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Abstract

One-shot channel simulation (or channel synthesis) has seen increasing applications
in lossy compression, differential privacy and machine learning. In this setting, an
encoder observes a source X, and transmits a description to a decoder, so as to allow
it to produce an output Y with a desired conditional distribution PY |X . In other
words, the encoder and the decoder are simulating the noisy channel PY |X using
noiseless communication. This can also be seen as a lossy compression scheme with
a stronger guarantee on the joint distribution of X and Y . This monograph aims at
giving an overview of the theory and applications of the channel simulation problem.
We will present a unifying review of various one-shot and asymptotic channel simulation
techniques that have been proposed in different areas, namely dithered quantization,
rejection sampling, minimal random coding, likelihood encoder, soft covering, Poisson
functional representation, and dyadic decomposition.
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Preface
In this monograph, we give an overview of the theoretical results on channel simulation and
related settings, as well as their applications in lossy compression, differential privacy and
machine learning. We collect various channel simulation schemes appearing in different fields
of research. Many of them are not referred to as “channel simulation” in their respective
fields. Nevertheless, they fit within the same setting of simulating a noisy channel through
communications, and can therefore be analyzed and compared under a unified framework.
Our goal is to gather these channel simulation techniques, and present them as a common
toolbox that different lines of research can utilize.

Although this monograph is intended to be accessible to researchers outside of infor-
mation theory, familiarity with basic notions such as entropy, mutual information and
channel coding is necessary. Readers may consult textbooks such as Cover and Thomas,
2006, Chapters 1-10; MacKay, 2003, Chapters 1-11; Yeung, 2008, Chapters 1-11; or Csiszár
and Körner, 2011, Chapters 1-7.

In Section 1, we will give an intuitive description of the channel simulation setting, and
present several motivations for this setting. Readers using this monograph as a reference
book may jump directly to the overview of various channel simulation schemes in Section
2.2, and the comparison in Table 2.1.
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Notations

Throughout this monograph, probability spaces are assumed to be Polish equipped with
the Borel sigma algebra. Entropy and mutual information are in bits. The notations used
are listed as follows.

Symbol Meaning

X,Y Random variables (RVs)

x, y Non-random variables

X,Y Random vectors (sometimes non-random matrices)

x,y Non-random vectors

X Set in which RV X takes values

N+ Positive integers {1, 2, . . .}

N0 Nonnegative integers {0, 1, . . .}

[n] {1, . . . , n}

[a..b] {a, a+ 1, . . . , b}

{0, 1}∗ Set of bit sequences of any length
⋃∞
`=0{0, 1}`

a‖b Concatenation of a, b ∈ {0, 1}∗

Xn Sequence (X1, . . . , Xn)

6



Symbol Meaning

X ∼ P X is an RV with distribution P

Y |X ∼ Q The conditional distribution of Y given X is Q(y|x)

X ⊥⊥ Y RV X is independent of RV Y

X ↔ Y ↔ Z, RVs X,Y, Z forms a Markov chain,

or X ⊥⊥ Z|Y or X, Z are conditionally independent given Y

PX Probability distribution of X

PY |X Conditional distribution of Y given X

PXPY
Product of PX and PY , i.e.,

distribution of (X,Y ) if X ∼ PX , Y ∼ PY , X ⊥⊥ Y

PXPY |X
Semidirect product of PX and PY |X , i.e.,

distribution of (X,Y ) if X ∼ PX , Y |X ∼ PY |X

PnX
n-fold product distribution, i.e.,

distribution of Xn = (X1, . . . , Xn) if Xi ∼ PX i.i.d.

PnY |X

Conditional distribution PY n|Xn , Y n is the output

when Xn is passed through memoryless channel PY |X
(for discrete RVs, PnY |X(yn|xn) =

∏n
i=1 PY |X(yi|xi))

Unif(S) Uniform distribution over the set S

Unif(a, b) Uniform distribution over the interval [a, b]

Bern(a) Bernoulli distribution P (0) = 1− a, P (1) = a

Geom(a) Geometric distribution P (x) = (1− a)x−1a, x = 1, 2, . . .

