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Random Variables

A random variable (RV) X : Ω→ X is a measurable function from a
probability space (Ω,F ,P) to a measurable space
We focus on discrete random variables, i.e., the support X is finite or
countable

Suffices to consider Ω = [0, 1] to be the standard probability space, i.e.,
[0, 1] with the Lebesgue measure as the probability

X ,Y are (unconditionally) independent, denoted as X ⊥⊥ Y , if for all
x , y ,

P((X ,Y ) = (x , y)) = P(X = x)P(Y = y)

X ,Y are conditionally independent given Z , denoted as X ⊥⊥ Y |Z , if
for all x , y , z ,

P((X ,Y ,Z ) = (x ,y ,z))P(Z = z) = P((X ,Z ) = (x ,z))P((Y ,Z ) = (y ,z))

WLOG assume all random variables are positive-integer-valued, i.e.,
measurable functions X : [0, 1]→ N
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First-order Theory of Random Variables

Consider first-order formulae (with logical symbols ∀, ∃, ∧, ∨, ¬), with
non-logical symbols · ⊥⊥ · (unconditional independence) and · ⊥⊥ ·|·
(conditional independence)
Variables in the formulae are random variables, i.e., measurable
functions [0, 1]→ N

Just the ordinary first-order logic over the domain of measurable
functions [0, 1]→ N, with the usual semantics

Relation with probabilistic team semantics [Durand et al., 2018,
Hannula et al., 2023]:

A probabilistic team X can be regarded as a joint distribution of the
variables
Conditional independence A |=X x ⊥⊥z y means X ⊥⊥ Y |Z as RVs
Different semantics for ∨ and ∀
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Undecidable Problems

Undecidable problems are decision problems that cannot be solved by
any algorithm

E.g., Halting problem [Turing, 1936], Diophantine equations
[Matiyasevich, 1993], Wang tiles [Berger, 1966], word problem of groups
[Novikov, 1955]

We discuss the undecidability of:
Conditional independence implication problem
First-order theory of random variables with probabilistic independence
relation
Conditional information inequalities
Network coding
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Probabilistic Independence Implication Problem

Determine whether a probabilistic independence relation among several
random variables follows from a list of other such relations [Geiger
et al., 1991, Matúš, 1994]
E.g. X ⊥⊥ Y ∧ XY ⊥⊥ Z ⇒ X ⊥⊥ YZ

i.e., ∀X ,Y ,Z . ((X ⊥⊥ Y ∧ XY ⊥⊥ Z ) → X ⊥⊥ YZ )

In the language of probabilistic team semantics:
A |=X (x ⊥⊥ y ∧ xy ⊥⊥ z) ⇒ A |=X x ⊥⊥ yz

Geiger et al. [1991] gave a complete set of axioms:
(Triviality) X ⊥⊥ ∅
(Symmetry) X ⊥⊥ Y ⇒ Y ⊥⊥ X
(Decomposition) X ⊥⊥ YZ ⇒ X ⊥⊥ Y
(Mixing) X ⊥⊥ Y ∧ XY ⊥⊥ Z ⇒ X ⊥⊥ YZ

Complete – all true probabilistic independence implications can be
deduced from these axioms
Hence probabilistic independence implication is decidable
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Conditional Independence Implication Problem

Determine whether a conditional independence relation among several
random variables follows from a list of other such relations [Dawid,
1979, Spohn, 1980, Mouchart and Rolin, 1984]
E.g. X ⊥⊥ Y |Z ∧ X ⊥⊥W |YZ ⇒ X ⊥⊥W |Z
Decidable if all random variables have bounded cardinalities [Geiger
and Meek, 1999, Niepert, 2012]

Follows from the decidability of the real polynomial equations
Hannula et al. [2019] – in EXPSPACE if all RVs are binary

What about the case where the cardinalities of the random variables
are not bounded?
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Semi-graphoid Axioms

