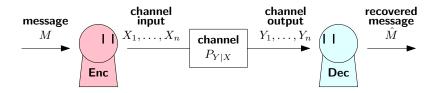
One-shot Coding using Poisson Processes

Cheuk Ting Li

Dept. of Information Engineering, Chinese University of Hong Kong Email: ctli@ie.cuhk.edu.hk

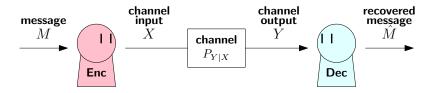
Based on joint work with Prof. Venkat Anantharam (UC Berkeley):
C. T. Li and V. Anantharam, "A Unified Framework for
One-Shot Achievability via the Poisson Matching Lemma,"
IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2624-2651, 2021.

Asymptotic Channel Coding



- Message $M \in \{0,1\}^{nR}$, R is the communication rate
- Encoder sees M, outputs X_1, \ldots, X_n , sends through noisy channel
- Decoder sees Y_1, \ldots, Y_n , outputs \hat{M} , wants $\hat{M} = M$ with high prob.
- Channel coding theorem [Shannon, 1948]: As $n \to \infty$, maximum communication rate is $C = \max_{p_X} I(X; Y)$
- But we never have $n \to \infty$ in practice!
 - Many applications (e.g. IoT) involve sending short packets
 - For large *n*, decoder must wait for a long delay
- Finite-blocklength analysis study the case where n is finite

One-shot Channel Coding



• One-shot – the extreme case n = 1 where only one X is sent

- Point-to-point: [Feinstein, 1954, Shannon, 1957, Hayashi, 2009, Polyanskiy et al., 2010]
- Multiuser: [Verdú, 2012, Yassaee et al., 2013b, Watanabe et al., 2015]

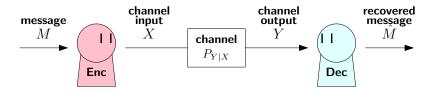
• Misconception 1: One-shot is too restrictive since *n* must be 1!

- Wrong! One-shot is actualy the **most general** setting since we can substitute X to be a sequence, an image, a graph, or any object
- Good one-shot results should readily subsume asymptotic (first/second-order) results

• Misconception 2: One-shot results are troublesome to prove!

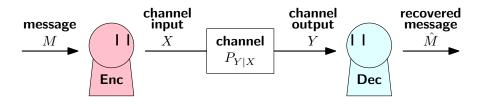
• Wrong! One-shot result can sometimes be just as simple (or even simpler) to prove as asymptotic results!

What is a Coding Scheme?

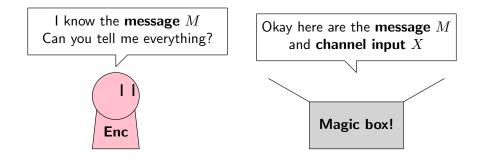


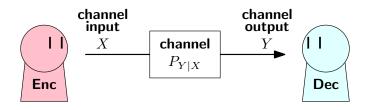
• **Conventional view:** A coding scheme is a pair of functions (f, g):

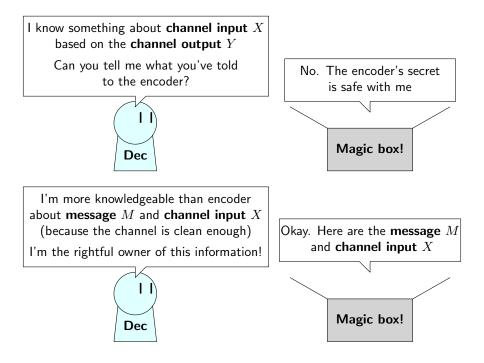
- Encoding function f maps M to X = f(M)
- Decoding function g maps Y to $\hat{M} = g(Y)$
- Alternative view: A coding scheme is a mechanism that can produce the pair (M, X), when provided partial knowledge about (M, X)
 - Encoder has partial knowledge on (M, X) since it knows M, and uses encoding function f to gain full knowledge on (M, X)
 - Decoder has partial knowledge on (M, X) since it knows Y (depends on X), and uses decoding function g to gain full knowledge on M, and hence X
- The alternative view provides a simple and unified way to construct coding schemes



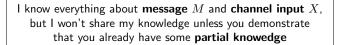
I know everything about **message** M and **channel input** X, but I won't share my knowledge unless you demonstrate that you already have some **partial knowedge**







What is this magic box? (Informal)



Magic box!