Zipf(s) Zipf distribution P (x) ∝ x−s, x = 1, 2, . . . (Appendix A)
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Symbol Meaning

1{E} Indicator of event E (1{E} ∈ {0, 1} is 1 iff E occurs)

1S(x) Indicator of event x ∈ S

µ� ν
Measure µ is absolutely continuous with respect to ν,

i.e., ν(S) = 0 ⇒ µ(S) = 0 for measurable set S ⊆ X
dµ
dν Radon-Nikodym derivative between measures µ� ν

H(X) Entropy (in bits) E[− log2 PX(X)]

H(X|Y ) Conditional entropy E[− log2 PX|Y (X|Y )]

I(X;Y ) Mutual information E
[
log2

dPX,Y
dPXPY (X,Y )

]
h(X) Differential entropy E[− log2 fX(X)] (fX is pdf of X)

DKL(P‖Q)
Kullback-Leibler divergence

EX∼P [log2
dP
dQ(X)] (needs P � Q)

D∞(P‖Q)
Max divergence ess supX∼Q log2

dP
dQ(X)

= inf
{
t : PX∼Q

(
log2

dP
dQ(X) > t

)
= 0

}
(needs P � Q)

δTV(P,Q) Total variation distance supE |P (E)−Q(E)| (Section 5.3)

γA {γy : y ∈ A} (for A ⊆ Rn, γ ∈ R)

−A {−y : y ∈ A} (for A ⊆ Rn)

A+ x {y + x : y ∈ A} (for A ⊆ Rn, x ∈ Rn)

A+ B {x + y : x ∈ A, y ∈ B} (for A,B ⊆ Rn)

Vol(A) Lebesgue measure of measurable set A ⊆ Rn
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Notation for channel simulation results (Section 2.1)

E.g., G/1/E/VL/KAS/UCR

D Discrete channels (X,Y finite discrete)

C Continuous output channels (PY |X(·|x) continuous)

1DAC 1D additive continuous noise channels (Y = X + Z ∈ R)

nDAC n-D additive continuous noise channels (Y = X + Z ∈ Rn)

G General channels (over Polish space)

1 One-shot (simulating channel PY |X)

F Finite-blocklength (memoryless channel PY n|Xn)

∞ Asymptotic (n→∞)

A Approximate (PỸ |X is approximately PY |X)

E Exact (Y |X ∼ PY |X exactly)

FL Fixed-length description (M ∈ {0, 1}`)

VL Variable-length description (M ∈ {0, 1}∗)

KS Known source distribution (PX known)

AS Arbitrary source

KAS Known or arbitrary source

NCR No common randomness W

LCR Limited common randomness W

UCR Unlimited common randomness W

9



1 Introduction and Motivations

1.1 Overview

A channel is a conditional distribution PY |X , or in a more operational sense, a mechanism
which takes an input symbol X and produces an output symbol Y which depends on X
in a random manner. Common examples include the binary symmetric channel (where
X,Y ∈ {0, 1}, Y = X with probability 1 − p, or Y 6= X with probability p), the binary
erasure channel (where X ∈ {0, 1}, Y ∈ {0, 1, e}, Y = X with probability 1− p, or Y = e

with probability p), and the additive Gaussian noise channel (where X ∈ R, Y = X + Z

where Z ∼ N(0, 1) is an independent Gaussian noise).
In noisy channel coding (Shannon, 1948), we are given a channel PY |X , and we have to

transmit a message M almost noiselessly (i.e., with error probability close to 0) through
the channel. In other words, we are trying to simulate a noiseless bit channel using a noisy
channel. A channel code converts a noisy channel into a more readily usable almost-noiseless
bit channel where reliable communication can be conducted.

Channel simulation (Bennett et al., 2002; Winter, 2002; Cuff, 2013; Bennett et al.,
2014) works the other way around. We are given a noiseless bit channel, and we want to
simulate a noisy channel PY |X . More precisely, the encoder observes the input X, and sends
a description M noiselessly to the decoder. The decoder will then produce the output Y .
The goal is to have Y following a prescribed conditional distribution PY |X given X, using a
description M as short as possible. The encoder and the decoder are also sometimes allowed
to access a common randomness source W . If we look at this setting from the outside, and
put the encoder, the decoder and the description inside a box with input X and output
Y , then this box would behave as if it is a noisy channel PY |X . Refer to Figure 1.1 for an
illustration.

