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Asymptotic Channel Coding
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Message M ∈ {0, 1}nR , R is the communication rate
Encoder sees M, outputs X1, . . . ,Xn, sends through noisy channel
Decoder sees Y1, . . . ,Yn, outputs M̂, wants M̂ = M with high prob.
Channel coding theorem [Shannon, 1948]: As n→∞, maximum
communication rate is C = maxpX I(X ;Y )

But we never have n→∞ in practice!
Many applications (e.g. IoT) involve sending short packets
For large n, decoder must wait for a long delay

Finite-blocklength analysis – study the case where n is finite



One-shot Channel Coding
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One-shot – the extreme case n = 1 where only one X is sent
Point-to-point: [Feinstein, 1954, Shannon, 1957, Hayashi, 2009,
Polyanskiy et al., 2010]
Multiuser: [Verdú, 2012, Yassaee et al., 2013b, Watanabe et al., 2015]

Misconception 1: One-shot is too restrictive since n must be 1!
Wrong! One-shot is actualy the most general setting since we can
substitute X to be a sequence, an image, a graph, or any object
Good one-shot results should readily subsume asymptotic
(first/second-order) results

Misconception 2: One-shot results are troublesome to prove!
Wrong! One-shot result can sometimes be just as simple (or even
simpler) to prove as asymptotic results!



What is a Coding Scheme?
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Conventional view: A coding scheme is a pair of functions (f , g):
Encoding function f maps M to X = f (M)
Decoding function g maps Y to M̂ = g(Y )

Alternative view: A coding scheme is a mechanism that can produce
the pair (M,X ), when provided partial knowledge about (M,X )

Encoder has partial knowledge on (M,X ) since it knows M, and uses
encoding function f to gain full knowledge on (M,X )
Decoder has partial knowledge on (M,X ) since it knows Y (depends on
X ), and uses decoding function g to gain full knowledge on M, and
hence X

The alternative view provides a simple and unified way to construct
coding schemes
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Magic box!

I know everything about message M and channel input X,
but I won’t share my knowledge unless you demonstrate

that you already have some partial knowedge



Magic box!

Okay here are the message M

Enc

I know the message M
Can you tell me everything? and channel input X
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Magic box!

No. The encoder’s secret

Dec

is safe with me

Magic box!

Okay. Here are the message M

Dec

and channel input X

I know something about channel input X

Can you tell me what you’ve told

based on the channel output Y

to the encoder?

I’m more knowledgeable than encoder

I’m the rightful owner of this information!

about message M and channel input X
(because the channel is clean enough)



What is this magic box? (Informal)

Magic box!

I know everything about message M and channel input X,
but I won’t share my knowledge unless you demonstrate

that you already have some partial knowedge

Query: Input partial knowledge, output full knowledge
Encoder has partial knowledge on (M,X ) since it only knows M
Decoder has partial knowledge on (M,X ) as it knows Y (depends on X )

Guarantee: If box is queried twice, two outputs will likely be the same
if second partial knowledge is better than first partial knowledge

Encoder’s partial knowledge on (M,X ) is better if message M is longer
Decoder’s partial knowledge on (M,X ) is better if Y is more dependent
on X , i.e., channel capacity is larger
Decoder’s partial knowledge better than encoder’s partial knowledge
⇐⇒ Channel capacity > Length of M



What is this magic box? (Formal)

Box UQ ŨQ ∼ Q

A box about the random variable U can output samples of U
Query: Input distribution Q, output a sample ŨQ ∼ Q

Q represents the party’s partial knowledge on U
Box cannot just generate a fresh sample following Q for each query
Want box to have “memory”

Guarantee: For distributions P,Q,

P
(
ŨQ 6= ŨP

∣∣∣ ŨP

)
≤ dP

dQ (ŨP)

P(ŨP) measures how good the first partial knowdge P is about ŨP
dP
dQ (ŨP) small means second partial knowledge Q better than P



What really is this magic box?
Discrete case – Exponential Functional Representation

Studied in Li and El Gamal [2018], Li and Anantharam [2021]
Related to the Gumbel-max trick [Huijben et al., 2022]

Assume U ∈ {1, . . . , k} is discrete

Box contains Z1, . . . ,Zk
iid∼ Exp(1)