- Encoder has partial knowledge on (M, X) since it only knows M
- Decoder has partial knowledge on (M, X) as it knows Y (depends on X)
- **Guarantee:** If box is queried twice, two outputs will likely be the same if second partial knowledge is better than first partial knowledge
 - Encoder's partial knowledge on (M, X) is better if message M is longer
 - Decoder's partial knowledge on (M, X) is better if Y is more dependent on X, i.e., channel capacity is larger

What is this magic box? (Formal)

$$Q \dashrightarrow \bullet$$
 Box $U \dashrightarrow \tilde{U}_Q \sim Q$

- A box about the random variable U can output samples of U
- Query: Input distribution Q, output a sample $ilde{U}_Q \sim Q$
 - Q represents the party's partial knowledge on U
 - Box cannot just generate a fresh sample following Q for each query
 - Want box to have "memory"
- Guarantee: For distributions P, Q,

$$\mathbf{P}\left(\left. ilde{U}_{Q}
eq ilde{U}_{P}
ight| \left. ilde{U}_{P}
ight) \leq rac{dP}{dQ}(ilde{U}_{P})$$

• $P(\tilde{U}_P)$ measures how good the first partial knowdge P is about \tilde{U}_P • $\frac{dP}{dQ}(\tilde{U}_P)$ small means second partial knowledge Q better than P

What *really* is this magic box? Discrete case – Exponential Functional Representation

- Studied in Li and El Gamal [2018], Li and Anantharam [2021]
 - Related to the Gumbel-max trick [Huijben et al., 2022]
- Assume $U \in \{1, \ldots, k\}$ is discrete
- Box contains $Z_1, \ldots, Z_k \stackrel{\textit{iid}}{\sim} \operatorname{Exp}(1)$
 - Z_1, \ldots, Z_k generated at the time of creation of the box
- Input distribution *P*, output

$$ilde{U}_P := rgmin_u rac{Z_u}{P(u)}$$

- Property of exponential RVs: $ilde{U}_P \sim P$
- Poisson matching lemma [Li and Anantharam, 2021]:

$$\mathbf{P}(ilde{U}_Q
eq ilde{U}_P \mid ilde{U}_P) \leq rac{P(ilde{U}_P)}{Q(ilde{U}_P)}$$

Poisson Matching Lemma [Li and Anantharam, 2021]

Lemma

For finite discrete distributions P, Q,

$$\mathbf{P}(ilde{U}_Q
eq ilde{U}_P \mid ilde{U}_P) \leq rac{P(ilde{U}_P)}{Q(ilde{U}_P)}$$

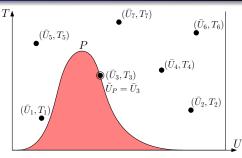
- Fact 1: If $T_i \sim \text{Exp}(\gamma_i)$ indep. across i = 1, ..., k, then min_i $T_i \sim \text{Exp}(\sum_i \gamma_i)$ indep. of arg min_i T_i with $P(\arg \min_i T_i = i^*) = \frac{\gamma_{i^*}}{\sum_i \gamma_i}$
- Let $W_u := Z_u/P(u) \sim \operatorname{Exp}(P(u))$ • $\tilde{U}_P := \operatorname{arg\,min}_u W_u \sim P$ indep. of $W_{\tilde{U}_P} \sim \operatorname{Exp}(\sum_u P(u) = 1)$ (Fact 1)
- Conditional on the event A: " $\tilde{U}_P = u^*$, $W_{u^*} = w$ ":
 - Same as the event $\min_u W_u = W_{u^*} = w$
 - The conditional distribution of W_u (u ≠ u^{*}) given A is Exp(P(u)) + w by memoryless property of Exp since we know W_u ≥ w
- Hence conditional on $\tilde{U}_P = u^*$, we have $W_u W_{u^*}$ follows Exp(P(u)) indep. across $u \neq u^*$, indep. of $W_{u^*} \sim \text{Exp}(1)$

