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Abstract—We consider a distributed power control scheme for
wireless ad hoc networks, in which each user announces a price that
reflects compensation paid by other users for their interference.
We present an asynchronous distributed algorithm for updating
power levels and prices. By relating this algorithm to myopic best
response updates in a fictitious game, we are able to characterize
convergence using supermodular game theory. Extensions of this
algorithm to a multichannel network are also presented, in which
users can allocate their power across multiple frequency bands.

Index Terms—Distributed algorithms, game theory, power con-
trol, pricing.

I. INTRODUCTION

M ITIGATING interference is a fundamental problem in
wireless networks. A basic technique for this is to con-

trol the nodes’ transmit powers. In an ad hoc wireless network,
power control is complicated by the lack of centralized infra-
structure, which necessitates the use of distributed approaches.
This paper addresses distributed power control for rate adaptive
users in a wireless network. We consider two models: a single-
channel spread-spectrum (SS) network, where all users spread
their power over a single-frequency band, and a multichannel
model, where each user can allocate its power over multiple
frequency bands. The latter model is motivated by multicarrier
transmission [e.g., orthogonal frequency-division multiplexing
(OFDM)], where each channel might represent a single-carrier,
or a group of adjacent carriers. In both cases, the transmission
rate for each user depends on the received signal-to-interfer-
ence plus noise ratio (SINR). Our objective is to coordinate
user power levels to optimize overall performance, measured in
terms of total network utility.

We study protocols in which the users exchange price signals
that indicate the “cost” of received interference. Pricing mecha-
nisms for allocating resources in networks have received consid-
erable attention for both wire-line (e.g., [1] and [2]) and wireless
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networks (e.g., [3]–[5]). The problem here differs from much of
the previous work because, due to interference, the users’ ob-
jective functions are coupled, and the overall network objective
may not be concave in the allocated resource (transmit power).
Also, in most previous work, prices are Lagrange multipliers for
some constrained resource such as power or bandwidth; here the
prices reflect the interference or externalities among the users
instead of a resource constraint. Our single-channel model is
similar to that considered in [6], which also discusses combined
power and rate control. The power adaptation in [6] solves a
similar problem to that considered here using gradient updates.
Instead, we consider an approach based on supermodular game
theory [7], which allows for a larger class of utility functions
and appears to have faster convergence.

A variety of game-theoretic approaches have been applied to
network resource allocation, as surveyed in [8]. Supermodular
game theory, in particular, has been used to study power con-
trol in [9]–[11]. Our approach differs in that: 1) we focus on
an ad hoc instead of a cellular network; 2) we consider a dif-
ferent functional form for the utilities than some authors; and
3) we do not directly model the problem as a noncooperative
game. Instead, the users voluntarily cooperate with each other
by exchanging interference information. We introduce a ficti-
tious game and apply a strategy space transformation to view
this algorithm as a supermodular game. Other work on power
control in code-division multiple-access (CDMA) cellular and
ad hoc networks includes [9], [10], and [12]–[14]. In most prior
work on ad hoc networks, a transmission is assumed to be suc-
cessful if a fixed minimum SINR requirement is met. This is true
for fixed-rate communications. However, this is not the case for
“elastic” data applications, which can adapt transmission rates.
In this paper, we focus on rate-adaptive users, where the goal of
power control is to maximize total network performance instead
of guarantee interference margins for each user.

For multichannel networks, an additional consideration is
how the users allocate their power across the available chan-
nels. We decompose this power allocation by introducing a
“power price” for each user, which represents a dual variable
corresponding to the user’s total power constraint. Each user
must now take into account both the interference prices and
their own power price. We present a distributed gradient pro-
jection algorithm to solve for the optimal power prices. This is
similar in spirit to the optimization flow control algorithm for
wire-line networks in [2]. However, here the dual variables are
not determined by each link in the network, but rather by each
user. Also, the corresponding primal problem is not separable
due to the interference.

0733-8716/$20.00 © 2006 IEEE
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Fig. 1. An example wireless network with four users (pairs of nodes) (T and
R denote the transmitter and receiver of “user” i, respectively).