In channel coding, the capacity of a channel

C := max
PX

I(X;Y )

is the number of noiseless bits one can transmit per use of the channel, in the asymptotic
setting where the number of uses of the memoryless channel tends to infinity, as shown
by Shannon’s channel coding theorem (Shannon, 1948). If one must design a code with
an empirical distribution of the input sequence close to a given distribution PX , then the
number of bits per channel use is I(X;Y ). A central result in channel simulation, called
the reverse Shannon theorem (Bennett et al., 2002; Bennett et al., 2014), shows that one
can perform conversion in the other way around at the same exchange rate. Simulating
the channel PY |X takes C noiseless bits per channel simulated, in the sense that if we
want to simulate n copies of the memoryless channel PY |X , we require ≈ nC noiseless bits
asymptotically as n→∞ (assuming unlimited common randomness; see Theorems 32 and

10



X Y

Noisy channel PY |X

X Y
M̂

Almost-noiseless bit channel

M

Channel coding:

Channel simulation:

Enc DecPY |X

Enc Dec
M MNoiseless

bit channel

Common randomness W

Noisy channel

Figure 1.1: Channel coding (top) and channel simulation (bottom).

38). If the distribution of X is known, then it takes I(X;Y ) bits per channel simulated.
This shows that one can convert a noisy channel to a noiseless bit channel and vice versa
without any loss of asymptotic efficiency.

The asymptotic memoryless nature of the result imposes a limitation on its applications.
What if we want to simulate channels with memory? What if the input to the channel is
an image instead of a sequence? What if we want to simulate a finite number of copies of
the channel? What if we want to simulate just one copy of the channel (which can take a
finite sequence, an image, or anything as input)? Interestingly, the channel simulation result
holds approximately even when only one copy of the channel is simulated. More precisely,
one copy of the channel PY |X can be simulated exactly, using

C + log2(C + 2) + 3 bits (1.1)

on average with a prefix-free description, in the presence of unlimited common ranomness.
If the distribution of X is known, the channel can be simulated using

I(X;Y ) + log2(I(X;Y ) + 2) + 3 bits (1.2)

on average. This result (in a weaker form) was first studied by Harsha et al. (2010), and
later improved by Braverman and Garg (2014), and Li and El Gamal (2018b) (which gave
the form stated in (1.1) with a slightly larger constant).1 See Theorem 4. This general
“one-shot” result only has a logarithmic gap compared to the more restrictive asymptotic

1Li and El Gamal (2018b) gave the bound C + log2(C + 1) + 5. The bound C + log2(C + 2) + 3 was
given in (Li, 2024) using a slightly improved analysis.
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result. In this regard, channel simulation is similar to lossless source coding, where Huffman
code (Huffman, 1952) can compress one source symbol X to at most H(X) + 1 bits on
average, close to the optimal asymptotic rate H(X). This is in stark contrast to channel
coding, where the number of bits that can be conveyed reliably by one channel use is often
far less than C, and can even be 0. While asymptotically one can convert a noisy channel
to a noiseless bit channel and vice versa equally efficiently, in the nonasymptotic setting, it
is much easier to convert a noiseless bit channel to a noisy channel (channel simulation)
than the other direction (channel coding).

But why do we want to simulate a noisy channel? Isn’t a noiseless bit channel more
useful than a noisy channel? To answer these questions, one should not compare channel
simulation to channel coding, but to lossy source coding, which is another “dual” of channel
coding. The lossy source coding (or lossy compression) setting looks almost identical to
channel simulation. The only difference is that the goal is not to have Y following PY |X ,
but to have a small distortion d(X,Y ) between the input and the output, i.e., the output Y
should be “close” to the inputX under some distortion measure. If we can guarantee a precise
joint distribution of (X,Y ), then we can characterize the expected distortion E[d(X,Y )].
Therefore, a channel simulation scheme can serve as a lossy source coding scheme, with a
stronger guarantee on the conditional distribution of Y given X. Moreover, this stronger
guarantee does not necessarily impose any penalty on the asymptotic rate.2 The reason for
simulating a noisy channel is the same as the reason for lossy compression—because the
noise allows us to have a smaller compression size.

But why do we want this stronger guarantee? Why do we care about the distribution of
Y ? Isn’t it enough that Y is close to X? To answer these questions, we list several reasons
for wanting a precise distribution of Y given X:

• Because noisy channels provide better worst-case performance. Consider a quantization
Y = bX + 1/2c of the signal X ∈ R to the nearest integer. As a lossy compression of
X, the quantization Y has zero error when X is an integer, but not as good when X
is a half-integer like 1.5, which gives an error |Y −X| = 1/2. One may argue that if
the distribution of X is “sufficiently spread out”, then the expected error should be
around 1/4, though there is often no guarantee that X is indeed spread out in the
way we want. Compare this to the output of the additive noise channel Y ′ = X + Z

where Z ∼ Unif(−1/2, 1/2). The expected error E[|Y ′ −X|] is always 1/4, regardless
of the distribution of X. The channel PY ′|X has a better worst-case performance than