Pearl and Paz [1987] proposed the following 4 axioms:
(Symmetry) X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X |Z
(Decomposition) X ⊥⊥ YW |Z ⇒ X ⊥⊥ Y |Z
(Weak union) X ⊥⊥ YW |Z ⇒ X ⊥⊥ Y |ZW
(Contraction) X ⊥⊥ Y |Z ∧ X ⊥⊥W |YZ ⇒ X ⊥⊥ YW |Z

CI implication would be decidable if semi-graphoid axioms are complete
(i.e., all true CI implications can be deduced from these axioms)

Simply apply the axioms repeatedly on every combination of random
variables until we obtain the desired CI statement

For the special case where every CI statement involves all random
variables (saturated CI), semi-graphoid axioms are complete, and
hence decidable [Malvestuto, 1992, Geiger and Pearl, 1993]
Unfortunately, semi-graphoid axioms are incomplete [Studený, 1989]
Is conditional independence implication decidable in general?
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Undecidability of Conditional Independence Implication
Studený [1989]: Semi-graphoid axioms [Pearl and Paz, 1987] are
incomplete

Is it possible to add more axioms to make it complete?
Studený [1992]: No, conditional independence has no finite
axiomization

Does not rule out other kinds of algorithms
Herrmann [1995]: Embedded multivalued database dependency is
undecidable
Li [2021]: CI implication is undecidable if one of the RVs is binary
Li [2022a]: First-order theory of random variables with probabilistic
independence relation is undecidable

Allow any combination of ⊥⊥,∀,∃,∧,∨,¬, not only implication
Li [2022b]: CI implication is undecidable

Uses the ideas of Herrmann [1995]
Kühne and Yashfe [2022]: Another concurrent proof of undecidability
via matroid theory
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First-order Theory of Probabilistic Independence

Consider first-order formulae with only one non-logical symbol ⊥⊥
(probabilistic independence)

Variables are random variables (X ,Y , . . .)
How to define condition that X is constant, written as X ι

= ∅?
X ι

= ∅ ⇔ X ⊥⊥ X

How to define relation that X is a function of Y , written as X
ι
≤ Y ?

X
ι
≤ Y ⇔ ∀U. (U ⊥⊥ Y → U ⊥⊥ X )

Write X ι
= Y ⇔ X

ι
≤ Y ∧ Y

ι
≤ X and

X
ι
< Y ⇔ X

ι
≤ Y ∧ ¬(Y

ι
≤ X )

How to define the joint random variable of X ,Y , written as XY ?
Z ι

= XY ⇔ X
ι
≤ Z ∧ Y

ι
≤ Z ∧ ∀U.

(
(X

ι
≤ U ∧ Y

ι
≤ U) → Z

ι
≤ U

)
How to define conditional independence, written as X ⊥⊥ Y |Z ?

X ⊥⊥ Y |Z ⇔ ∃U.U ⊥⊥ XZ ∧ Y
ι
≤ ZU
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Cardinality

Check X is (at most) a binary random variable (i.e., |X | ≤ 2):

card≤2(X ) ⇔ ∀U
(
U

ι
< X → U ι

= ∅
)

Any random variable with strictly less information than X is degenerate
The condition that |X | ≤ n:

card≤n(X ) ⇔ ∀U
(
U

ι
< X → card≤n−1(U)

)
card≤1(X ) ⇔ (X ι

= ∅)

Define
card=n(X ) ⇔ card≤n(X ) ∧ ¬card≤n−1(X )

card≥n(X ) ⇔ ¬card≤n−1(X )
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Uniformity

If X ,Y ,Z are discrete random variables such that any one of them is a
function of the other two, and they are pairwise independent, then
they are all uniformly distributed over their supports, which have the
same size [Zhang and Yeung, 1997]
The condition that X is uniformly distributed over its support:

unif(X ) ⇔ ∃Y ,Z . triple(X ,Y ,Z ),

where

triple(X ,Y ,Z ) ⇔X
ι
≤ YZ ∧ Y

ι
≤ XZ ∧ Z

ι
≤ XY

∧ X ⊥⊥ Y ∧ X ⊥⊥ Z ∧ Y ⊥⊥ Z

Satisfied when X ,Y ∼ Unif{0, . . . , k − 1}, Z = X + Y mod k
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Representation of Integers
Represent k ∈ Z>0 as a uniform random variable X with |X | = k
Equality. Formula for checking |X | = |Y| for uniform X ,Y [Li, 2021]:

ueq(X ,Y ) ⇔ ∃U1,U2,U3.