Poisson Matching Lemma [Li and Anantharam, 2021]

• Conditional on $\tilde{U}_P = u^*$, we have $W_u - W_{u^*}$ follows Exp(P(u)) indep. across $u \neq u^*$, indep. of $W_{u^*} \sim \text{Exp}(1)$

$$\begin{split} \mathbf{P}(\tilde{U}_{Q} = u^{*} \mid \tilde{U}_{P} = u^{*}) \\ &= \mathbf{P}\left(\min_{u \neq u^{*}} \frac{Z_{u}}{Q(u)} \geq \frac{Z_{u^{*}}}{Q(u^{*})} \mid \tilde{U}_{P} = u^{*}\right) \\ &= \mathbf{P}\left(\min_{u \neq u^{*}} \frac{W_{u}P(u)}{Q(u)} \geq \frac{W_{u^{*}}P(u^{*})}{Q(u^{*})} \mid \tilde{U}_{P} = u^{*}\right) \\ &\geq \mathbf{P}\left(\min_{u \neq u^{*}} \frac{(W_{u} - W_{u^{*}})P(u)}{Q(u)} \geq \frac{W_{u^{*}}P(u^{*})}{Q(u^{*})} \mid \tilde{U}_{P} = u^{*}\right) \\ &= \frac{Q(u^{*})/P(u^{*})}{Q(u^{*})/P(u^{*}) + \sum_{u \neq u^{*}} Q(u)} \quad \text{(Fact 1)} \\ &= \frac{Q(u^{*})/P(u^{*})}{Q(u^{*})/P(u^{*}) + 1 - Q(u^{*})} \\ &\geq 1 - \frac{P(u^{*})}{Q(u^{*})} \qquad Q.E.D. \end{split}$$

What *really* is this magic box? General case – Poisson Functional Representation

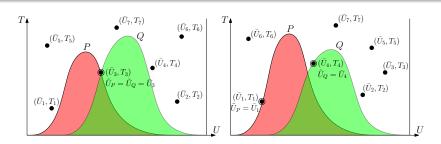


- Generalizes the exponential functional representation to general distributions (not only discrete)
 - Studied in Li and El Gamal [2018], Li and Anantharam [2021]
- Box: $\{\bar{U}_i, T_i\}_{i \in \mathbb{N}}$ points of Poisson process, intensity measure $\mu \times \lambda_{\mathbb{R}_{\geq 0}}$
- Input distribution *P*, output

$$K := \arg\min_{i} T_{i} \left(\frac{dP}{d\mu} (\bar{U}_{i}) \right)^{-1}, \ \tilde{U}_{P} := \bar{U}_{K}$$

• Mapping theorem: $ilde{U}_P \sim P$

Guarantee – Poisson Matching Lemma



- Two distributions P, Q. Points selected are \tilde{U}_P, \tilde{U}_Q resp.
- Poisson matching lemma [Li and Anantharam, 2021]:

$$egin{aligned} \mathbf{P}\left(\left. ilde{U}_{Q}
eq ilde{U}_{P}
ight|\left. ilde{U}_{P}
ight) &\leq rac{dP}{dQ}(ilde{U}_{P}) \ &= rac{P(ilde{U}_{P})}{Q(ilde{U}_{P})} & (ext{for discrete } P, Q) \end{aligned}$$

• Refer to [Li and Anantharam, 2021] for proof

... enough peeking into the box. Now let's close it

$$Q - - - \blacktriangleright \tilde{U}_Q \sim Q$$

We only use the box as a black box

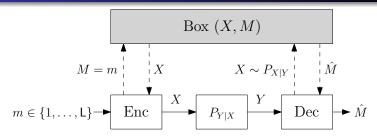
- Forget about exponential RVs, Poisson processes, etc.
- Query: Input distribution Q, output a sample $\tilde{U}_Q \sim Q$ • Unifies both encoder and decoder