2Since the optimal rate of asymptotic lossy source coding under a distortion constraint is characterized
by the rate-distortion function R(D) = minPY |X : E[d(X,Y )]≤D I(X;Y ), which is the same description rate
needed to simulate (with unlimited common randomness) the channel PY |X that attains the minimum in
R(D), the stronger guarantee on the conditional distribution of Y given X does not come with any penalty
on the rate (Winter, 2002).
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the deterministic mapping X 7→ Y . This is investigated in the work on universal
quantization by Ziv (1985) and Zamir and Feder (1992), showing that simulating an
additive noise channel gives a universally good lossy compression scheme. See Sections
1.3, 1.5 and 3.6.
Randomization improving the worst-case performance is a common occurence in
different fields of mathematics. In game theory, the optimal minimax strategy is often
a mixed strategy, where a player chooses the action at random. Channel simulation
can be applied to allow players to generate their actions from the correct distribution
using a small amount of communication. See Section 1.10. In interactive protocols for
function computation (Yao, 1979), we often require the protocol to produce the correct
value of the function with high probability, for every choice of inputs. Randomized
protocols can give a better guarantee on the worst-case error probability, and channel
simulation can be applied to compress the messages in such protocols. See Section 1.9.

• Because noisy channels are nicer objects. Recall the “quantization versus channel
simulation” example. The mapping X 7→ Y = bX + 1/2c behaves poorly—it is flat
almost everywhere, and jumps discontinuously. In comparison, in the additive noise
channel Y ′ = X + Z (where Z ∼ Unif(−1/2, 1/2)), Y ′ changes continuously with X.
Such niceness makes channel simulation appealing to compression tasks in machine
learning (Havasi et al., 2019; Choi et al., 2019; Choi et al., 2020; Agustsson and
Theis, 2020). For example, in neural compression where we train a neural network
for a compression task, channel simulation can be more suitable than quantization
(Choi et al., 2019; Agustsson and Theis, 2020; Yang et al., 2023). The quantization Y
varies with X in a discontinuous and nondifferentiable manner, and almost always
has zero gradient dY/dX; whereas the channel simulation output Y ′ varies with X
in a differentiable manner, allowing gradient-based optimization algorithms to be
applied via the reparameterization trick (Kingma and Welling, 2013). Another popular
channel to simulate is the additive white Gaussian noise channel (Havasi et al., 2019;
Flamich et al., 2020), with desirable theoretical properties. See Section 1.4.

• Because noisy channels help preserving privacy. Suppose a user wants to convey the
data X to the server, but does not want the server to know X exactly. One common
method is the additive noise mechanism (Dwork et al., 2006), where the user instead
transmits X + Z to the server, where Z is a noise (e.g. Gaussian or Laplace) which
masks the least significant digits of X, while still allowing the server to know a rough
estimate of X. Channel simulation can be applied to convey X + Z with a small
amount of communications (Feldman and Talwar, 2021; Amiri et al., 2021; Triastcyn
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et al., 2021; Lang et al., 2023; Shahmiri et al., 2024; Hasırcıoğlu and Gündüz, 2024;
Hegazy et al., 2024).3 See Section 1.6.

• Because random output looks/sounds better. In image compression, dithering is a
technique where random noises are added to the pixels in order to improve perceptual
quality by reducing undesirable effects such as color banding (Roberts, 1962). Dithering
is also used in audio compression to eliminate undesired patterns in the quantization
error (Jayant and Rabiner, 1972). Another example is neural image compression
where, in case the rate is too low to accurately convey the source image, we might
prefer a random realistic-looking image similar to the source image as the output
(Tschannen et al., 2018; Blau and Michaeli, 2018; Blau and Michaeli, 2019). Another
related technique is perceptual noise substitution for audio coding, where the encoder
does not encode the noise-like components of the audio, and the decoder fills in the
missing components by generating noises that mimick those components (Sayood,
2018). The desire of having a nice-looking/sounding output distribution is the basis
of the works on distribution preserving compression (Li et al., 2010; Li et al., 2011;
Tschannen et al., 2018) and the rate-distortion-perception tradeoff (Blau and Michaeli,
2018; Blau and Michaeli, 2019). See Section 1.7.

• Because we indeed want to simulate a random phenomenon. One example is quantum
measurement, which is inherently random. Studying the amount of classical communi-
cation needed to simulate the outcomes of some quantum measurements can allow us
to understand the “conversion rates” between quantum and classical resources. See
Section 1.8.