triple(X ,U1,U2) ∧ triple(Y ,U1,U3)

To check for equality against constants:
ueqn(X ) ⇔ unif(X ) ∧ card=n(X )

Multiplication. Formula for |X ||Y| = |Z| for uniform X ,Y ,Z :
uprod(X ,Y ,Z ) ⇔ ∃X̃ , Ỹ .

(
ueq(X , X̃ ) ∧ ueq(Y , Ỹ )

∧ X̃ ⊥⊥ Ỹ ∧ X̃ Ỹ ι
= Z

)
Comparison. Formula for |X | ≤ |Y| for uniform X ,Y [Li, 2021]:

ule(X ,Y ) ⇔ ∃G , Ỹ .
(
uprod(X ,Y ,G) ∧ ueq(Y , Ỹ ) ∧ G

ι
≤ Y Ỹ

)
“⇐”: G

ι
≤ Y Ỹ ⇒ |G| ≤ |Y||Ỹ| ⇒ |X ||Y| ≤ |Y|2

“⇒”: X ∼ Unif{0, . . . , a − 1}, Y ∼ Unif{0, . . . , b − 1}, G = (X ,Y ),
Ỹ = X + Y mod b
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Addition between Integers
To define addition, the main idea is that if Z is uniform with
|Z| = |X |+ |Y|, then we can partition Z into two sets with sizes
|X |, |Y| respectively

If U ∈ {0, 1} is the indicator of whether Z is in the first set, then
U ∼ Bern(|X |/(|X |+ |Y|))

The following checks that X ,Y ,Z are uniform, |Z| = |X |+ |Y|, and
U ∼ Bern(|X |/(|X |+ |Y|)):
frac(X ,Y ,Z ,U)⇔

(
ueq2(U) ∧ uprod(X ,U,Z) ∧ uprod(Y ,U,Z)

)
∨ ∃X̃ , Ỹ .

(
ueq(X , X̃) ∧ ueq(Y , Ỹ ) ∧ unif(Z)

∧ card=2(U) ∧ ¬unif(U) ∧ U
ι

≤ Z ∧ X̃ ⊥⊥ Ỹ ⊥⊥ U ∧ Z
ι

≤ X̃ Ỹ U

∧ ∀V .
(
smi(Z ,V ) → smi(X̃U,V ) ∨ smi(Ỹ U,V )

))
where

smi(X ,Y )⇔ (X ι
= Y ι

= ∅) ∨
(
Y

ι

≤ X ∧ card=2(Y )

∧ ∀U.
(
U

ι

≤ X ∧ card=4(U) → ¬∃V .(card≤2(V ) ∧ U
ι

≤ YV )
))

We then have usum(X ,Y ,Z )⇔ ∃U.frac(X ,Y ,Z ,U)
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Undecidability of FOTPI

Theorem (Li [2022a])
The first-order theory of probabilistic independence is undecidable, i.e., no
algorithm can determine whether a statement in FOTPI holds

Direct consequence of the fact that true arithmetic (over natural
numbers) is interpretable in FOTPI, and that true arithmetic is
undecidable [Tarski, 1933]
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Undecidability of CI when one RV is Binary [Li, 2021]
It is undecidable to determine whether

|X1| ≤ 2 ∧
k∧

i=1
XAi ⊥⊥ XBi |XCi ⇒ XA0 ⊥⊥ XB0 |XC0

Use unif(X1) to force X1 to be uniform, and make independent copies
Use comparison to force any RV to have any cardinality

