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Asymptotic Channel Coding
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Message M € {0,1}"R, R is the communication rate
Encoder sees M, outputs Xi,...,X,, sends through noisy channel
Decoder sees Yi,...,Y,, outputs M, wants M = M with high prob.

Channel coding theorem [Shannon, 1948]: As n — oo, maximum
communication rate is C = maxp, I(X;Y)

But we never have n — oo in practice!
e Many applications (e.g. loT) involve sending short packets
e For large n, decoder must wait for a long delay

Finite-blocklength analysis — study the case where n is finite



One-shot Channel Coding

channel channel recovered
message input output message

M X channel Y ' M
—_— _— — —_—
3 o

@ One-shot — the extreme case n = 1 where only one X is sent
o Point-to-point: [Feinstein, 1954, Shannon, 1957, Hayashi, 2009,

Polyanskiy et al., 2010]
o Multiuser: [Verdd, 2012, Yassaee et al., 2013b, Watanabe et al., 2015]

@ Misconception 1: One-shot is too restrictive since n must be 1!
e Wrong! One-shot is actualy the most general setting since we can
substitute X to be a sequence, an image, a graph, or any object
e Good one-shot results should readily subsume asymptotic
(first/second-order) results

@ Misconception 2: One-shot results are troublesome to prove!

o Wrong! One-shot result can sometimes be just as simple (or even
simpler) to prove as asymptotic results!



What is a Coding Scheme?

channel channel recovered
message input output message
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e Conventional view: A coding scheme is a pair of functions (f, g):

e Encoding function f maps M to X = f(M)
o Decoding function g maps Y to M = g(Y)

@ Alternative view: A coding scheme is a mechanism that can produce
the pair (M, X), when provided partial knowledge about (M, X)
o Encoder has partial knowledge on (M, X) since it knows M, and uses
encoding function f to gain full knowledge on (M, X)
e Decoder has partial knowledge on (M, X) since it knows Y (depends on
X), and uses decoding function g to gain full knowledge on M, and
hence X

@ The alternative view provides a simple and unified way to construct
coding schemes
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| know everything about message M and channel input X,
but | won't share my knowledge unless you demonstrate
that you already have some partial knowedge

N

Magic box!




I know the message M Okay here are the message M
Can you tell me everything? and channel input X
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| know something about channel input X
based on the channel output Y

Can you tell me what you've told
to the encoder?

I'm more knowledgeable than encoder
about message M and channel input X
(because the channel is clean enough)

I'm the rightful owner of this information!

No. The encoder’s secret
is safe with me

N

Magic box!

Okay. Here are the message M
and channel input X

N

Magic box!




What is this magic box? (Informal)

| know everything about message M and channel input X,
but | won't share my knowledge unless you demonstrate
that you already have some partial knowedge

N

Magic box!

@ Query: Input partial knowledge, output full knowledge

o Encoder has partial knowledge on (M, X) since it only knows M
o Decoder has partial knowledge on (M, X) as it knows Y (depends on X)

o Guarantee: If box is queried twice, two outputs will likely be the same
if second partial knowledge is better than first partial knowledge
o Encoder’s partial knowledge on (M, X) is better if message M is longer
o Decoder’s partial knowledge on (M, X) is better if Y is more dependent
on X, i.e., channel capacity is larger
o Decoder's partial knowledge better than encoder’s partial knowledge
<= Channel capacity > Length of M



What is this magic box? (Formal)

Q---» Box U 7~>(~]Q~Q

@ A box about the random variable U can output samples of U
@ Query: Input distribution @, output a sample DQ ~ Q@

o @ represents the party’s partial knowledge on U

e Box cannot just generate a fresh sample following @ for each query
e Want box to have “memory”

o Guarantee: For distributions P, Q,
~ .|~ dP .
P (UQ # UP‘ UP) < E(UP)

) measures how good the first partial knowdge P is about Up
p) small means second partial knowledge Q better than P



What really is this magic box?