We remark that this monograph is focused on the simulation of classical channels. For
the simulation of quantum channels, readers are referred to (Barnum et al., 2001; Bennett
et al., 2014; Bennett et al., 2002; Pirandola et al., 2018). We also remark that this monograph
is not about software or hardware simulation of physical communication channels (e.g.,
(Mezzavilla et al., 2015; Sun et al., 2017)), though a related setting will be briefly discussed
in Section 9.3.

3Technically, channel simulation allows the server to know X + Z, but does not guarantee that the
server knows X + Z only. Additional efforts may be needed to ensure that a channel simulation scheme is
differentially private. See Section 1.6.
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1.2 History

The formal study of channel simulation was started by Bennett et al. (2002). Earlier related
works include the work on distributed source simulation by Wyner (1975a) (to be discussed
in Section 9.2.2), the work on simulating a noisy channel at a single terminal (unlike Figure
1.1 which is a distributed setting) with the minimum amount of randomness by Steinberg
and Verdú (1994) (to be discussed in Section 9.3.2), the work on quantum coding by
Barnum et al. (2001), and the work on the simulation of quantum entanglement by classical
communication by Steiner (2000). It is also known by different names, such as distributed
channel synthesis (Cuff, 2013), compression of sources of probability distributions (Winter,
2002), communication of probability distributions (Barnum et al., 2001; Kramer and Savari,
2007), communication complexity of correlation (Harsha et al., 2010), generic transformation
(in the context of local privacy protocols) (Bassily and Smith, 2015; Bun et al., 2019),4
relative entropy coding (Flamich et al., 2020; Flamich et al., 2022; Flamich et al., 2024),5
and reverse channel coding (Theis and Yosri, 2022; Flamich et al., 2022). In this monograph,
we adopt the name “channel simulation” from (Bennett et al., 2002; Cuff, 2008; Bennett
et al., 2014).

Although channel simulation is often referred by different names in different lines of
works, they can all fit within the setting in Figure 1.1 where samples following a desired
conditional distribution are communicated. The purpose of this monograph is to place
these different techniques arising in different lines of research under a unifying theoretical
framework. In the remainder of this section, we will briefly review the many places where
the channel simulation setting has appeared.

1.3 Dithered Quantization

Lossy compression generally refers to a method which compresses the input X into a discrete
description, from which we can recover the output Y that is close to X. For the sake of
concreteness, before we proceed to the abstract setting in Section 1.5, we first discuss a
simple form of lossy compression—quantization (Gray and Neuhoff, 1998), where the input
signal X ∈ R is mapped to the quantized signal

4Generic transformation (Bassily and Smith, 2015; Bun et al., 2019) refers to methods that transform
a general privacy protocol (which is essentially a noisy channel) to a protocol with a smaller amount of
communication. In addition to the communication constraint in channel simulation, generic transformation
is also required to be differentially private.

5Relative entropy coding specifically refers to channel simulation schemes with a communication cost
close to the relative entropy (Kullback-Leibler divergence) between the target distribution and the reference
distribution.
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Y = Q(X) := ∆
⌊
X

∆ + 1
2

⌋
,

where ∆ > 0 is the quantization step. The quantizer maps a continuous input X to a
discrete output Q(X) ∈ {. . . ,−2∆,−∆, 0,∆, 2∆, . . .}. The problem of such a quantizer is
that it may introduce a systematic bias to the signal. For example, if ∆ = 1, and the input
signals are usually concentrated around X ≈ 0.7, then the output will usually be 1, with a
bias upward.

To eliminate this bias, a dither signal is sometimes added to the input signal before
quantization (Gray and Stockham, 1993). Consider a dither signal W uniformly distributed
over [−1/2, 1/2]. The quantized signal is taken to be

Y = Q(X +W∆).

This method is called nonsubtractive dithering (Gray and Stockham, 1993; Wannamaker
et al., 2000) to distinguish it from another form of dithering discussed later. One can show
that E[Y |X] = X, and the quantization error Y −X is uncorrelated with X.

Nevertheless, the distribution of the quantization error Y − X still depends on X.
The best case is when X is a multiple of ∆, where there is no error. The worst case is
X = (k + 1/2)∆ for some k ∈ Z, where the error is uniform over {−∆/2,∆/2}. For the
sake of simplicity of analysis and the worst-case performance, it is desirable to have a
quantization error that is independent of X. This can be achieved by a technique called
subtractive dithering (Roberts, 1962; Schuchman, 1964; Ziv, 1985), where we subtract the
dither signal from the output of the quantizer, i.e., the final reconstruction is

Y = Q(X +W∆)−W∆.

