure-aware affinity inference (ClustRF-Strct-Adpt).

The ClustRF-Strct-Adpt model exploits the hierarchical
neighbourhood formed in each clustering tree (see Fig. 1-

(a)). Our notion of hierarchical neighbourhood generalises

the idea presented in [12]. Specifically, [12] only regards

samples sharing the same tree terminal node as neighbours.

We extend the neighbourhood notion to the whole tree hi-

erarchy. Imagine a situation where a target sample xt tra-

verses in a tree hierarchy from the root node until some ar-

bitrary internal node sκ. Some other samples Sκ \ xt have

also gone through the same tree path and fall onto the same

internal node sκ with xt. These samples form a neighbour-

hood with xt on node sκ in the tree hierarchy.

Samples that form a hierarchical neighbourhood have

passed through the same set of split functions (Eqn. (1)) as-

sociated with each tree node. Intuitively, the deeper the hi-

erarchical neighbourhood is formed, the higher the similar-

ity shared among the samples in the same neighbourhood,

since those samples have survived and are still connected

after identical discriminative split tests (Eqn. (1)). Moti-

vated by this observation, we assign each tree node sκ with

a scale-adaptive weight (Eqn. (7)) as

wκ =
1

|Sκ| . (12)

Consequently, we assign larger weights to deeper tree

nodes, since |Sκ| > |Sκ+1|. As such, ClustRF-Strct-Adpt

estimates similarity between a sample pair (xi,xj) via

at
i,j =

∑λ
κ=1

(
1

|Sκ|
)

∑
m

(
1

|Sb̂
m|

)
+ 1

|Λb̂|

, (13)
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Table 1. Datasets for experiments, with examples in Figure 2.

Dataset # Clusters # Features # Samples

Image Segmentation [1] 7 19 2310

CMU-PIE [22] 10 1024 1000

USAA [6] 8 14000 1466

ERCe [26] 6 2672 600

where

b̂ = argmax
b∈{i,j}

|Pb|, (14)

i.e. the cumulated neighbourhood size of the longer tree

path is utilised as the normalisation factor, and Λb̂ denotes

the set of data samples reaching into the leaf node �b̂. Sim-

ilar to Eqn. (11), a maximum similarity is assigned to sam-

ple pairs that share the same leaf node. Nevertheless, the

tree node similarity weight is no longer distributed linearly

along the forest hierarchy as in Eqn. (11), but in a non-linear

way adaptive to the size of hierarchical neighbourhood.

4. Experimental Setting
Datasets – A wide range of visual datasets are utilised

for evaluating the proposed model: (1) Image Segmenta-

tion [1]: a scene image dataset from the UCI repository,

including 7 types of different outdoor scenes: Brickface,

Sky, Foliage, Cement, Window, Path, and Grass. The ob-

jective is to partition image patches into the above seven

types. (2) CMU-PIE [22]: a face image dataset drawn from

CMU-PIE. It comprises 10 different persons selected in ran-

dom, each with 100 images of near frontal poses and var-

ious expressions and lighting conditions (Fig. 2-(a)). We

aim to group together all the face images from the same

person on this dataset. (3) USAA [6]: a YouTube video

dataset. This dataset features common social group activi-

ties where unconstrained space of objects, events and inter-

actions makes them intrinsically complex and challenging

to detect (Fig. 2-(b)). The goal is to cluster these video

clips into 8 groups each with coherent semantics, e.g. the

same social activity. (4) ERCe [26]: a visual surveillance

video dataset. The dataset is challenging because of various

types of physical events characterised by large changes in

the environmental setup, participants, and crowdedness, as

well as intricate activity patterns. This dataset consists of

600 video clips from 6 campus events, each with 100 sam-

ples (Fig. 2-(c)). Our purpose is to classify the ERCe video

clips into the six events.

Features – For Image Segmentation, USAA, and ERCe,

we use the same features as provided by [1], [6] and [26].

Specifically, for Image Segmentation, we use the low-level

visual features from image patches, e.g. colour, pixel in-

tensity. These appearance features may be unreliable and

noisy, especially given outdoor scenes. As to USAA, the

resulting high-dimensional (14000-D) feature vectors are

drawn from three heterogeneous modalities, namely static

(a) CMU-PIE [22]: each row corresponds to one person.