Because we assume that the users cooperate, we ignore incen-
tive issues, which may occur in networks with noncooperative
users. For example, in that scenario, a user may attempt to ma-
nipulate its announced interference prices to increase its own
utility at the expense of the overall network utility. That can,
of course, compromise the performance of the distributed algo-
rithms presented here. Although we do not explore this issue
further in this work, we note that it may be possible to “hard
wire” the power control algorithm into handsets, making such a
manipulation of price information difficult.

In the next section, we describe and analyze our distributed
price/power adjustment algorithm for a single-channel network.
We then turn to the multichannel model in Section III. Simula-
tion results are given in Section IV, and conclusions are pre-
sented in Section V.

II. SINGLE-CHANNEL NETWORKS

We consider a snapshot of an ad hoc network with a set
of distinct node pairs. As shown in Fig. 1, each

pair consists of one dedicated transmitter and one dedicated re-
ceiver.1 We use the terms “pair” and “user” interchangeably in
the following. In this section, we assume that each user trans-
mits an SS signal spread over the total bandwidth of Hz. Over
the time-period of interest, the channel gains of each pair are
fixed. The channel gain between user ’s transmitter and user
’s receiver is denoted by . Note that, in general, ,

since the latter represents the gain between user ’s transmitter
and user ’s receiver.

Each user ’s quality of service is characterized by a utility
function , which is an increasing and strictly concave
function of the received SINR

(1)

1For example, this could represent a particular schedule of transmissions de-
termined by an underlying routing and MAC protocol.

where is a vector of the users’ transmis-
sion powers and is the background noise power. The users’
utility functions are coupled due to mutual interference. An ex-
ample utility function is a logarithmic utility function

, where is a user dependent priority parameter.2

The problem we consider is to specify to maximize the
utility summed over all users, where each user must also sat-
isfy a transmission power constraint, ,
i.e.,

(P1)

Note that a special case is ; i.e., the user may choose
not to transmit.3

As a baseline distributed approach, consider the case where
the users do not exchange any information and simply choose
transmission powers to maximize their individual utilities. As
in [9], this can be modeled as a noncooperative power (NCP)
control game

where the players in the game correspond to the users in ;
each player picks a transmission power from the strategy set

and receives a payoff . In this game, is the power
profile, and the power profile of user ’s opponents is defined to
be , so that .
Similar notation will be used for other quantities. User ’s best
response is

i.e., the that maximizes given a fixed . A
power profile is a Nash equilibrium (NE) of if it is a
fixed point of the best responses, i.e.,

Since each user’s payoff is strictly increasing
with for fixed , and there is no penalty for high transmis-
sion power as long as , it is easy to verify that the unique
NE of is , i.e., each transmitter uses
its maximum power. This solution can be far from the socially
optimal solution given by Problem (P1).

Although is concave, the objective in Problem (P1) may
not be concave in . However, it is easy to verify that any local
optimum, , of this problem will be regular
(see [15, p. 309]), and so must satisfy the Karush–Kuhn–Tucker
(KKT) necessary conditions.

2In the high SINR regime, logarithmic utility approximates the Shannon ca-
pacity log(1+
 ) weighted by � . For low SINR, a user’s rate is approximately
linear in SINR, and so this utility is proportional to the logarithm of the rate.

3Occasionally, for technical reasons, we require P > 0; in these cases,
P can be chosen arbitrarily small so that this restriction has little effect. Note
that for certain utilities, e.g., � log(
 ), all assigned powers must be strictly
positive, since as P ! 0, the utility approaches �1.
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Lemma 1 (KKT Conditions): For any local maximum
of Problem (P1), there exist unique Lagrange multipliers

and such that for all

(2)

(3)

Let

(4)

where is the total interference received
by user (before bandwidth scaling). Here, is al-
ways nonnegative and represents user ’s marginal increase in
utility per unit decrease in total interference. Using (4), condi-
tion (2) can be written as

(5)

Viewing as a price charged to other users
for generating interference to user , condition (5) is a neces-
sary and sufficient optimality condition for the problem in which
each user specifies a power level to maximize the fol-
lowing surplus function:

(6)

assuming fixed and (i.e., each user is a price taker and
ignores any influence he may have on these prices). User ,
therefore, maximizes the difference between its utility minus its
payment to the other users in the network due to the interference
it generates. The payment is its transmit power times a weighted
sum of other users’ prices, with weights equal to the channel
gains between user ’s transmitter and the other users’ receivers.
This pricing interpretation of the KKT conditions motivates the
following asynchronous distributed pricing (ADP) algorithm.