• Guarantee: For distributions P, Q,

$$\mathbf{P}\left(\left. ilde{U}_{Q}
eq ilde{U}_{P}
ight| \left. ilde{U}_{P}
ight) \leq rac{dP}{dQ}(ilde{U}_{P})$$

• Unifies both packing and covering lemmas

One-shot Channel Coding



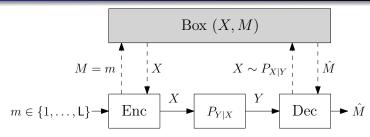
- Box about (X, M)
- Encoder queries using $P_X \times \delta_m$ (i.e., the info M = m), gets X
- Decoder queries using $P_{X|Y} imes P_M$ (i.e., the info $X \sim P_{X|Y}$), gets \hat{M}

$$\begin{split} \mathbf{P}(M \neq \hat{M}) &= \mathbf{E} \big[\mathbf{P} \big(M \neq \hat{M} \big| M, X, Y \big) \big] \\ &\leq \mathbf{E} \bigg[\min \left\{ \frac{dP_X \times \delta_M}{dP_{X|Y}(\cdot|Y) \times P_M}, 1 \right\} \bigg] = \mathbf{E} \big[\min \left\{ \mathsf{L2}^{-\iota_{X;Y}(X;Y)}, 1 \right\} \big] \end{split}$$

where $\iota_{X;Y}$ is the information density:

$$\iota_{X;Y}(x;y) = \log \frac{dP_{X,Y}}{d(P_X \times P_Y)}(x,y) = \log \frac{P(x,y)}{P(x)P(y)} \text{ (for discrete } X,Y)$$

One-shot Channel Coding



•
$$\mathbf{P}(M \neq \hat{M}) \leq \mathbf{E}[\min\{L2^{-\iota_{X;Y}(X;Y)}, 1\}]$$

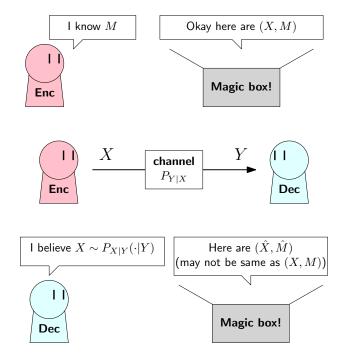
The box is random

• Exists fixed box such that the error bound is satisfied

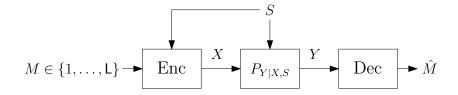
- Recovers (slightly weaker) dependence testing bound [Polyanskiy et al., 2010] (also see [Hayashi, 2009])
- Recovers asymptotic result: $L \leftarrow 2^{nR}$, $X \leftarrow X^n = (X_1, \dots, X_n)$, $Y \leftarrow Y^n$,

$$\iota_{X^n;Y^n}(X^n;Y^n) = \sum_{i=1}^n \iota_{X;Y}(X_i;Y_i) \approx nI(X;Y) \text{ (law of large numbers)}$$

 Unlike stochastic likelihood decoder [Yassaee et al., 2013a], here encoder and decoder are deterministic once the box is fixed I know everything about **message** M and **channel input** X, but I won't share my knowledge unless you demonstrate that you already have some **partial knowedge**



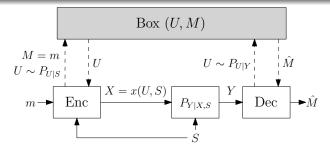
Channels with State Information at the Encoder



- Studied in [Gel'fand and Pinsker, 1980, Heegard and El Gamal, 1983, Costa, 1983]
- Message M ~ Unif[1 : L], state S ~ P_S, channel P_{Y|X,S}
- Encoder produces X using M, S
- Decoder recovers \hat{M} using Y
- Gel'fand and Pinsker [1980]: Asymptotic capacity

$$C = \sup_{P_{U|S}, \times(u,s)} (I(U;Y) - I(U;S))$$

Channels with State Information at the Encoder



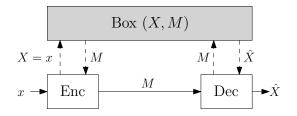
- Box about (U, M), auxiliary RV $U \sim P_{U|S}$
- Encoder queries $P_{U|S} \times \delta_m$ (i.e., the info $U \sim P_{U|S}$, M = m), gets U, sends X = x(U, S)
- Decoder queries $P_{U|Y} imes P_M$ (i.e., the info $U \sim P_{U|Y}$), gets \hat{M}