E.g. a = 5 is the only solution to 29 ≤ a4 ≤ 210

Reduction from periodic tiling problem [Gurevich and Koryakov, 1972]:
deciding whether a set of square tiles can tile a torus
Use uniform RVs to represent coordinates and colors

⇒
(Y1, Y2)

(X1, X2)

1, 1 1, 2 2, 2 2, 1 3, 3 3, 4 4, 4 4, 5 5, 5 5, 3
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2, 2

2, 3

3, 3

3, 1

4

1 2

3

4

1 2

3

4

1 2

3 4

1 2

3

4

1 2

3

4

1 2

3

4

1 2

3 4

1 2

3 4

1 2

3

4

1 2
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1 2
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1 2

3

4

1 2

3 4

1 2

3 4

1 2

3
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Undecidability of CI Implication [Li, 2022b]

It is undecidable to determine whether
k∧

i=1
XAi ⊥⊥ XBi |XCi ⇒ XA0 ⊥⊥ XB0 |XC0

for given (Ai )i , (Bi )i , (Ci )i

Use the strategy in undecidability of embedded multivalued
dependency [Herrmann, 1995]
Show undecidability by reduction from uniform word problem for finite
monoids [Gurevich, 1966]
Problem – there is no algebraic structure in the RVs Xi !
Have to impose some algebraic structure using conditional
independence
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Undecidability of CI Implication [Li, 2022b]
RVs A1,A2,A3,A12,A13,A23,A123
Impose the “Fano-non-Fano condition”:

For any three RVs on same solid line, any one is a function of other two
Any three RVs not on same solid/dotted line are independent

1

2 3

12 13

23

123

Lemma
Fano-non-Fano condition holds iff A1,A2,A3 are uniform elements in
abelian group, and A12 = A1 + A2, A13 = A1 + A3, A23 = A2 + A3,
A123 = A1 + A2 + A3, up to relabeling

Equivalent form used in [Herrmann, 1995] for undecidability of EMVD
Appeared in [Dougherty et al., 2006a] to show unachievability of
network coding capacity 17 / 35



Fano-non-Fano Condition
Lemma
Fano-non-Fano condition holds iff A1,A2,A3 are 1

2 3

12 13

23

123

uniform elements in abelian group, A12 = A1 + A2,
A13 = A1 + A3, A23 = A2 + A3, A123 = A1 + A2 + A3,
up to relabeling

Ak is a function of Ai ,Aj , let this function be f i ,j
k (ai , aj)

Bijection between independent (Ai ,Aj ,Ak) and (Ai )i , let function from
(Ai ,Aj ,Ak) to Al be f i ,j,k

l (ai , aj , ak)

Lemma
We have

f i ,j
k (a, b) = f j,i

k (b, a), and f i ,j,k
l (a, b, c) = f j,k,i

l (b, c, a)

f k,j
i (f i ,j

k (a, b), b) = a
f i ,j,k
l (a, b, c) = f m,k

l (f i ,j
m (a, b), c)
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Fano-non-Fano Condition

Lemma
Fano-non-Fano condition holds iff A1,A2,A3 are 1

2 3

12 13

23

123

uniform elements in abelian group, A12 = A1 + A2,
A13 = A1 + A3, A23 = A2 + A3, A123 = A1 + A2 + A3,
up to relabeling

Ak is a function of Ai ,Aj , let this function be f i ,j
k (ai , aj)

Bijection between independent (Ai ,Aj ,Ak) and (Ai )i , let function from
(Ai ,Aj ,Ak) to Al be f i ,j,k

l (ai , aj , ak)

f 1,2
12 = f 2,1

12 = f 1,3
13 = f 3,1

13 = f 2,3
23 = f 3,2

23 = f 1,23
123 = f 2,13

123 = f 3,12
123 =

f 23,1
123 = f 13,2

123 = f 12,3
123

Define abelian group over A by a + b := f 1,2
12 (a, b), −a := f 1,12

2 (a, 0)
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Undecidability of CI Implication
Strategy proposed by Dougherty [2009] – reduction from the identity
problem for finite groups

Identity – equality that holds for all values of the variables, e.g.,
∀x , y . xy = yx (iff group is abelian)
Identity problem – whether a list of identities implies another identity

l∧
i=1

(
∀x1..k .Pi (x1..k)

)
→ ∀x1..k .P0(x1..k)

Uniform RVs act as the universally-quantified variables
However, identity problem for finite groups is not known to be decidable
or undecidable [Albert et al., 1992]!