Note that Y is the closest point to X among the reconstruction levels in {. . . , (−2 −
W )∆, (−1−W )∆, −W∆, (1−W )∆, . . .}. It can be checked that the quantization error
Y −X is uniformly distributed over [−∆/2,∆/2], independent of the input signal X. In
other words, the channel X → Y is an additive white noise channel with a uniformly
distributed noise. Refer to Figure 1.2 for an illustration. This can be regarded as the earliest
form of channel simulation. For generalizations to additive noise channels with nonuniform
noises, refer to Section 3.6.

Compared to quantization without dithering, or non-subtractive dithering, now we have
a tractable model of the channel X → Y that does not depend on how X aligns with the
quantization levels. This allows subtractively dithered quantization to perform uniformly
well regardless of the input X. In (Ziv, 1985; Zamir and Feder, 1992), it was shown that
subtractively dithered quantization has a universal quantization property, that is, it is an
almost optimal lossy compression scheme for every input distribution. This shows that
channel simulation is not only “lossy compression with a stronger distributional guarantee
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Figure 1.2: Subtractive dithering with ∆ = 1, X = 1.55. We first generate the dither signal W ∼
Unif(−1/2, 1/2), and then find the reconstruction level among {. . . ,−2−W, −1−W, −W, 1−W, . . .} that
is closest to X, and output it as Y . The figure shows the values of Y under different values of W . The
conditional distribution of the output given the input is Y |X ∼ Unif(X − 1/2, X + 1/2).

on the output”, but can also be desirable as a lossy compression scheme even if we ignore the
stronger distributional guarantee, due to its better distortion guarantee for the worst-case
input distribution. Refer to Section 1.5 for further discussion.

1.4 Machine Learning

Nonlinear transform coding. In neural image compression via nonlinear transform cod-
ing (Ballé et al., 2020), the image is mapped to a latent representation X = (X1, . . . , Xd) ∈
Rd via a neural network (the analysis transform), which can then be used to reconstruct
the image via another neural network (the synthesis transform). Since real numbers cannot
be encoded into finitely many bits, a quantization must be performed on X (e.g., 16 or
32-bit floating point numbers, or 8-bit integers) before it can be stored. A simple strategy
is to quantize each entry of X using the quantization function Q(x) := ∆bx/∆ + 1/2c with
step size ∆ > 0. Compressing X into X̂ := (Q(Xi))i=1,...,d introduces a distortion to the
latent representation, so we should take such distortion into account when we train the
networks. Nevertheless, Q(x) has zero derivative almost everywhere, making gradient-based
optimization methods impossible. It has been proposed by Ballé et al. (2017) that we
should use a proxy loss function during training, which treats the quantization output
Q(Xi) as if it is the output Yi = Xi + Zi of an additive noise channel with uniform noise
Zi ∼ Unif(−∆/2,∆/2), making the dependency between the input and the output differen-
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tiable. When computing the gradient using a batch of datapoints, we generate and fix the
noises Z = (Z1, . . . , Zd), turning the quantization layer into a layer Y = X + Z that merely
adds a bias Z, where the gradient can be readily propagated. This is an example of the
reparameterization trick (Kingma and Welling, 2013), a technique for gradient computation
on a layer given by a randomized function.

However, if we use additive noise channels during training, but use quantization for the
actual compression, this again introduces a discrepancy between training and the actual
performance (Yang et al., 2020). Minimizing the training loss under the additive noise
model may not result in a satisfactory compression under quantization. For example, when
Xi lies around a quantization boundary, the loss will be underestimated.

It turns out that we can completely eliminate the discrepancy, by performing channel
simulation for the additive noise channel Yi = Xi + Zi. One method is to apply universal
quantization (Ziv, 1985; Zamir and Feder, 1992) described in the previous section to simulate
this additive uniform noise channel, which is the basis of the neural compression algorithm by
Choi et al. (2019) and Agustsson and Theis (2020). Other techniques for channel simulation
(also known as relative entropy coding and reverse channel coding in the machine learning
literature), with additive Gaussian noise channels being popular channels to be simulated,
have been proposed for neural compression (Havasi et al., 2019; Flamich et al., 2020; Flamich
et al., 2022; Flamich et al., 2024). Refer to Figure 1.3 for an illustration.