$$\mathbf{P}(M \neq \hat{M}) = \mathbf{E} \Big[\mathbf{P} \big(M \neq \hat{M} \mid M, S, U, Y \big) \Big]$$

$$\leq \mathbf{E} \Big[\min \left\{ \frac{dP_{U|S}(\cdot|S) \times \delta_M}{dP_{U|Y}(\cdot|Y) \times P_M}, 1 \right\} \Big] = \mathbf{E} \Big[\min \left\{ \mathsf{L} 2^{\iota_{U;S}(U;S) - \iota_{U;Y}(U;Y)}, 1 \right\} \Big]$$

 Implies best known second order result [Scarlett, 2015] (but much shorter proof)

Lossless Source Coding



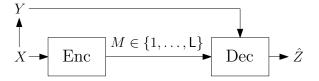
- Encode X ~ P_X to M ∈ {1,...,L}. Decoder gets X̂ [Shannon, 1948]
 Box about (X, M), let P_M = Unif{1,...,L}
- Encoder queries using $\delta_x \times P_M$ (i.e., the info X = x), gets M
- Decoder queries using $P_X imes \delta_M$ (i.e., the info *M*), gets \hat{X}

$$\mathbf{P}(X \neq \hat{X}) \leq \mathbf{E} \left[\min \left\{ rac{d\delta_X imes P_M}{dP_X imes \delta_M}, 1
ight\}
ight]$$

= $\mathbf{E} [\min \{ \mathsf{L}^{-1} 2^{\iota_X(X)}, 1 \}]$

• Asymptotic: $X = X^n$, $L = 2^{nR}$, $P_e \rightarrow 0$ if R > H(X)

Lossy Source Coding with Side Information at the Decoder

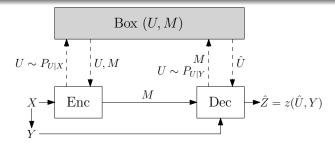


• Studied in [Wyner and Ziv, 1976]

- Source $X \sim P_X$, message $M \in [1 : L]$, side information $Y|X \sim P_{Y|X}$
- Encoder produces M using X
- Decoder recovers \hat{Z} using M, Y
- Prob. of excess distortion $\mathbf{P}\{d(X, \hat{Z}) > D\}$
- Wyner and Ziv [1976] (asymptotic):

$$C = \inf_{P_{U|X}, z(u,y): \mathbf{E}[d(X,Z)] \le D} (I(U;X) - I(U;Y))$$

Lossy Source Coding with Side Information at the Decoder



- Box about (U, M), auxiliary RV $U \sim P_{U|X}$
- Encoder queries $P_{U|X} \times P_M$ (i.e., the info $U \sim P_{U|X}$), gets U, M
- Decoder queries P_{U|Y} × δ_M (i.e., the info U ~ P_{U|Y} and M), gets Û, outputs = z(Û, Y)

$$\begin{split} \mathbf{P}(\mathbf{d}(X,\hat{Z}) > \mathsf{D}) &\leq 1 - \mathbf{P}(\mathbf{d}(X,Z) \leq \mathsf{D} \text{ and } U = \hat{U}) \quad (\text{let } Z = z(U,Y)) \\ &= \mathbf{E} \left[1 - \mathbf{1}\{\mathbf{d}(X,Z) \leq \mathsf{D}\} \mathbf{P}(U = \hat{U} \mid M, X, Y, U) \right] \\ &\leq \mathbf{E} \left[1 - \mathbf{1}\{\mathbf{d}(X,Z) \leq \mathsf{D}\} \max \left\{ 1 - \frac{dP_{U|X} \times P_M}{dP_{U|Y} \times \delta_M}, 0 \right\} \right] \\ &= \mathbf{E} \left[1 - \mathbf{1}\{\mathbf{d}(X,Z) \leq \mathsf{D}\} \max \{ 1 - \mathsf{L}^{-1} 2^{\iota_{U;X}(U;X) - \iota_{U;Y}(U;Y)}, 0 \} \right]. \end{split}$$