(1) (2) (3) (4)

(5) (6) (7) (8)

(b) USAA [6]: (1) Birthday Party, (2) Graduation, (3) Music Performance,

(4) Non-music Performance, (5) Parade, (6) Wedding Ceremony, (7) Wed-

ding Dance, (8) Wedding Reception.

(1) (2) (3)

(4) (5) (6)

(c) ERCe [26]: (1) Student Orientation, (2) Cleaning, (3) Career Fair, (4)

Group Study, (5) Gun Forum, (6) Scholarship Competition.

Figure 2. Examples from CMU-PIE [22], USAA [6], ERCe [26] datasets.

appearance, motion and auditory. The data samples from

ERCe are also of high-dimensional (2672-D), involving het-

erogeneous feature types, e.g. colour histogram (RGB and

HSV), optical flow, local texture, holistic image appearance,

object detection. With CMU-PIE, we first normalise and

crop the face images into 32× 32 in spatial resolution, and

their raw pixel values are then employed as the represen-

tation. Such a representation is affected by large differ-

ences in illumination, facial expression, and head pose. All

data features are scaled to the range of [−1, 1]. To initially

remove less-informative features on the high-dimensional

datasets, e.g. CMU-PIE, USAA and ERCe, we perform

PCA on them and the first 30 dominant components are

used as the final representation. The same sets of feature

data are used across all methods for fair comparison.

Baselines – We compare the proposed affinity graph learn-

ing model ClustRF-Strct with:

1. k Nearest Neighbours (kNN) [23]: the most tradi-

tional affinity graph construction method using the Eu-

clidean distance on the input feature space. To con-

vert an Euclidean distance matrix D into an affinity

graph A, we compute each element in A as ai,j =

144814541454



Ground Truth kNN DN cons−kNN

Ground Truth ClustRF−Bi ClustRF−Strct−Unfm ClustRF−Strct−Adpt

(a) Image Segmentation [1]

Ground Truth kNN DN cons−kNN

Ground Truth ClustRF−Bi ClustRF−Strct−Unfm ClustRF−Strct−Adpt

(b) CMU-PIE [22]

Figure 3. Qualitative comparison of the affinity graphs generated by different methods. Better to view by Zoom-In.

exp(−dist2i,j/σ
2
i,j) with σij the adaptive kernel size

that is computed as the mean distance of M -nearest

neighborhoods as in [23]. We will evaluate the sensi-

tivity of M on the clustering performance in Sec. 5.

2. Dominant Neighbourhoods (DN) [16]: a tight affin-

ity graph learning approach. To reduce the amount

of potentially noisy edges in a given Euclidean affin-

ity graph, the DN model attempts to identify sparse

and compact neighbourhoods through selecting only

the maximal cliques in the input graph.

3. Consensus of kNN (cons-kNN) [18]: the state-of-the-

art affinity graph construction method. For selecting

strong local neighbourhoods, the consensus informa-

tion collected from various neighbourhoods in a pro-

vided kNN graph is exploited by this algorithm for

producing a more robust affinity graph.

4. ClustRF-Bi [4, 17, 26]: the clustering random for-

est binary affinity model (Sec. 3.2.1). This method

exploits discriminative features identified during the

training of clustering forests to construct data affinity

graphs. The resulting affinity graphs can thus be less-

sensitive to noisy features, compared to the Euclidean-

metric-based methods, e.g. kNN, DN and cons-kNN.

Evaluation metrics – We use the widely adopted adjusted

Rand Index (ARI) [9] as the evaluation metric, with the

range of [−1, 1]. ARI measures the agreement between the

clustering results and the ground truth in a pairwise fashion,

with higher values indicating better clustering quality. For

all experiments involving clustering forest based models,

i.e. ClustRF-Bi, ClustRF-Strct-Unfm, and ClustRF-Strct-

Adpt, we report the ARI values averaged over 5 trials.

Implementation details – The number of trees Tclust in a

clustering forest is set to 1000. We observed stable results

given a larger forest size. This observation agrees with [4].

We set mtry (see Eqn. (2)) to
√
d with d the feature dimen-

sionality of the input data and employ a linear data separa-

tion [4] as the split function (see Eqn. (1)). The value of φ
is obtained through cross-validation on each dataset.

ClustRF−Bi (301) ClustRF−Strct−Unfm (563) ClustRF−Strct−Adpt (427)

Figure 4. Comparison on cluster forest based models: the pairwise affinity

between different face images from the same person (CMU-PIE [22]). The

numbers in the parentheses are the summation of all pairwise similarities

induced by the corresponding method. Larger is better.