Implicit neural representation. Another approach to image compression via neural
network is implicit neural representation (Stanley, 2007; Sitzmann et al., 2020; Tancik
et al., 2020; Dupont et al., 2021), which treats an image D as a function mapping the
coordinates (x, y) to the RGB values of the pixel at (x, y), and trains a neural network to
fit this function. The weight vector w of the network is then quantized to give the encoding
of the image. This method is flexible and can be applied to other kinds of data, such as
audio and video (Dupont et al., 2022; Guo et al., 2023; He et al., 2024a), signed distance
functions of 3D shapes (Park et al., 2019), and radiance field representations of scenes
(Mildenhall et al., 2021). In order to optimize the encoding function, the idea by Guo et al.
(2023) and He et al. (2024a) is to train a distribution PW|D=d of weight vectors (the model
posterior distribution, taken to be a Gaussian distribution) using the image D = d, instead
of a single weight vector. Relative entropy coding (Havasi et al., 2019; Maddison et al.,
2014; Flamich et al., 2022), a channel simulation technique, is then applied to simulate the
channel PW|D, so the encoder observing d can produce a description M so as to allow the
decoder observing M to recover a weight vector W following the distribution PW|D=d, and
then use a neural network with weights W to recover the image. To apply relative entropy
coding, it is also necessary to estimate the model prior distribution PW using the training
data d1, . . . ,dm.
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Figure 1.3: Top: Training of the analysis transform and the synthesis transform neural networks, where
the effect of compression is mimicked by adding a noise Z to the latent representation X to form the noisy
representation Y = X + Z (Ballé et al., 2017). Middle: The deployed image encoder and decoder using
conventional quantization, where X is quantized into X̂ and encoded into a sequence of bits M (Ballé et al.,
2017). Bottom: The deployed image encoder and decoder using channel simulation (Agustsson and Theis,
2020), where the decoder can recover Y distributed exactly as if it is corrupted by the same noise Z as in
the training.
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Neural estimator of the rate-distortion function. In the work by Lei et al. (2022),
channel simulation is employed in a neural compressor capable of compressing data to a size
close to the rate-distortion function (Section 1.5). It utilizes a property of sampling-based
channel simulation schemes (such as minimal random coding (Havasi et al., 2019), Poisson
functional representation (Li and El Gamal, 2018b; Li and Anantharam, 2021) and ordered
random coding (Theis and Yosri, 2022); see Section 3.5) that these schemes can operate
when given a sequence of candidate outputs Y1, Y2, . . . and the conditional distribution
PY |X of the channel to be simulated, both of which can be provided by the neural network
proposed by Lei et al. (2022).

Interested readers are also referred to (Choi et al., 2020) for the use of universal
quantization in the compression of the weights of a neural network, (Theis et al., 2022)
for the application of channel simulation ideas to diffusion generative models, (Isik et al.,
2024) for the use of channel simulation in the compression of model updates in federated
learning, and (Yang et al., 2023) for a comprehensive overview of channel simulation and
other techniques in neural compression.

1.5 Lossy Compression

Consider the lossy source coding setting, where the encoder compresses the source X ∈ X
into a description M = f(X) (which may be fixed-length or variable-length), and the
decoder usesM to recover the reconstruction Y = g(M) ∈ Y with distortion d(X,Y ), where
d : X × Y → R is a distortion function. The precise formulation depends on whether the
source distribution is known:

• Known source distribution. If we know X ∼ PX , there are several distortion
constraints we can impose, e.g., small excess distortion probability

P(d(X,Y ) > D) ≤ ε, (1.3)

or the expected distortion constraint

E[d(X,Y )] ≤ D. (1.4)

• Arbitrary source. If the distribution of X is unknown,6 we usually impose the
worst-case distortion constraint

sup
x∈X

d(x, g(f(x))) ≤ D. (1.5)
6Here the source is completely arbitrary. Another line of work is universal compression (Ziv and Lempel,

1977; Wyner and Ziv, 1994), where the precise distribution of the source sequence X1, . . . , Xn is unknown,
but some assumptions on the distribution are imposed (e.g. Xi are i.i.d., or stationary ergodic), though we
do not consider this line of work here.
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For the case where the source distribution is known, it was traditionally studied in the
asymptotic setting, where the source is X1, . . . , Xn

iid∼ PX , the reconstruction is Y1, . . . , Yn ∈
Y, the distortion is d(Xn, Y n) = n−1∑n

i=1 d(Xi, Yi), and we take n→∞. In this setting,
both choices of the distortion constraint (1.3) and (1.4) have the same optimal description
rate given by the rate-distortion function (Berger, 2003)7

R(D) := inf
PY |X :E[d(X,Y )]≤D

I(X;Y ).