Herrmann [1995], Li [2022b]: instead use uniform word problem for
finite monoids [Gurevich, 1966]

Whether a list of equalities implies another equality

∀x1..k .
( l∧

i=1
Pi (x1..k) → P0(x1..k)

)
Need to use uniform RVs to represent specific monoid elements
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Word Problem and Endomorphism Monoid

Uniform word problem for finite monoids [Gurevich, 1966] – Given
ai , bi , ci ∈ {1, . . . , k} for i = 0, . . . , l , determine whether the
implication

l∧
i=1

(xai · xbi = xci ) → (xa0 = xc0)

holds for all finite monoidsM and all k-tuples x1, . . . , xk ∈M
Consider endomorphism monoid of abelian group

Homomorphism g : A → B between abelian groups A,B is a function
satisfying g(a + b) = g(a) + g(b)
Endomorphism in A is a homomorphism g : A → A
The endomorphism monoid End(A) is the set of endomorphisms in A,
equipped with the operation g · h : A → A where g · h(a) = g(h(a))

Kurosh [1963] – For any finite monoid, there exists embedding from
that monoid into End(A) for some finite abelian group A

No loss of generality of considering only endomorphism monoids
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Representing Endomorphism by RV
A1,A2,A3 are uniform elements in abelian group A, and
A12 = A1 + A2, A13 = A1 + A3, A23 = A2 + A3, A123 = A1 + A2 + A3
Represent an endomorphism g : A → A by U = A1 − g(A2)

Check whether U corresponds to an endomorphism [Herrmann, 1995,
Li, 2023]:

end1,2((Ai )i ,U) ⇔ ∃V ,W : FanoNonFano((Ai )i ) ∧ ueq(U,A1)

∧ ueq(V ,A1) ∧ ueq(W ,A1) ∧ U ι
= A1|A2

∧ V ι
= A1|A23 ∧ U ι

= V |A3 ∧ W ι
= A13|A2 ∧ U ι

= W |A3,

where X ι
= Y |Z ⇔ X

ι
≤ ZY ∧ Y

ι
≤ ZX , i.e., if we are given Z , then

X has the same information as Y , and ueq(X ,Y ) checks whether
X ,Y are both uniform and have the same cardinality

“⇒”: V = A1 − g(A2 + A3), W = A1 − g(A2) + A3
Representing composition – if end1,2((Ai )i ,U1), end2,3((Ai )i ,U2),
end1,3((Ai )i ,U3), we have U3

ι
≤ U1U2 iff g3 = g1 · g2

“⇐”: U3 = A1 − g1 · g2(A3) = A1 − g1(A2) + g1(A2 − g2(A3))
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Representing Endomorphism by RV

A1,A2,A3 are uniform elements in abelian group A, and
A12 = A1 + A2, A13 = A1 + A3, A23 = A2 + A3, A123 = A1 + A2 + A3

Represent an endomorphism g : A → A by U = A1 − g(A2)

Check whether U corresponds to an endomorphism [Herrmann, 1995,
Li, 2023]: end1,2((Ai )i∈E ,U)

Representing composition – if end1,2((Ai )i ,U1), end2,3((Ai )i ,U2),
end1,3((Ai )i ,U3), we have U3

ι
≤ U1U2 iff g3 = g1 · g2

Need to convert end2,3, end1,3 to end1,2

Convert endi ,j for different i , j :

conv1,2
1,3((Ai )i ,U,V ) ⇔ ∃W : end1,2((Ai )i ,U)

∧ end1,3((Ai )i ,V ) ∧ end2,3((Ai )i ,W )