5. Evaluations

5.1. Evaluation of Affinity Graph

We first examine the data affinity graphs, which could

qualitatively reflect how effective a neighbourhood graph

construction method is. Figure 3 depicts some example

affinity matrices generated by all comparative models.

It can be observed that ClustRF-Strct-Unfm and

ClustRF-Strct-Adpt produce affinity matrices with more

distinct block structure and less false edges compared with

others. This suggests the superiority of the proposed mod-

els in learning the underlying semantic structures in data,

potentially leading to more compact and separable clus-

ters. A number of noisy pairwise edges are found in the

affinity graphs yielded by ClustRF-Strct-Unfm than those

by ClustRF-Strct-Adpt. This is a consequence of not con-

sidering the goodness of hierarchical neighbourhoods in

ClustRF-Strct-Unfm (Sec. 3.2.2), leading to less accurate

induced data similarities in comparison to ClustRF-Strct-

Adpt. This observation shows the effectiveness of the pro-

posed adaptive weighting mechanism in suppressing noisy

or inaccurate features on learning data sample proximity.

We now examine and discuss the characteristics of affin-

ity matrices constructed by other baselines. It is observed

from Fig. 4 that compared to the ClustRF-Strct models,

ClustRF-Bi has the tendency to underestimate the similar-

ity of sample pairs that actually originate from the same

clusters. This is owing to that ClustRF-Bi only assumes

data similarity on the completely overlapped tree path pairs,

144914551455



Table 2. Sensitivity of M : the clustering results of different methods given varying values of M in terms of AUC, with M the parameter used for computing the adaptive
Gaussian kernel size during the process of converting a Euclidean distance matrix into an affinity graph (see Sec. 4).

Dataset Image Segmentation [1] CMU-PIE [22] USAA [6] ERCe [26]

M 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

kNN [23] 34.8 36.2 37.6 37.8 37.9 4.4 4.4 4.9 4.8 4.7 3.5 3.1 3.3 3.6 3.6 45.9 48.1 52.1 52.7 51.8

DN [16] 38.3 29.1 34.7 37.2 37.2 3.0 2.3 2.4 3.0 3.5 2.6 2.3 2.5 2.0 1.7 51.0 52.1 49.9 18.3 25.6

cons-kNN [18] 34.9 36.8 35.8 36.8 35.9 4.0 4.4 4.3 4.3 4.2 3.8 3.8 3.8 3.8 3.9 49.2 52.1 52.0 52.0 55.7

ClustRF-Bi [4, 17, 26] 39.5 19.8 4.5 56.1

ClustRF-Strct-Unfm 40.7 22.9 4.7 59.3

ClustRF-Strct-Adpt 41.8 20.5 5.7 60.4

and thus loses subtle and weak data proximity (Sec. 3.2.1).

Given intrinsically ambiguous datasets with unreliable fea-

tures, incomplete overlapping path pairs can often occur as

samples of the same categories may only share similarity

in some feature subspaces. In such cases, ClustRF-Bi shall

perform poorly as compared to our ClustRF-Strct models,

as we shall show next.

With kNN, DN, and cons-kNN, affinity graphs with in-

distinct block structure are observed, with a mix of large

quantity of faulty edges. In contrast to ClustRF-Bi that

is ‘overly reluctant’ in assigning data proximity to sam-

ple pairs, the Euclidean distance based methods go to the

other extreme by blindly believing all available features and

therefore tend to introduce false data proximity.

5.2. Evaluation of Clustering Performance

In this experiment, we quantitatively evaluate data clus-

tering performance of different graph construction methods

by applying the spectral clustering algorithm [25] on their

affinity graphs as discussed in Sec. 5.1.

It is observed from Fig. 5 and Table 2 ClustRF-Strct-

Unfm and ClustRF-Strct-Adpt outperform baseline meth-

ods, e.g. by as much as >125% and >120% relative im-

provement against kNN, >190% and >180% against DN,

>130% and >125% against the state-of-the-art cons-kNN,

>5% and >10% against the discriminative-feature-based

model ClustRF-Bi in terms of the area under the ARI curve

averaged over all the datasets. This is in line with the obser-

vations in Fig. 3. Importantly, we find that ClustRF-Strct-

Unfm and ClustRF-Strct-Adpt significantly outperform the

Euclidean distance based methods on CMU-PIE. This can

be due to the capability of our model of capturing and aggre-

gating subtle data proximity distributed over discriminative

feature subspaces, thus suitable to handle ambiguous and

unreliable features caused by variation in illumination, face

expression or pose on the CMU-PIE data. A large improve-

ment margin is also observed on the USAA dataset with

data collected from heterogeneous sources. All these evi-

dences suggest the superior capability of our model in deal-

ing with high-dimensional data and heterogeneous sources

for generating robust affinity graphs.