Discrete case — Exponential Functional Representation

e Studied in Li and El Gamal [2018], Li and Anantharam [2021]
o Related to the Gumbel-max trick [Huijben et al., 2022]

o Assume U € {1,..., k} is discrete
@ Box contains 71, ..., Zk 9 Exp(1)
o Z1,..., 2 generated at the time of creation of the box

Input distribution P, output

Up = arg min

P()

Property of exponential RVs: Up ~ P

Poisson matching lemma [Li and Anantharam, 2021]:

P(Up)
Q(

P(Uq # Up | Up) <

(=g}

P



Poisson Matching Lemma [Li and Anantharam, 2021]

For finite discrete distributions P, Q,

P(Uq # Up| Up) < QTr)

e Fact 1: If T; ~ Exp(~;) indep. across i =1,..., k, then
min; T; ~ Exp(}_;~i) indep. of arg min; T; with
P(argmin; T; = i*) = %
o Let W, :=2,/P(u) ~ Exp(P(u))
o Up :=argmin, W, ~ P indep. of Wy, ~ Exp(>_, P(u) = 1) (Fact 1)

@ Conditional on the event A: “Up =u*, Wy =w':
e Same as the event min, W, = W, = w
e The conditional distribution of W, (u # u*) given A is Exp(P(u)) + w
by memoryless property of Exp since we know W, > w
o Hence conditional on Up = u*, we have W, — W, follows Exp(P(u))
indep. across u # u*, indep. of W+ ~ Exp(1)



Poisson Matching Lemma [Li and Anantharam, 2021]

e Conditional on Up = u*, we have W, — W, follows Exp(P(u)) indep.
across u # u*, indep. of Wy« ~ Exp(1)

(W — Wy ) P(u) Wy P(u™) ok
PR T e T ey [P )
- Q(u)/P(u") ]
= Q) P(0) + S Q) )
QWP
Qu)/P(e) + 1= Qo)
51 Pl Q.E.D.

- Q)



What really is this magic box?
General case — Poisson Functional Representation

@ Generalizes the exponential functional representation to general
distributions (not only discrete)
o Studied in Li and El Gamal [2018], Li and Anantharam [2021]
e Box: {U;, Ti}ien points of Poisson process, intensity measure i x AR
@ Input distribution P, output -

P _ \-1 . _
K= argminT,-(Cd!‘u(U,-)> , Up == Uk

1

@ Mapping theorem: Up ~ P



Guarantee — Poisson Matching Lemma

U, T7
T T .( )

Q .(U;. T3)
(Us, T3)
)

(U, T5)
[ )

U

@ Two distributions P, Q. Points selected are Up, DQ resp.

@ Poisson matching lemma [Li and Anantharam, 2021]:

(for discrete P, Q)

o Refer to [Li and Anantharam, 2021] for proof



. enough peeking into the box. Now let's close it

Q---» BoxU |--»Up~Q

@ We only use the box as a black box
o Forget about exponential RVs, Poisson processes, etc.

@ Query: Input distribution @, output a sample UQ ~ Q
o Unifies both encoder and decoder

o Guarantee: For distributions P, Q,
. o~ dP .
P (UQ # UP‘ UP> < @(UP)

e Unifies both packing and covering lemmas



One-shot Channel Coding

Box (X, M)

X Y .
me{l,..,L}ﬁ Enc Pyx Dec %»M

@ Box about (X, M)
(i.e., the info M = m), gets X

@ Encoder queries using Px X 0m
@ Decoder queries using Px|y x Py (i.e., the info X ~ Py y), gets M

P(M # M) =E[P(M# MM, X,Y)]
. dPX X (5/\// o . —ix:v(X;Y)
ge{m.n{dpxw(w)w,l}]_E[m.n{u xn, 11]

where ¢x.y is the information density:

Plx.y) (for discrete X, Y)

o) =108 g o) = B



One-shot Channel Coding

Box (X, M)
L L
I ! ~
M=m' X X ~Pyy! N
| |
LY ¥ v LY A
me{l,...,L}» Enc Pyx Dec —= M

o P(M # M) < E[min{L2-xv(X:Y) 1}]
@ The box is random
o Exists fixed box such that the error bound is satisfied

@ Recovers (slightly weaker) dependence testing bound [Polyanskiy et al.,
2010] (also see [Hayashi, 2009])
@ Recovers asymptotic result: L+ 2", X+ X"=(Xy,...,X,), Y+ Y7,
n
txmyn(X" Y™ = ZLx;y(X,'; Y:) =~ nl(X;Y) (law of large numbers)
i=1
@ Unlike stochastic likelihood decoder [Yassaee et al., 2013a], here
encoder and decoder are deterministic once the box is fixed



| know everything about message M and channel input X,
but | won't share my knowledge unless you demonstrate
that you already have some partial knowedge

N

Magic box!




| know M Okay here are (X, M)

@ :

Magic box!

0 X channel Y '
_— —

| believe X ~ Pxy(-]Y) Here are (X, M)

(may not be same as (X, M))

Magic box!