A. Asynchronous Distributed Pricing (ADP) Algorithm

In the ADP algorithm, each user announces a single price
and all users set their transmission powers based on the re-
ceived prices. Prices and powers are asynchronously updated.
For , let and , be two unbounded sets of posi-
tive time instances at which user updates its power and price,
respectively. User updates its power according to

which corresponds to maximizing the surplus in (6). Each user
updates its price according to

which corresponds to (4). Using these update rules, the ADP
algorithm is given in Algorithm 1. Note that in addition to being

asynchronous across users, each user also need not update its
power and price at the same time.4

Algorithm 1 The ADP Algorithm

(1) INITIALIZATION: For each user
choose some power

and price .
(2) POWER UPDATE: At each , user

updates its power according to

(3) PRICE UPDATE: At each , user
updates its price according to

In the ADP algorithm, not only are the powers and prices
generated in a distributed fashion, but also each user only needs
to acquire limited information. To see this note that the power
update function can be written as5

where is independent of , and

Likewise, the price update can be written as

From these expressions, it can be seen that to implement the up-
dates, each user only needs to know: 1) its own utility , the
current SINR and channel gain ; 2) the “adjacent” channel
gains for and ; and 3) the price profile . By
assumption each user knows its own utility. The SINR and
channel gain can be measured at the receiver and fed back
to the transmitter. Measuring the adjacent channel gains can
be accomplished by having each receiver periodically broadcast
a beacon; assuming reciprocity, the transmitters can then mea-
sure these channel gains. The adjacent channel gains account for
only of the total channel gains in the network; each user
does not need to know the other gains. The price information
could also be periodically broadcast through this beacon. Since
each user announces only a single price, the number of prices
scales linearly with the size of the network. Also, numerical re-
sults show that there is little effect on performance if users only
convey their prices to “nearby” transmitters, i.e., those gener-
ating the strongest interference [16].

4Of course, simultaneous updates of powers and prices per user and syn-
chronous updating across all users are just special cases of Algorithm 1.

5Notation [x] means maxfminfx; bg; ag.
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Denote the set of fixed points of the ADP algorithm by

(7)

where and
. Using the strict concavity of in , the

following result can be easily shown.
Lemma 2: A power profile satisfies the KKT conditions

of Problem (P1) (for some choice of Lagrange multipliers) if
and only if .

If there is only one solution to the KKT conditions, then it
must be the global maximum and the ADP algorithm would
reach that point if it converges.6 In general, may contain
multiple points including local optima or saddle points.

B. Convergence Analysis of ADP Algorithm

We next characterize the convergence of the ADP algorithm
by viewing it in a game theoretic context. A natural generaliza-
tion of the NCP game is to consider a game where each player
’s strategy includes specifying both a power and a price

to maximize a payoff equal to the surplus in (6). However, since
there is no penalty for user announcing a high price, it can be
shown that each user’s best response is to choose a large enough
price to force all other users transmit at . This is certainly
not a desirable outcome and suggests that the prices should be
determined externally by another procedure.7 Instead, we con-
sider the following fictitious power-price (FPP) control game

where the players are from the union of the sets and ,
which are both copies of . is a fictitious power player
set; each player chooses a power from the strategy
set and receives payoff

(8)

is a fictitious price player set; each player chooses a
price from the strategy set and receives payoff

(9)

Here, , which could be infinite for some utility
functions.

In , each user in the ad hoc network is split into two
fictitious players, one in who controls power and the
other one in who controls price . Although users in the real
network cooperate with each other by exchanging interference
information (instead of choosing prices to maximize their sur-
plus), each fictitious player in is selfish and maximizes its
own payoff function. In the rest of this section, a “user” refers to
one of the transmitter-receiver pairs in set , and a “player”
refers to one of the fictitious players in the set .

6In the following section, we will give conditions under which this occurs.
7A similar situation arises in [3], where users in a multihop network announce

prices charging other users for packets they forward. In that case, the prices also
cannot be determined by individual surplus optimizations.

In , the players’ best responses are given by

and

where and are the update rules for the ADP algorithm.
In other words, the ADP algorithm can be interpreted as if the
players in employ asynchronous myopic best response
(MBS) updates, i.e., the players update their strategies according
their best responses assuming the other player’s strategies are
fixed. It is known that the set of fixed points of MBS updates
are the same as the set of NEs of a game [7, Lemma 4.2.1].
Therefore, we have the following.