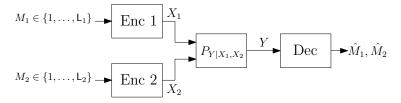
Asymptotic vs Conventional One-shot vs Our Approach

	Strong typicality	Conventional one-shot packing/covering	Poisson matching lemma
Finite blocklength results?	Maybe	Yes	Yes (sometimes stronger)
Simplicity	Simple	Complex	Simple (sometimes simpler)
General alphabet for X, Y?	Only discrete	Discrete / continuous	Discrete / continuous

- A new approach to proving coding theorems using Poisson functional representation and Poisson matching lemma
- Sharp one-shot / second order bounds
- Very short proofs
- Can also be applied to multiple access channels, broadcast channels, etc.
 - Refer to the paper for details

• Multiuser settings...

Multiple Access Channel

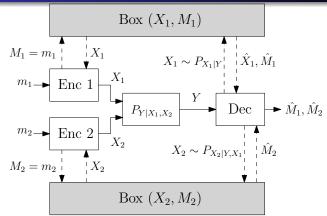


- Messages $M_1 \sim \text{Unif}[1:L_1]$, $M_2 \sim \text{Unif}[1:L_2]$, channel $P_{Y|X_1,X_2}$
- Encoder *i* produces X_i using M_i , i = 1, 2
- Decoder recovers \hat{M}_1, \hat{M}_2 using Y
- Capacity region [Ahlswede, 1971, Liao, 1972, Ahlswede, 1974] (asymptotic): Convex closure of

$$egin{aligned} &R_1 < I(X_1; Y|X_2) \ &R_2 < I(X_2; Y|X_1) \ &R_1 + R_2 < I(X_1, X_2; Y) \end{aligned}$$

for any P_{X_1} , P_{X_2}

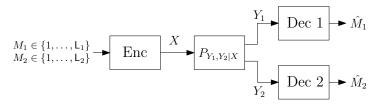
Multiple Access Channel



• Two boxes: (X_1, M_1) and (X_2, M_2)

- Decoder queries $P_{X_1|Y} \times P_{M_1}$ to box (X_1, M_1) , gets \hat{X}_1, \hat{M}_1 , queries $P_{X_2|Y,X_1}(\cdot|Y, \hat{X}_1) \times P_{M_2}$ to box (X_2, M_2) , gets \hat{M}_2
- $P_e \leq \mathbf{E}[\min\{L_1 2^{\iota_{X_1;Y}(X_1;Y)}, 1\}] + \mathbf{E}[\min\{L_2 2^{\iota_{X_2;Y|X_1}(X_2;Y|X_1)}, 1\}]$
- Recovers corner point R₁ = I(X₁; Y), R₂ = I(X₂; Y|X₁) of capacity region

Broadcast Channel

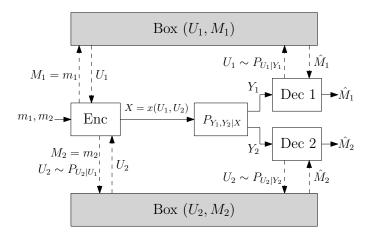


- Messages $M_1 \sim \text{Unif}[1:L_1]$, $M_2 \sim \text{Unif}[1:L_2]$, channel $P_{Y_1,Y_2|X}$
- Encoder produces X_1 using M_1, M_2
- Decoder *i* recovers \hat{M}_i using Y_i , i = 1, 2
- Inner bound [Marton, 1979] (asymptotic):

 $\begin{aligned} R_1 &< I(U_1; Y_1) \\ R_2 &< I(U_2; Y_2) \\ R_1 + R_2 &< I(U_1; Y_1) + I(U_2; Y_2) - I(U_1; U_2) \end{aligned}$