As shown in Fig. 5, ClustRF-Strct-Unfm is more likely

to suffer when the size of neighbourhood k increases, whilst

ClustRF-Strct-Adpt behaves more stably. The tendency is

likely to be caused by the relatively noisier affinity ma-

trix induced by ClustRF-Strct-Unfm, as we observed in

Sec. 5.1. The results further justify the importance of con-

sidering neighbourhood-scale-adaptive weighting on tree

nodes (Sec. 3.2) for suppressing data noise.

The Euclidean-distance-based models produce the poor-

est results over all the datasets. Inaccurate and noisy

features are potential causes. For example, the face im-

ages from the CMU-PIE dataset are intrinsically ambigu-

ous owing to large variations in illumination and expres-

sions (Fig. 2-(a)). The extracted features are therefore un-

reliable. Similar situations are observed on other datasets.

The cons-kNN model attempts to circumvent this problem

via searching for consensus from multiple kNNs. Never-

theless this is proved challenging, particularly when a large

quantity of potential noisy edges exist in the given kNN due

to the unreliable input data, leading to possibly inconsistent

neighbour votes from multiple kNNs. DN is likely to suffer

from the same problem as the maximal cliques in the given

affinity graph is no longer trustworthy. This interpretation

is further supported by the fact that for all kNN, cons-kNN

and DN, the clustering performance changes dramatically

with the varying settings of neighbourhood size k, e.g. on

Image Segmentation and ERCe. That is, a large amount of
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Figure 5. ARI curve: comparison between different methods on the spec-

tral clustering performance given different scales of neighbourhood k. The

neighbourhood size M used on computing the adaptive Gaussian kernel

size is fixed to 20.
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inaccurate edges in the affinity graphs lead to the require-

ment of a more careful neighbourhood size selection, so as

to trade-off between the true and false data similarities.

By exploiting discriminative features, the ClustRF-Bi

model suffers less from noisy data, and produces better re-

sults than the Euclidean-distance-based methods. However,

it is inferior to the proposed ClustRF-Strct variants, since

it is not capable of capturing subtle data pairwise similarity

encoded in partially overlapped path pairs.

Sensitivity ofM – Here we evaluate the sensitivity of M on

kNN, DN and cons-kNN. The parameter M is employed

to estimate the adaptive Gaussian kernel size for convert-

ing a Euclidean distance matrix into a similarity graph [23]

(Sec. 4). Note that ClustRF-Bi, ClustRF-Strct-Unfm and

ClustRF-Strct-Adpt are free from M since they directly de-

rive affinity graphs from the learned forests, rather than

from distance matrices which require a Gaussian kernel to

enforce locality. It is evident from Table 2 that for all the

Euclidean-distance-based affinity graph learning models, a

careful selection of adaptive Gaussian kernel size can pro-

duce better clustering results. However, their best results

are still worse than those by clustering forest based mod-

els, due to the limitation in handling intrinsically noisy and

irrelevant feature data. Importantly, the proposed ClustRF-

Strct model gains superior performance to other baselines

in all cases.

6. Conclusion
We have presented a novel generalised and unsupervised

approach to constructing more robust and meaningful data

affinity graphs for improving spectral clustering, particu-

larly with data of high dimension and from heterogeneous

sources. Instead of blindly trusting all available variables,

we adopt an information-theoretic definition on data simi-

larity and derive affinity graphs through capturing and com-

bining subtle and weak data pairwise proximity distributed

in discriminative feature subspaces identified during the

training stage of clustering forests. Furthermore, the affinity

graphs constructed by our model naturally possess the local

neighbourhood, with no need of Gaussian kernel. Exten-

sive experiments on clustering challenging visual datasets

have demonstrated the superiority of the proposed affinity

inference model over the state-of-the-art models. Beyond

spectral clustering, our model can also benefit other appli-

cations, e.g. manifold ranking.
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