Z1, . . . ,Zk generated at the time of creation of the box
Input distribution P, output

ŨP := arg min
u

Zu
P(u)

Property of exponential RVs: ŨP ∼ P
Poisson matching lemma [Li and Anantharam, 2021]:

P(ŨQ 6= ŨP | ŨP) ≤ P(ŨP)

Q(ŨP)



Poisson Matching Lemma [Li and Anantharam, 2021]
Lemma
For finite discrete distributions P,Q,

P(ŨQ 6= ŨP | ŨP) ≤ P(ŨP)

Q(ŨP)

Fact 1: If Ti ∼ Exp(γi ) indep. across i = 1, . . . , k, then
mini Ti ∼ Exp(

∑
i γi ) indep. of arg mini Ti with

P(arg mini Ti = i∗) = γi∗∑
i γi

Let Wu := Zu/P(u) ∼ Exp(P(u))

ŨP := arg minu Wu ∼ P indep. of WŨP
∼ Exp(

∑
u P(u) = 1) (Fact 1)

Conditional on the event A: “ŨP = u∗, Wu∗ = w”:
Same as the event minu Wu = Wu∗ = w
The conditional distribution of Wu (u 6= u∗) given A is Exp(P(u)) + w
by memoryless property of Exp since we know Wu ≥ w

Hence conditional on ŨP = u∗, we have Wu −Wu∗ follows Exp(P(u))
indep. across u 6= u∗, indep. of Wu∗ ∼ Exp(1)



Poisson Matching Lemma [Li and Anantharam, 2021]
Conditional on ŨP = u∗, we have Wu −Wu∗ follows Exp(P(u)) indep.
across u 6= u∗, indep. of Wu∗ ∼ Exp(1)

P(ŨQ = u∗ | ŨP = u∗)

= P
(

min
u 6=u∗

Zu
Q(u)

≥ Zu∗

Q(u∗)

∣∣∣∣ ŨP = u∗
)

= P
(

min
u 6=u∗

WuP(u)

Q(u)
≥ Wu∗P(u∗)

Q(u∗)

∣∣∣∣ ŨP = u∗
)

≥ P
(

min
u 6=u∗

(Wu −Wu∗)P(u)

Q(u)
≥ Wu∗P(u∗)

Q(u∗)

∣∣∣∣ ŨP = u∗
)

=
Q(u∗)/P(u∗)

Q(u∗)/P(u∗) +
∑

u 6=u∗ Q(u)
(Fact 1)

=
Q(u∗)/P(u∗)

Q(u∗)/P(u∗) + 1− Q(u∗)

≥ 1− P(u∗)
Q(u∗) Q.E .D.



What really is this magic box?
General case – Poisson Functional Representation

P

(Ū1, T1)
(Ū2, T2)

(Ū3, T3)
(Ū4, T4)

(Ū5, T5)

(Ū7, T7)
(Ū6, T6)

ŨP = Ū3

T

U

Generalizes the exponential functional representation to general
distributions (not only discrete)

Studied in Li and El Gamal [2018], Li and Anantharam [2021]
Box: {Ūi ,Ti}i∈N points of Poisson process, intensity measure µ× λR≥0
Input distribution P, output

K := arg min
i

Ti
(dP
dµ (Ūi )

)−1
, ŨP := ŪK

Mapping theorem: ŨP ∼ P



Guarantee – Poisson Matching Lemma

P
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Q
P

(Ū1, T1)
(Ū2, T2)

(Ū3, T3)(Ū4, T4)

(Ū5, T5)
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(Ū6, T6)
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T

U

Q

ŨQ = Ū4

Two distributions P,Q. Points selected are ŨP , ŨQ resp.

Poisson matching lemma [Li and Anantharam, 2021]:

P
(
ŨQ 6= ŨP

∣∣∣ ŨP

)
≤ dP

dQ (ŨP)

=
P(ŨP)

Q(ŨP)
(for discrete P,Q)

Refer to [Li and Anantharam, 2021] for proof



... enough peeking into the box. Now let’s close it

Box UQ ŨQ ∼ Q

We only use the box as a black box
Forget about exponential RVs, Poisson processes, etc.