Lemma 3: if and only if is a NE
of .

Together with Lemma 2, it follows that proving the conver-
gence of asynchronous MBS updates of is sufficient to
prove the convergence of the ADP algorithm to a solution of
KKT conditions. We next analyze this convergence using su-
permodular game theory [7].

We first introduce some definitions.8 A real -dimensional
set is a sublattice of if for any two elements ,
the component-wise minimum, , and the component-wise
maximum, , are also in . In particular, a compact sub-
lattice has a (component-wise) smallest and largest element.
A twice differentiable function has increasing differences in
variables if for any feasible and .9

A function is supermodular in if it has
increasing differences in for all .10 Finally, a
game is supermodular if for each player

, a) the strategy space is a nonempty and compact
sublattice, and b) the payoff function is continuous in all
players’ strategies, is supermodular in player ’s own strategy,
and has increasing differences between any component of player
’s strategy and any component of any other player’s strategy.

The following theorem summarizes several important proper-
ties of these games.

Theorem 1: In a supermodular game, .

(a) The set of NEs is a nonempty and compact sublattice and
so there is a component-wise smallest and largest NE.

(b) If the users’ best responses are single-valued, and each
user uses MBS updates starting from the smallest (largest)
element of its strategy space, then the strategies monoton-
ically converge to the smallest (largest) NE.

(c) If each user starts from any feasible strategy and uses
MBS updates, the strategies will eventually lie in the set
bounded component-wise by the smallest and largest NE.
If the NE is unique, the MBS updates globally converge
to that NE from any initial strategies.

Properties a) follows in [7, Lemmas 4.2.1 and 4.2.2];
b) follows from [10, Theorem 1]; and c) can be shown by [17,
Theorem 8].

8More general definitions related to supermodular games are given in [7].
9If we choose x to maximize a twice differentiable function f(x; t), then the

first-order condition gives @f(x; t)=@xj = 0, and the optimal value x
increases with t if @ f=@x@t > 0.

10A function f is always supermodular in a single variable x.
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TABLE I
EXAMPLES OF TYPE I AND II UTILITY FUNCTIONS

Next, we show that by an appropriate strategy space transfor-
mation certain instances of are equivalent to supermod-
ular games, and so Theorem 1 applies. We first study a simple
two-user network, then extend the results to a -user network.

1) Two-User Networks: Let be the FPP game corre-
sponding to a two user network; this will be a game with four
players, two in and two in . First, we check whether

is supermodular. Each user clearly has a
nonempty and compact sublattice (interval) strategy set, and
so does each user if .11 Each player’s payoff
function is (trivially) supermodular in its own one-dimensional
strategy space. The remaining increasing difference condition
for the payoff functions does not hold with the original defini-
tion of strategies in . For example, from (8)

e.g., a higher price leads the other users to decrease their powers.
However, if we define and consider an equivalent
game where each user chooses from the strategy set

, then

i.e., has increasing differences in the strategy pair
[or equivalently ]. If all the users’ strategies can be re-
defined so that each player’s payoff satisfies the increasing dif-
ferences property in the transformed strategies, then the trans-
formed FPP game is supermodular.

Denote

and let and
. An increasing, twice continuously

differentiable, and strictly concave utility function is
defined to be the following:

• Type I if for all ;
• Type II if for all .

11When P = 0, this bounded price restriction is not satisfied for utilities
such as u (
 ) = � 
 =� with � 2 [�1; 0), since � = � 
 =(p h B)
is not bounded as p ! 0. However, as noted above, we can set P to some
very small value without effecting the performance.

The term is called the coefficient of relative risk
aversion in economics [18] and measures the relative concave-
ness of . Many common utility functions are either Type I
or Type II, as shown in Table I.

The logarithmic utility function is both Type I and II. A Type I
utility function is “more concave” than a Type II one. Namely,
an increase in one user’s transmission power would induce the
other users to increase their powers, i.e.,

A Type II utility would have the opposite effect, i.e.,

The strategy spaces must be redefined in different ways for these
two types of utility functions to satisfy the requirements of a
supermodular game.

Proposition 1: is supermodular in the transformed
strategies if both users have Type I utility
functions.