4
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Channels with State Information at the Encoder

—

l

Me{l,...,L} =+ Enc Pyixs Dec —» M

Studied in [Gel'fand and Pinsker, 1980, Heegard and El Gamal, 1983,
Costa, 1983]

Message M ~ Unif[1 : L], state S ~ Ps, channel Py|x s
Encoder produces X using M, S

Decoder recovers M using Y
Gel'fand and Pinsker [1980]: Asymptotic capacity

C= sup (I(U;Y)—1(U;95))

Puyis, x(u,s)



Channels with State Information at the Encoder

Box (U, M)
L L
M=m' | ‘ .
| U U~ Pyy! M
U ~ PU\S ! L U\Y: L
‘ X = (U, ) Y [ )
m— Enc Pyixs Dec +>M
? X
S

@ Box about (U, M), auxiliary RV U ~ Pys
@ Encoder queries PU‘S X 0m (i.e., the info U ~ PU‘S, M = m), gets U,

sends X = x(U, S) A
o Decoder queries Pyjy x Py (i.e., the info U ~ Pyy), gets M
P(M#M) =E[P(M# M|M,S,U,Y)]
. dPU‘5(|5) X (SM . . .
<E 1\ =E Lotus(UiS) =ty (UiY) 1
= [m'” {dPU|y(-Y) X Py’ H [m'”{ ’ H
@ Implies best known second order result [Scarlett, 2015] (but much

shorter proof)



Lossless Source Coding

Box (X, M)

A
M M

T
%
A J

M N
x —= Enc Dec =X

Encode X ~ Px to M € {1,...,L}. Decoder gets X [Shannon, 1948]
Box about (X, M), let Py = Unif{1,...,L}

Encoder queries using dx x Py (i.e., the info X = x), gets M
Decoder queries using Px x dy (i.e., the info M), gets X

< . d5xXPM
< st
P(X#X)_E[mln{dPXX(SM,IH

= E[min{L™ 12X 1}]

Asymptotic: X = X", L =2"R P, — 0if R > H(X)



Lossy Source Coding with Side Information at the Decoder

Y

T Me{l,... L}
X— Enc Dec 7

Studied in [Wyner and Ziv, 1976]

Source X ~ Px, message M € [1 : L], side information Y|X ~ Py/x
Encoder produces M using X

Decoder recovers Z using M, Y

Prob. of excess distortion P{d(X,Z) > D}
Wyner and Ziv [1976] (asymptotic):

e 6 6 o o o

C= (I(U; X) — I(U; Y))

inf
Pyjx, z(u,y):E[d(X,Z)]<D



Lossy Source Coding with Side Information at the Decoder

Box (U, M)
L L
| |
~ Pl Mg
U UMy gyt Y
I 4 4
M . .
i(» Enc Dec »Z=2(U,Y)

@ Box about (U, M), auxiliary RV U ~ Py x
@ Encoder queries Py x x Py (i.e., the info U ~ PU|X), gets U, M

@ Decoder queries Pyy x du (i.e., the info U ~ Py)y and M), gets U,

outputs Z = z(U, Y)
P(d(X,Z)>D) <1—P(d(X,Z) < Dand U = 0)
—E [1 —1{d(X,Z) <D}P(U= U|M, X, Y, U)]
< E{l —1{d(X, Z) < D} max{l - %, OH

(let Z = (U, Y))

—E [1 —1{d(X, Z) <D} max{1 — L*12LU:X<U;X>*LU:Y(U;Y),o}] .



Asymptotic vs Conventional One-shot vs Our Approach

Conventional

Strong Poisson
typicality one-shot matching lemma
P packing/covering
Finite blocklength Maybe Yes ‘ Yes
results? (sometimes stronger)
o . Simple
licit I Compl . .
Simplicity Sl ompiex (sometimes simpler)
General alphabet Only discrete Disc.rete / Disc‘rete /
for X, Y? continuous continuous




Conclusion

@ A new approach to proving coding theorems using Poisson functional
representation and Poisson matching lemma

@ Sharp one-shot / second order bounds
@ Very short proofs

@ Can also be applied to multiple access channels, broadcast channels,
etc.
o Refer to the paper for details



o Multiuser settings...