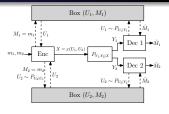
for any P_{U_1,U_2} , $x(u_1,u_2)$

Broadcast Channel



$$\begin{aligned} P_{e} &\leq \mathbf{E}[\min\{L_{1}2^{\iota_{U_{1};Y_{1}}(U_{1};Y_{1})}, 1\}] \\ &+ \mathbf{E}[\min\{L_{2}2^{\iota_{U_{2};Y_{2}}(U_{2};Y_{2})-\iota_{U_{1};U_{2}}(U_{1};U_{2})}, 1\}] \end{aligned}$$

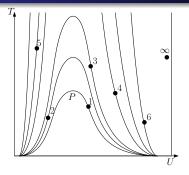
Broadcast Channel



$$\begin{aligned} P_e &\leq \mathsf{E}[\min\{\mathsf{L}_1 2^{\iota_{U_1;Y_1}}(U_1;Y_1), 1\}] \\ &+ \mathsf{E}[\min\{\mathsf{L}_2 2^{\iota_{U_2;Y_2}}(U_2;Y_2) - \iota_{U_1;U_2}(U_1;U_2), 1\}] \end{aligned}$$

- Recovers corner point $R_1 = I(U_1; Y_1)$, $R_2 = I(U_2; Y_2) I(U_1; U_2)$ in Marton's inner bound
- To obtain the whole Marton's inner bound:
 - Time sharing poor finite-blocklength result
 - Have Box (U₁, M₁) generate a list of U₁'s instead, i.e., Box (U_{1,1},..., U_{1,1}, M₁)
 - Query $U_2 \sim I^{-1} \sum_i P_{U_2|U_1}(\cdot|U_{1,i})$ for Box (U_2, M_2)
 - · Generalize the box to give a list of probable points
 - Modify the box to give partial information?

Generalized Poisson Matching Lemma



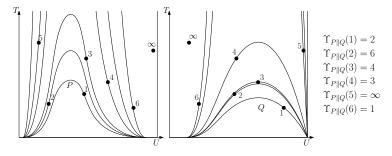
- $\{\bar{U}_i, T_i\}_i$ points of a Poisson process with intensity measure $\mu imes \lambda_{\mathbb{R}_{\geq 0}}$
- For distribution P, reorder indices $i_{P,j}$ such that

$$T_{i_{P,j}}\left(rac{dP}{d\mu}(ar{U}_{i_{P,j}})
ight)^{-1}$$

are sorted in ascending order, and let $ilde{U}_P(j) := ar{U}_{i_{P,j}}$

•
$$\tilde{U}_P(1), \tilde{U}_P(2), \tilde{U}_P(3) \stackrel{iid}{\sim} P$$

Generalized Poisson Matching Lemma



• For distributions *P*, *Q*, define

$$\Upsilon_{P\parallel Q}(j) := \min\{k \in \mathbb{N} : i_{Q,k} = i_{P,j}\}$$

•
$$ilde{U}_P = ilde{U}_Q \Leftrightarrow \Upsilon_{P \parallel Q}(1) = 1$$

• Generalized Poisson matching lemma [Li and Anantharam, 2021]:

$$\mathbf{E}\left[\Upsilon_{P\parallel Q}(j) \mid \tilde{U}_{P}(j)\right] \leq j \frac{dP}{dQ}(\tilde{U}_{P}(j)) + 1$$

$$Q \longrightarrow Box U \longrightarrow \tilde{U}_Q(1), \tilde{U}_Q(2), \ldots \overset{iid}{\sim} Q$$

Query: Input distribution Q, output Ũ_Q(1), Ũ_Q(2), ... ^{iid} ~ Q
Guarantee: For distributions P, Q, j ∈ N,

$$\mathbf{E}\left[\min\{k: \ \tilde{U}_Q(k) = \tilde{U}_P(j)\} \ \middle| \ \tilde{U}_P(j)\right] \le j \frac{dP}{dQ}(\tilde{U}_P(j)) + 1$$

- Implies the guarantee of single-output box for j = 1
- Useful for multiple access channel, broadcast channel, distributed lossy source coding, channel resolvability and channel simulation

- A new approach to proving coding theorems
 - Using Poisson functional representation and Poisson matching lemma
 - Sharp one-shot / second order bounds
 - Very short proofs
- Future work
 - Is there a simpler way to apply this method to multiuser settings?