Query: Input distribution Q, output a sample ŨQ ∼ Q
Unifies both encoder and decoder

Guarantee: For distributions P,Q,

P
(
ŨQ 6= ŨP

∣∣∣ ŨP

)
≤ dP

dQ (ŨP)

Unifies both packing and covering lemmas



One-shot Channel Coding

Encm ∈ {1, . . . , L} PY |X

X Y
Dec M̂

Box (X,M)

M = m X X ∼ PX|Y M̂

Box about (X ,M)
Encoder queries using PX × δm (i.e., the info M = m), gets X
Decoder queries using PX |Y × PM (i.e., the info X ∼ PX |Y ), gets M̂

P(M 6= M̂) = E
[
P
(
M 6= M̂

∣∣M,X ,Y
)]

≤ E
[

min

{
dPX × δM

dPX |Y (·|Y )× PM
, 1
}]

= E
[

min
{
L2−ιX ;Y (X ;Y ), 1

}]
where ιX ;Y is the information density:

ιX ;Y (x ; y) = log
dPX ,Y

d(PX × PY )
(x , y) = log

P(x , y)

P(x)P(y)
(for discrete X ,Y )



One-shot Channel Coding

Encm ∈ {1, . . . , L} PY |X

X Y
Dec M̂

Box (X,M)

M = m X X ∼ PX|Y M̂

P(M 6= M̂) ≤ E[min{L2−ιX ;Y (X ;Y ), 1}]
The box is random

Exists fixed box such that the error bound is satisfied
Recovers (slightly weaker) dependence testing bound [Polyanskiy et al.,
2010] (also see [Hayashi, 2009])
Recovers asymptotic result: L←2nR , X←Xn =(X1, . . . ,Xn), Y←Y n,

ιXn;Y n (Xn;Y n) =
n∑

i=1
ιX ;Y (Xi ;Yi ) ≈ nI(X ;Y ) (law of large numbers)

Unlike stochastic likelihood decoder [Yassaee et al., 2013a], here
encoder and decoder are deterministic once the box is fixed



Magic box!

I know everything about message M and channel input X,
but I won’t share my knowledge unless you demonstrate

that you already have some partial knowedge



Magic box!

Okay here are (X,M)

Enc

I know M

Enc Dec

X Ychannel
PY |X

Magic box!

Here are (X̂, M̂)

Dec

I believe X ∼ PX|Y (·|Y )
(may not be same as (X,M))



Channels with State Information at the Encoder

EncM ∈ {1, . . . , L} PY |X,S

X Y
Dec M̂

S

Studied in [Gel’fand and Pinsker, 1980, Heegard and El Gamal, 1983,
Costa, 1983]
Message M ∼ Unif[1 : L], state S ∼ PS , channel PY |X ,S

Encoder produces X using M,S
Decoder recovers M̂ using Y
Gel’fand and Pinsker [1980]: Asymptotic capacity

C = sup
PU|S , x(u,s)

(I(U;Y )− I(U; S))



Channels with State Information at the Encoder

Encm PY |X,S

X = x(U, S) Y
Dec M̂

M = m
U U ∼ PU |Y M̂

S

U ∼ PU |S

Box (U,M)

Box about (U,M), auxiliary RV U ∼ PU|S
Encoder queries PU|S × δm (i.e., the info U ∼ PU|S , M = m), gets U,
sends X = x(U,S)
Decoder queries PU|Y × PM (i.e., the info U ∼ PU|Y ), gets M̂

P(M 6=M̂) = E
[
P
(
M 6= M̂

∣∣M, S,U,Y
)]

≤ E
[

min

{ dPU|S(·|S)× δM

dPU|Y (·|Y )× PM
, 1
}]

= E
[

min
{
L2ιU;S(U;S)−ιU;Y (U;Y ), 1

}]
Implies best known second order result [Scarlett, 2015] (but much
shorter proof)



Lossless Source Coding

Encx
M

Dec X̂

X = x M X̂M

Box (X,M)

Encode X ∼ PX to M ∈ {1, . . . , L}. Decoder gets X̂ [Shannon, 1948]
Box about (X ,M), let PM = Unif{1, . . . , L}
Encoder queries using δx × PM (i.e., the info X = x), gets M
Decoder queries using PX × δM (i.e., the info M), gets X̂

P(X 6= X̂ ) ≤ E
[

min

{
dδX × PM
dPX × δM

, 1
}]

= E[min{L−12ιX (X), 1}]