Multiple Access Channel

X

Mye{l,....Li} » FEnc 1 L

PY‘XLX‘Z

Dec

-\, M,

]uQe{lv"~7L2}4> EnC 2

X

Messages M; ~ Unif[1 : L1], My ~ Unif[1 : Ly], channel Py x, %

Encoder i produces X; using M, i=1,2

Decoder recovers Ml, My using Y
Capacity region [Ahlswede, 1971, Liao, 1972, Ahlswede, 1974]

(asymptotic): Convex closure of

Rl < /(Xl; Y|X2)
R2 < /(XQ; Y|X1)
Ri+ R < /(Xl,Xz; Y)

for any Px,, Px,



Multiple Access Channel

Box (Xl, Ml)

Pyix, x, Dec (> J\A/Il, M,

Box (X2, Ms)

@ Two boxes: (Xl, Ml) and ()(27 M2)

o Decoder queries Px,|y X Py, to box (X1, My), gets )A<1, My, queries
PX2|Y7X1(-]Y,)A(1) X Pp, to box (X2, Ma), gets M,

o P, < E[min{L; 2% (X5Y) 1}] 4 E[min{Ly2%%ev1x (2Y1X0) 11

@ Recovers corner point Ry = I(X1;Y), R2 = I(X2; Y|X1) of capacity
region




Broadcast Channel

Y

J—r Dec 1 » M,
My ef{l,... L} X

A’jze{],‘..,Lg} ne j)hYg‘X
—|_> D(f ]\;2
], C 2 > 1

Messages My ~ Unif[1 : L1], Mz ~ Unif[l : Lo, channel Py, v, x
Encoder produces X using My, M»

Decoder i recovers I\A/I,- using Y;, i=1,2

Inner bound [Marton, 1979] (asymptotic):

Rl < /(Ul; Yl)
R2 < /(UQ; Y2)
Ri+ Ra < I(U1; Y1) + I(Us; Ya2) — 1(Uy; Us)

for any Py, u,, x(u1, u2)



Broadcast Channel

Box (Ulv Ml)
L —
: ! Ul ~ PUI‘Yll ‘]\/1
A/Il = mii : Ul } v
2 Yial Dec 1 w1
i 1
X =1z(U1,Us)
mi, Mo __pl Enc Pyl VX
A 1 Dec 2 »M.
M, = mQ: ! Y, 2
UQ ~ PUz\Ul‘ : U2
|

Uz ~ PUQ‘YQ:' "M,

Box (U27 MZ)

P. < E[min{L; 2t (UiM) 11
+ E[min{L22LU2;Yz(U2?Y2)*LU1;U2(U1;Uz)7 1}]



Broadcast Channel

‘ Box (Uy, My) ‘

Pe < Efmin{Li2 (U, 13]
+E[min{Ly2tt2v2(V2iY2) oy (Uiile) 1Y)

‘ Box (U, Ma) ‘

@ Recovers corner point Ry = I(U1; Y1), Ro = I(Uz; Y2) — I(Us; Uz) in
Marton's inner bound

@ To obtain the whole Marton’s inner bound:
e Time sharing — poor finite-blocklength result

e Have Box (U;, My) generate a list of U;'s instead, i.e., Box
(U1,17 ERE Ul,la Ml)
° Query U, ~ /71 Zi 'DUz\Ul("UlJ) for Box (Uz, Mz)
o Generalize the box to give a list of probable points

e Modify the box to give partial information?



Generalized Poisson Matching Lemma

T,

° {U,-, T:}i points of a Poisson process with intensity measure p x ARsg

@ For distribution P, reorder indices ip j such that

()’

are sorted in ascending order, and let Up(j) :=

ipj

o Up(1), Up(2). Up(3) X P



Generalized Poisson Matching Lemma

T,

g e >

@ For distributions P, @, define
TPHQ(J) = min{k eN: I'ka = I'pJ}

° Up = UQ =4 TPHQ(l) =1
o Generalized Poisson matching lemma [Li and Anantharam, 2021]:

€ [To100) | Or)] <155 (0p0N) + 1



The Generalized Box

Q---» BoxU --»Uy(1),0p(2),...%
e Query: Input distribution @, output Ug(1), Ug(2), ... Q
o Guarantee: For distributions P, @, j € N,
. ~ o] g dP . .
E [min{k: Ua(k) = Up(i)} | Dp(i)] < (Dp(i)) +1

e Implies the guarantee of single-output box for j =1

@ Useful for multiple access channel, broadcast channel, distributed lossy
source coding, channel resolvability and channel simulation



Conclusion

@ A new approach to proving coding theorems

e Using Poisson functional representation and Poisson matching lemma
e Sharp one-shot / second order bounds
o Very short proofs

o Future work

o Is there a simpler way to apply this method to multiuser settings?
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