Proposition 2: is supermodular in the transformed
strategies if both users have Type II utility
functions.

The proofs of both propositions consist of checking the
increasing differences conditions for each player’s payoff
function. These results along with Theorem 1 enable us to
characterize the convergence of the ADP algorithm. For ex-
ample, if the two users have Type I utility functions (and

), then is nonempty. In case of mul-
tiple fixed points, there exist two extreme ones and

, which are the smallest and largest fixed points in
terms of strategies . If users initialize with

or ,
the power and prices converge monotonically to or

, respectively. If users start from arbitrary initial power
and prices, then the strategies will eventually lie in the space
bounded by and . Similar arguments can be
made with Type II utility functions with a different strategy
transformation. Convergence of the powers for both types of
utilities is illustrated in Fig. 2.

2) -User Networks: Proposition 1 can be easily general-
ized to a network with :
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Fig. 2. Examples of the trajectories of the power profiles under the ADP
algorithm for a two-user network with Type I (left) or Type II (right) utility
functions. In both cases, from the indicated initializations the power profiles
will monotonically converge to the indicated “corner” fixed points.

Corollary 1: For an -user network if all users have Type I
utilities, is a supermodular in the transformed strategies

.
In this case, Theorem 1 can again be used to characterize the

structure of , as well as the convergence of the ADP al-
gorithm. On the other hand, it can be seen that the strategy re-
definition used in Proposition 2, cannot be applied with
users so that the increasing differences property holds for every
pair of users.

With logarithmic utility functions, it is shown in [6] that
Problem (P1) is a strictly concave maximization problem over
the transformed variables . In this case, Problem
(P1) has a unique optimal solution, which is the only point
satisfying the KKT conditions. It follows from Lemma 2 and
Lemma 3 that will have a unique NE corresponding to
this optimal solution and the ADP algorithm will converge to
this point from any initial choice of powers and prices.12 With
some minor additional conditions, the next proposition states
that these properties generalize to other Type I utility functions.
The proof is given in Appendix A.

Proposition 3: In an -user network, if for all :

a) , and
b) for all , where is

a strict subset of [1, 2];

then Problem (P1) has a unique optimal solution, to which the
ADP algorithm globally converges.

III. MULTICHANNEL NETWORKS

We now turn to a power control problem in a multichannel
network, where each user is able to transmit over a set of

orthogonal channels. A superscript denotes
that a quantity refers to the th channel, e.g., is the th user’s
power on channel . We denote the vector of powers across users
for a particular channel by and the vector of
power across channels for a particular user by .
Finally, will denote the power profile of all users in
all channels. The same notation is used for other quantities such

12Moreover, if each user i 2 M starts from profile (p (0); � (0)) =
(P ; � =(n B)) or (P ; 0), then their strategies will monotonically
converge to this fixed point.

as SINR and prices. Each user ’s power allocation must lie in
the set

where is a total power constraint. User ’s SINR on
channel is13

In this section, we assume that each user has a “channel sepa-
rable” utility, , where is
an increasing and strictly concave function that represents the
benefit user receives from channel . In other words, a user’s
utility is the sum of utilities from each channel. For example,
this is appropriate when the utility is linear in the rate a user re-
ceives, and the total rate is the sum of the rate on each channel.
Problem (P1) then becomes

(P2)

Next, we discuss two generalizations of the ADP algorithm
to this setting.

A. Multichannel ADP (MADP)

The MADP algorithm is a direct generalization of the ADP
algorithm in which each user announces a vector of prices ,
one for each channel, and chooses a power vector to
maximize the surplus function

Specifically, for each user , the MADP algorithm is exactly the
same as the ADP algorithm except the scalars and are
replaced by the corresponding vectors and . The update
functions and are also replaced by vector update rules

and , where

and

with . Once again these updates may
be asynchronous across users and among the price and power
updates.

The single-channel fictitious game can also be gener-
alized to the multichannel setting so that each player’s best re-
sponse corresponds to the update steps in the MADP algorithm.
We denote this game by

Again, this game has two sets of players and
both copies of . Each player in chooses a power

13If there is any spreading on each channel as in multicarrier CDMA, the
factor 1=B can be absorbed into the channel gains.
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vector from the strategy set and receives
a payoff of

Each player in is chooses a price vector from the
strategy set , where , and re-
ceives a payoff

Let denote the set of fixed points of the MADP
algorithm; i.e., the values of such that for all ,

and . By the same argu-
ments as in the single-channel case, we have the following.