Asymptotic: X = Xn, L = 2nR , Pe → 0 if R > H(X )



Lossy Source Coding with Side Information at the Decoder

Enc
M ∈ {1, . . . , L}

X

Y

Dec Ẑ

Studied in [Wyner and Ziv, 1976]
Source X ∼ PX , message M ∈ [1 : L], side information Y |X ∼ PY |X

Encoder produces M using X
Decoder recovers Ẑ using M,Y
Prob. of excess distortion P{d(X , Ẑ ) > D}
Wyner and Ziv [1976] (asymptotic):

C = inf
PU|X , z(u,y):E[d(X ,Z)]≤D

(I(U;X )− I(U;Y ))



Lossy Source Coding with Side Information at the Decoder

EncX
M

Dec Ẑ = z(Û , Y )

U ∼ PU |X U,M
U ∼ PU |Y

Û

Y

M

Box (U,M)

Box about (U,M), auxiliary RV U ∼ PU|X
Encoder queries PU|X × PM (i.e., the info U ∼ PU|X ), gets U,M
Decoder queries PU|Y × δM (i.e., the info U ∼ PU|Y and M), gets Û,
outputs Ẑ = z(Û,Y )

P(d(X , Ẑ)>D) ≤ 1− P(d(X ,Z) ≤ D and U = Û) (let Z = z(U,Y ))

= E
[
1− 1{d(X ,Z) ≤ D}P(U = Û |M,X ,Y ,U)

]
≤ E

[
1− 1{d(X ,Z) ≤ D}max

{
1−

dPU|X × PM

dPU|Y × δM
, 0
}]

= E
[
1− 1{d(X ,Z)≤D}max{1− L−12ιU;X (U;X)−ιU;Y (U;Y ), 0}

]
.



Asymptotic vs Conventional One-shot vs Our Approach

Strong
typicality

Conventional
one-shot

packing/covering

Poisson
matching lemma

Finite blocklength
results? Maybe Yes Yes

(sometimes stronger)

Simplicity Simple Complex Simple
(sometimes simpler)

General alphabet
for X ,Y ?

Only discrete Discrete /
continuous

Discrete /
continuous



Conclusion

A new approach to proving coding theorems using Poisson functional
representation and Poisson matching lemma
Sharp one-shot / second order bounds
Very short proofs
Can also be applied to multiple access channels, broadcast channels,
etc.

Refer to the paper for details



Multiuser settings...



Multiple Access Channel

Enc 1M1 ∈ {1, . . . , L1}

PY |X1,X2

Y

X1

Dec M̂1, M̂2

M2 ∈ {1, . . . , L2}
X2

Enc 2

Messages M1 ∼ Unif[1 : L1], M2 ∼ Unif[1 : L2], channel PY |X1,X2
Encoder i produces Xi using Mi , i = 1, 2
Decoder recovers M̂1, M̂2 using Y
Capacity region [Ahlswede, 1971, Liao, 1972, Ahlswede, 1974]
(asymptotic): Convex closure of

R1 < I(X1;Y |X2)

R2 < I(X2;Y |X1)

R1 + R2 < I(X1,X2;Y )

for any PX1 , PX2



Multiple Access Channel

Dec

m1

PY |X1,X2

X1Enc 1

M̂1, M̂2

M1 = m1
X1 ∼ PX1|Y X̂1, M̂1

Box (X1,M1)

X2
Enc 2

M2 = m2

M̂2

m2

Y

Box (X2,M2)

X1

X2

X2 ∼ PX2|Y,X1

Two boxes: (X1,M1) and (X2,M2)

Decoder queries PX1|Y × PM1 to box (X1,M1), gets X̂1, M̂1, queries
PX2|Y ,X1(·|Y , X̂1)× PM2 to box (X2,M2), gets M̂2

Pe ≤ E[min{L12ιX1;Y (X1;Y ), 1}] + E[min{L22ιX2;Y |X1 (X2;Y |X1), 1}]
Recovers corner point R1 = I(X1;Y ), R2 = I(X2;Y |X1) of capacity
region