References I

- Rudolf Ahlswede. Multi-way communication channels. In 2nd Int. Symp. Inform. Theory, Tsahkadsor, Armenian SSR, pages 23–52, 1971.
- Rudolf Ahlswede. The capacity region of a channel with two senders and two receivers. *The annals of probability*, 2(5):805–814, 1974.
- Max H. M. Costa. Writing on dirty paper. IEEE Trans. Inf. Theory, 29(3):439-441, 1983.
- Amiel Feinstein. A new basic theorem of information theory. *IRE Trans. Inf. Theory*, (4):2–22, 1954.
- S. I. Gel'fand and M. S. Pinsker. Coding for channel with random parameters. *Probl. Contr. and Inf. Theory*, 9(1):19–31, 1980.
- Masahito Hayashi. Information spectrum approach to second-order coding rate in channel coding. *IEEE Transactions on Information Theory*, 55(11):4947–4966, 2009.
- Chris Heegard and A El Gamal. On the capacity of computer memory with defects. *IEEE transactions on Information theory*, 29(5):731–739, 1983.
- Iris AM Huijben, Wouter Kool, Max B Paulus, and Ruud JG Van Sloun. A review of the gumbel-max trick and its extensions for discrete stochasticity in machine learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(2):1353–1371, 2022.
- C. T. Li and A. El Gamal. Strong functional representation lemma and applications to coding theorems. *IEEE Trans. Inf. Theory*, 64(11):6967–6978, Nov 2018. ISSN 0018-9448. doi: 10.1109/TIT.2018.2865570.
- Cheuk Ting Li and Venkat Anantharam. A unified framework for one-shot achievability via the Poisson matching lemma. *IEEE Transactions on Information Theory*, 67(5):2624–2651, 2021.

References II

- H Liao. Multiple Access Channels. PhD thesis, University of Hawaii, Honolulu, HI, 1972.
- K. Marton. A coding theorem for the discrete memoryless broadcast channel. *IEEE Trans. Inf. Theory*, 25(3):306–311, May 1979. ISSN 0018-9448. doi: 10.1109/TIT.1979.1056046.
- Yury Polyanskiy, H Vincent Poor, and Sergio Verdú. Channel coding rate in the finite blocklength regime. *IEEE Trans. Inf. Theory*, 56(5):2307–2359, 2010.
- Jonathan Scarlett. On the dispersions of the Gel'fand–Pinsker channel and dirty paper coding. *IEEE Trans. Inf. Theory*, 61(9):4569–4586, 2015.
- Claude E Shannon. A mathematical theory of communication. *Bell system technical journal*, 27 (3):379–423, 1948.
- Claude E Shannon. Certain results in coding theory for noisy channels. *Information and control*, 1 (1):6–25, 1957.
- S. Verdú. Non-asymptotic achievability bounds in multiuser information theory. In Communication, Control, and Computing (Allerton), 2012 50th Annual Allerton Conference on, pages 1–8, Oct 2012. doi: 10.1109/Allerton.2012.6483192.
- S. Watanabe, S. Kuzuoka, and V. Y. F. Tan. Nonasymptotic and second-order achievability bounds for coding with side-information. *IEEE Trans. Inf. Theory*, 61(4):1574–1605, April 2015. ISSN 0018-9448. doi: 10.1109/TIT.2015.2400994.
- A. D. Wyner and J. Ziv. The rate-distortion function for source coding with side information at the decoder. *IEEE Trans. Inf. Theory*, 22(1):1–10, January 1976. ISSN 0018-9448. doi: 10.1109/TIT.1976.1055508.

- M. H. Yassaee, M. R. Aref, and A. Gohari. A technique for deriving one-shot achievability results in network information theory. In 2013 IEEE ISIT, pages 1287–1291, July 2013a. doi: 10.1109/ISIT.2013.6620434.
- Mohammad Hossein Yassaee, Mohammad Reza Aref, and Amin Gohari. A technique for deriving one-shot achievability results in network information theory. In 2013 IEEE International Symposium on Information Theory, pages 1287–1291. IEEE, 2013b.