Lemma 4: The following are equivalent: 1) A power
profile satisfies the KKT conditions of Problem (P2); 2)

; and 3) is a NE of
.

In a network with channels, certain instances of
can again be transformed into equivalent supermodular

games. Notice that due to the total power constraint, the strategy
set is not a sublattice.14 However, is a sublat-
tice in transformed strategy . Using this transforma-
tion, we can extend the results from Section II-B.

Corollary 2: In a network with channels, is
supermodular in the transformed strategies
if for all and , is Type I.

Corollary 3: In a network with channels and
users, is supermodular in the strategies:

, if for all and ,
is Type II.

When is supermodular, the convergence of the
MADP algorithm is again characterized by Theorem 1. Notice
that Corollary 2 applies to a network with any number of
users, while the strategy transformation in Corollary 3 does not
generalize to . In both cases, these transformations do
not extend to channels.

B. Dual ADP (DADP) Algorithm

The DADP algorithm is another generalization of the ADP
algorithm to multiple channels. This algorithm is based on re-
laxing each user ’s total power constraint in Problem (P2) by
introducing a power price so that the objective function be-
comes . For a given ,
the resulting problem is separable across channels, and so can
be decomposed into subproblems, one for each channel ,
given by

(P3)

where . A modified version of the (single-
channel) ADP algorithm can be applied to the subproblem (P3)

14For example, a = (P ; P � P ) 2 P and b = (P �
P ; P ) 2 P but a _ b = (P � P ; P � P ) 62
P , assumingP > 2P , which is necessary forP to contain
for than one point.

for each channel , where the price update, is the
same as in the MADP algorithm, and the power update is mod-
ified to be

which includes both the cost due to interference and user ’s
power price. For a given , any fixed point of this algorithm
will satisfy the KKT conditions of subproblem (P3).

In the DADP algorithm, each user asynchronously updates its
price and power for each channel using the above update rules.
Additionally each user periodically updates its own power
price according to

(10)

where is a given constant and . In
other words, if the current power allocation is less (greater) than

, the user decreases (increases) its power price. The com-
plete algorithm is given in Algorithm 2, where x, , and

are unbounded sets of positive time instances at which each
user updates , , and , respectively. In this case, it can be
seen that any fixed point of this algorithm will satisfy the KKT
conditions of Problem (P2).

Algorithm 2 The DADP Algorithm

(1) INITIALIZATION: For each user
choose some power ,

interference price and
power price .

(2) POWER PRICE UPDATE: At each
, user updates its power

price according to

(3) POWER UPDATE: At each , user
updates its power on carrier

according to

(4) INTERFERENCE PRICE UPDATE: At each
, user updates its in-

terference price on carrier ac-
cording to

We analyze the convergence of this algorithm under the fol-
lowing simplifying assumptions.

A1) Synchronous updates: The power prices are updated
synchronously across all users.
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A2) Separation of time-scales: Between any two updates
of the power prices, the updates in steps 3 and 4 of the
algorithm converge to a fixed point.

Assumption A1 is for analytical convenience and can likely
be relaxed using techniques as in [19]. Steps 3 and 4 of the al-
gorithm are implementing the modified version of the ADP al-
gorithm on each channel. If every utility satisfies the conditions
as in Proposition 3, these updates will converge to a fixed point
for any fixed . However, a large number of updates may be re-
quired for convergence; hence, A2 implies that there are many of
these updates between any two power price updates. Numerical
results in Section IV show that convergence can still be obtained
when this assumption is dropped.

Theorem 2: In a network with users and channels, if for
all and , and satisfy the conditions
(a) and (b) in Proposition 3; then under assumptions A1 and
A2, for small enough step size the DADP algorithm globally
converges to the unique optimal solution to Problem (P2).