∧ A13
ι
≤ A12W ∧ V

ι
≤ UW
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Representing Endomorphism by RV
A1,A2,A3 are uniform elements in abelian group A, and
A12 = A1 + A2, A13 = A1 + A3, A23 = A2 + A3, A123 = A1 + A2 + A3

Represent an endomorphism g : A → A by U = A1 − g(A2)

Check whether U corresponds to an endomorphism [Herrmann, 1995,
Li, 2023]: end1,2((Ai )i∈E ,U)

Representing composition – if end1,2((Ai )i ,U1), end2,3((Ai )i ,U2),
end1,3((Ai )i ,U3), we have U3

ι
≤ U1U2 iff g3 = g1 · g2

Convert endi ,j for different i , j : conv1,2
1,3((Ai )i ,U,V )

Check whether U1,U2,U3 with end1,2((Ai )i ,Uj) satisfy g3 = g1 · g2:

comp1,2((Ai )i ,U1,U2,U3) ⇔

∃V1,V2 :
3∧

j=1
end1,2((Ai )i ,Uj) ∧ conv1,2

1,3((Ai )i ,U1,V1)

∧ conv1,2
3,2((Ai )i ,U2,V2) ∧ U3

ι
≤ V1V2
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Undecidability of CI Implication [Li, 2022b]
Uniform word problem for finite monoids [Gurevich, 1966]

l∧
i=1

(xai · xbi = xci ) → (xa0 = xc0)

holds for all finite monoidM and all k-tuples x1, . . . , xk ∈M
is true iff...

( k∧
j=1

end1,2((Ai )i ,Uj) ∧
l∧

j=1
comp1,2((Ai )i ,Uaj ,Ubj ,Ucj )

)
→ (Ua0

ι
≤ Uc0)

holds for all finite random variables (Ai )i , U1, . . . ,Uk

Since uniform word problem for finite monoids is undecidable, CI
implication is undecidable as well
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Related Problems: Linear Information Inequalities

Sequence of random variables Xn = (X1, . . . ,Xn)

Entropic vector [Zhang and Yeung, 1997] h(Xn) = h ∈ R2n−1, where
entries of h are indexed by nonempty subsets of [n], and hS := H(XS)

Entropic region Γ∗n :=
⋃

pXn{h(Xn)} [Zhang and Yeung, 1997]
Non-Shannon inequalities (cannot be deduced from I(X ;Y |Z ) ≥ 0)
were given in [Zhang and Yeung, 1998, Makarychev et al., 2002,
Dougherty et al., 2006b]
Matúš [2007] showed that Γ∗n is not polyhedral
Conditional information inequalities: whether a linear inequality follows
from a list of inequalities

Can encode conditional independence implication, and hence
undecidable [Li, 2022b]

Decidability of unconditional information inequalities is open
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Related Problems: Network Coding
X Y

X

X

Y

Y

X, Y X, Y

X ⊕ Y

X ⊕ Y X ⊕ Y

Network coding [Ahlswede et al., 2000, Li et al., 2003]
Network of nodes connected by noiseless links with same capacity
Each source node has a message, and each destination node desires a
set of messages
Each node is capable of performing coding, not only routing

If there is one source and multiple destinations, the capacity (number
of message bits per link capacity) is given by the maximum network
flow [Ahlswede et al., 2000]

Single-source multicast network coding is decidable
Significantly harder if there are multiple sources
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Related Problems: Network Coding
X Y

X

X

Y

Y

X, Y X, Y

X ⊕ Y

X ⊕ Y X ⊕ Y

NP-hardness results: Lehman [2005], Langberg et al. [2006], Langberg
and Sprintson [2011]
Is network coding decidable?

Given a network, if the message size and the link capacity are the same,
does there exist a valid coding scheme?
Partial result: whether a network admits a vector linear network code is
undecidable [Kühne and Yashfe, 2019]
Shown to be undecidable in [Li, 2022b]

Decidability of whether the capacity can be approached is unknown
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