Broadcast Channel

Enc
M1 ∈ {1, . . . , L1}

PY1,Y2|X

X

Y1 Dec 1 M̂1

M2 ∈ {1, . . . , L2}

Dec 2 M̂2
Y2

Messages M1 ∼ Unif[1 : L1], M2 ∼ Unif[1 : L2], channel PY1,Y2|X
Encoder produces X using M1,M2
Decoder i recovers M̂i using Yi , i = 1, 2
Inner bound [Marton, 1979] (asymptotic):

R1 < I(U1;Y1)

R2 < I(U2;Y2)

R1 + R2 < I(U1;Y1) + I(U2;Y2)− I(U1;U2)

for any PU1,U2 , x(u1, u2)



Broadcast Channel

Encm1,m2 PY1,Y2|X

X = x(U1, U2)

Y1 Dec 1 M̂1

M1 = m1 U1

U1 ∼ PU1|Y1 M̂1

Box (U1,M1)

Y2
Dec 2 M̂2

Box (U2,M2)

M2 = m2

U2 ∼ PU2|U1
U2

U2 ∼ PU2|Y2 M̂2

Pe ≤ E[min{L12ιU1;Y1 (U1;Y1), 1}]
+ E[min{L22ιU2;Y2 (U2;Y2)−ιU1;U2 (U1;U2), 1}]



Broadcast Channel

Pe ≤ E[min{L12ιU1;Y1 (U1;Y1), 1}]
+E[min{L22ιU2;Y2 (U2;Y2)−ιU1;U2 (U1;U2), 1}]

Encm1,m2 PY1,Y2|X

X = x(U1, U2)

Y1 Dec 1 M̂1

M1 = m1 U1

U1 ∼ PU1|Y1 M̂1

Box (U1,M1)

Y2
Dec 2 M̂2

Box (U2,M2)

M2 = m2

U2 ∼ PU2|U1
U2

U2 ∼ PU2|Y2 M̂2

Recovers corner point R1 = I(U1;Y1), R2 = I(U2;Y2)− I(U1;U2) in
Marton’s inner bound

To obtain the whole Marton’s inner bound:
Time sharing – poor finite-blocklength result
Have Box (U1,M1) generate a list of U1’s instead, i.e., Box
(U1,1, . . . ,U1,l ,M1)

Query U2 ∼ l−1
∑

i PU2|U1(·|U1,i) for Box (U2,M2)

Generalize the box to give a list of probable points
Modify the box to give partial information?



Generalized Poisson Matching Lemma

P

T

U

1
2

3

4

5

6

∞

{Ūi ,Ti}i points of a Poisson process with intensity measure µ× λR≥0
For distribution P, reorder indices iP,j such that

TiP,j

(
dP
dµ (ŪiP,j )

)−1
are sorted in ascending order, and let ŨP(j) := ŪiP,j

ŨP(1), ŨP(2), ŨP(3)
iid∼ P



Generalized Poisson Matching Lemma

P

T

U

1
2

3

4

5

6

∞

Q

T

U

1

2

3

4
5

6

∞ ΥP‖Q(1) = 2

ΥP‖Q(2) = 6

ΥP‖Q(3) = 4

ΥP‖Q(4) = 3

ΥP‖Q(5) = ∞
ΥP‖Q(6) = 1

For distributions P,Q, define

ΥP‖Q(j) := min{k ∈ N : iQ,k = iP,j}

ŨP = ŨQ ⇔ ΥP‖Q(1) = 1

Generalized Poisson matching lemma [Li and Anantharam, 2021]:

E
[

ΥP‖Q(j)
∣∣ ŨP(j)

]
≤ j dPdQ (ŨP(j)) + 1



The Generalized Box

Box UQ ŨQ(1), ŨQ(2), . . .
iid∼ Q

Query: Input distribution Q, output ŨQ(1), ŨQ(2), . . .
iid∼ Q

Guarantee: For distributions P,Q, j ∈ N,

E
[

min{k : ŨQ(k) = ŨP(j)}
∣∣∣ ŨP(j)

]
≤ j dPdQ (ŨP(j)) + 1

Implies the guarantee of single-output box for j = 1
Useful for multiple access channel, broadcast channel, distributed lossy
source coding, channel resolvability and channel simulation



Conclusion

A new approach to proving coding theorems
Using Poisson functional representation and Poisson matching lemma
Sharp one-shot / second order bounds
Very short proofs

Future work
Is there a simpler way to apply this method to multiuser settings?
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