Under these assumptions, it follows from Proposition 3 that
for any there is only one fixed-point, ,
for each channel which corresponds to the optimal solution of
subproblem (P3) for that channel. This fixed-point specifies the
value of the following dual function for Problem (P2)

(11)

where . In this
setting, the power price update can be viewed as a distributed
gradient projection algorithm [15] for solving the dual problem

(D)

The proof of this theorem, given in Appendix B, shows that:
a) this algorithm converges to some for small enough step-
size and b) there is no duality gap and so is the op-
timal solution to Problem (P2). The proof of b) uses a similar
argument as in the proof of Proposition 3; the proof of a) fol-
lows a similar argument as in [2], which requires showing that
the gradient of the dual function is Lipschitz continuous. This is
complicated here since the dual problem is not separable across
users in each channel due to interference.

IV. SIMULATION RESULTS

We provide some simulation results to illustrate the perfor-
mance of the ADP and DADP algorithms. We simulate a net-
work contained in a 10 m 10 m square area. Transmitters are
randomly placed in this area according to a uniform distribution,
and the corresponding receiver is randomly placed within 6 m

6 m square centered around the transmitter.
First, we consider a single-channel network with

users each with utility . The channel gains
, , and . Fig. 3 shows the con-

vergence of the powers and prices for each user under the ADP
algorithm for a typical realization, starting from random ini-
tializations. Also, for comparison we show the convergence of
these quantities using a gradient-based algorithm as in [6] with

Fig. 3. Convergence of the prices and powers for the ADP algorithm (left) and
a gradient algorithm (right) in a network with ten users and logarithmic utility
functions. Each curve corresponds to the power or price for one user with a
random initialization.

Fig. 4. Number of dual iterations needed for the DADP convergence.

a step-size of 0.01.15 Both algorithms converge to the optimal
power allocation, but the ADP algorithm converges much faster;
in all the cases we have simulated, the ADP algorithm converges
about ten times faster than the gradient-based algorithm (if the
latter converges). The ADP algorithm, by adapting power ac-
cording to the best response updates, is essentially using an
“adaptive step-size” algorithm: users adapt the power in “larger”
step-sizes when they are far away from the optimal solution, and
use finer steps when close to the optimal.

Next, we examine the convergence of DADP algo-
rithm in a multichannel network with and

. The other parameters are the same as in
the single-channel case, except here , where

is an unit mean exponential random variable that models

15In our experiments, a larger step-size than 0.01 would often not converge.
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Fig. 5. Number of primal updates needed for the DADP convergence.

frequency selective fading across channels. Here, we simulate
a version of the algorithm with step-size starting
from a random initialization. All users synchronously update
their power prices; the time between each update is referred to
as a dual iteration. During each dual iteration, the users also
synchronously perform both steps 3) and 4, which we refer to
as a primal update. In Theorem 2, we assumed that there were
arbitrarily many primal updates during each dual iteration.
Here, we investigate the case where only a small number of
primal updates are used. Fig. 4 shows the relative error between
the current utility and the optimal value as a function of the
number of dual iterations, with a maximum of 1, 3, 5, and 7
primal updates per iteration. Each point is averaged over 100
random topology realization. Even with only one primal update
per iteration, the relative error quickly decreases. Fig. 5 shows
relative error as a function of the total number of primal up-
dates; in this case, the number of updates per iteration appears
to have little effect on the average performance.

V. CONCLUSION

We have presented distributed power control algorithms for
both single-channel and multichannel wireless networks. In
these algorithms, users announce prices to reflect their sensi-
tivities to the current interference levels, and then adjust their
power to maximize their surplus. In certain cases, we are able to
characterize the convergence of there algorithms and show that
they achieve an optimal power allocation. Some other desirable
features of these algorithms are that they can be asynchronously
implemented, they require only limited knowledge of channel
gains by each user, and each users only announces a single
price per channel. Also, our numerical results show that the
algorithms converge quickly, which also limits the required
overhead.

Our analysis has been based on relating the algorithms to fic-
titious noncooperative games. These games are introduced as

a proof technique, whereas the actual users in the network are
assumed to be cooperative, i.e., they correctly follow the algo-
rithms. With noncooperative users, developing incentive com-
patible algorithms for distributed power control requires further
work. A challenge is that in addition to providing incentives for
users to announce the correct price signals, incentives must also
be provided for information exchange needed for channel esti-
mation. For example, if cross-channel gains are estimated via
beacons from other nodes, then the users must have incentives
for transmitting their beacons at the correct power level.

Finally, we have assumed a static model, in which the com-
municating pairs and the channel conditions are fixed. An in-
teresting future direction is to consider dynamic environments,
in which the network topology and channels may change with
time, and source traffic may vary randomly.

APPENDIX A

A. Proof of Proposition 3

As in [6], we use a logarithmic change of variables. Specif-
ically, we show that in the variables , Problem (P1)
becomes the optimization of a strictly concave objective over a
compact, convex set. It follows that Problem (P1) has a unique
global optimum, which is the only solution to the KKT condi-
tions. Furthermore, the solutions to the KKT conditions in the
variables have a one-to-one correspondence to solutions in the
original variables . It follows that there is only one solution
to the KKT conditions in the original variables, and hence by
Lemma 2, is a singleton set containing only the global
optimum. Therefore, the ADP algorithm globally converges to
this point.

All that remains is to show that Problem (P1) has the desired
properties in the variables . In the transformed variables, the
constraint set becomes , which
is clearly compact and convex. To show that the objective is
strictly concave, we show that its Hessian is negative definite
for all .

Let denote the objective to Problem (P1) in
terms of the transformed variables. The Hessian matrix,

consists of diagonal elements

for all , and off-diagonal elements

for all . Here, , ,
and . Since all users have
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Type I utilities, , and , for all .
It follows that , and

(12)
Using these relations, it can be shown that for all and all

(13)

where

Here, and are the constants in the proposition. By assump-
tion, and , and at least one of these
inequalities is strict. It follows that , i.e., is di-
agonal dominant. From Gersgorin’s Theorem [20, p. 344], the
eigenvalues of satisfy
for all . Combining this with the diagonal dominance, we have

for all . Since is real and symmetric
and has all negative eigenvalues, it must be negative definite as
desired.16

B. Proof of Theorem 2

Consider the variable transformation for all
and . By a similar argument as in the proof of Prop. 3, it

follows that, under the conditions of Prop. 3, Problem (P2) in the
transformed variables is the optimization of a strictly concave
objective over a bounded, convex set. Also, between each power
price update, the DADP algorithm will converge to the unique
fixed point with power allocation , which maximizes the
Lagrangian

over all for which for all and . This speci-
fies the dual function in (11). Since the primal is strictly
concave in the transformed variables, there will be no duality
gap between Problem (P2) and the dual problem D [15, Prop.
5.3.1]. Therefore, given an optimal dual solution to Problem
D, will be the optimal solution to Problem (P2). Also,
since the primal is strictly concave, is continuously dif-
ferentiable everywhere [15, Prop. 6.1.1], and

, i.e., (10) is indeed a gradient projection

16A similar result on the uniqueness of the globally optimal solution to
Problem (P1) is presented in [21] using a generalization of the Poincare-Hopf
Theorem. Also, it is shown in [22] that the objective in Problem (P1) is strictly
concave in yyy if CR (
 ) � 1. However, here we require CR (
 ) � 2 in
order to relate the ADP algorithm to the best response of a supermodular game,
as stated in Corollary 1.

update. All that remains to be shown is that (10) converges to an
optimal dual value .

Let be the Hessian matrix of .
Since is separable across carriers, will be a
block diagonal matrix , where for each

, . From the same argument
as in the Proof of Prop. 3, each matrix will be neg-
ative definite and its eigenvalues will satisfy

, where

Therefore, will be negative definite, and
, where is the gradient ma-

trix of , with
[15, Sec. 6.1]. Note that , where

. And so,
. We use this to prove that is

Lipschitz continuous. Let denote the Euclidean norm of
matrix . Given any and , using Taylor’s Theorem there
exists some such that satisfies

(14)

where

(15)

These relations follow because the Euclidean norm of a real,
symmetric matrix is equal to its spectral radius [19, Prop. A.24],
and the Euclidean norm of the inverse of a symmetric, non-
singular matrix is equal to the reciprocal of the smallest mag-
nitude of an eigenvalue of the matrix [19, Prop. A.25]. Together
(15) with (14) imply that is Lipschitz continuous.

By a similar argument to the above, it can be shown that for
small enough , is nonnegative definite for all

. It follows that is strongly convex [19, Prop. A.41].
Also, since Problem (P2) has a finite maximum, the objective
of Problem D is lower bounded. Combining these observations
with the Lipschitz condition implies that there is a unique dual
optimum , and if the gradient projection algo-
rithm converges to geometrically [19, p. 215].
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