The worst-case distortion constraint is the stronger condition, which guarantees d(X,Y ) ≤
D regardless of the source distribution, making it suitable for situations where we do not
know the source distribution, or when the source is chosen by an adversary. The optimal
description length can be given in terms of the epsilon-entropy log2 min{k : ∃y1, . . . , yk ∈
Y : ∀x ∈ X : ∃i : d(x, yi) ≤ D} (Kolmogorov, 1956). In the asymptotic setting where
X1, . . . , Xn ∈ X is arbitrary, the optimal description rate is given by maxPX R(D), where
the maximization is over source distributions PX over the support X (Berger, 1971; Csiszár
and Körner, 2011). Intuitively, if we do not know the distribution of X, then we have to
cater for the worst distribution PX that maximizes R(D).

It has been noted by Winter (2002) that channel simulation schemes can be regarded as
lossy source coding schemes. Assume that the common randomness W ∼ PW is available to
the encoder and the decoder. The encoding function isM = f(W,X), and the decoding func-
tion is Y = g(W,M). By simulating the channel PY |X , the expected distortion E[d(X,Y )]
can be controlled. A channel simulation scheme with common randomness can be converted
to a lossy source coding scheme without common randomness by fixing a value of W that
gives the smallest expected distortion. It has been shown in (Li and El Gamal, 2018b) as a
corollary of (1.1) (slightly improved in (Li, 2024)) that when the source distribution PX is
known, there exists a one-shot lossy source coding scheme (without common randomness,
but possibly with local randomness) with prefix-free description M ∈ C (where C ⊆ {0, 1}∗
is a prefix-free codebook), achieving an expected distortion E[d(X,Y )] ≤ D and expected
length8

E[|M |] ≤ R(D) + log2(R(D) + 2) + 4.01 bits.
7For vanishing excess distortion probability (ε→ 0 as n→∞) and the expected distortion constraint,

we can use fixed-length codes for M to attain the rate-distortion function (Berger, 2003). We can also have
the almost-sure distortion constraint where ε = 0 (i.e., d-semifaithful code (Ornstein and Shields, 1990)),
where prefix-free codes for M are required to attain the rate-distortion function (Zhang et al., 1997). If we
require ε = 0 and a fixed-length code, we will generally require a larger rate given by maxP̃X

R(D), where
the maximization is over distributions P̃X with a support contained in the support of PX (this is the same
rate as the case of worst-case distortion constraint) (Berger, 1971; Csiszár and Körner, 2011). We require
some regularity conditions for d, which are omitted here.

8To convert a channel simulation scheme to a lossy source coding scheme without common randomness,
we have to choose w with small E[d(X,Y )|W = w] and E[|M | |W = w]. Carathéodory’s theorem is invoked
in (Li and El Gamal, 2018b) to show that we can average over two values w1, w2 to keep both the distortion
and the expected length small, imposing a 1 bit penalty on the expected length.
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This can be regarded as a lossy analogue of Huffman coding (Huffman, 1952), in the sense
that they both show that the expected length of one-shot variable-length source coding is
within a small gap from the rate of asymptotic source coding.

Furthermore, if the common randomness W is allowed, the guarantee provided by
channel simulation that Y follows the conditional distribution PY |X can be valuable. By
designing the channel PY |X carefully, we can have the following worst-case expected distortion
constraint

sup
x∈X

E[d(X,Y ) |X = x] ≤ D. (1.6)

This constraint provides a similar guarantee as the worst-case distortion constraint for
lossy source coding with arbitrary source, in the sense that the expected distortion is
small regardless of the source distribution PX .9 Nevertheless, channel simulation under the
worst-case expected distortion constraint often requires a shorter description compared to
lossy source coding with arbitrary source.

One example is the aforementioned universal quantization setting (Ziv, 1985; Zamir and
Feder, 1992) with X ∈ [0, t] for a moderately large t, where a quantization with step size
∆ can be used to simulate the additive noise channel Y = X + Z, Z ∼ Unif(−∆/2,∆/2),
guaranteeing an average distortion ∆/4 under the absolute error distortion d(x, y) = |x− y|,
or an average distortion ∆2/12 under the squared error distortion d(x, y) = (x − y)2,
regardless of the source distribution. This is the same performance as lossy source coding
with known source distribution X ∼ Unif(0, t) via a fixed quantizer with step size ∆. In
comparison, for lossy source coding with arbitrary source, we require a quantization step ∆/2
to achieve the same worst-case distortion ∆/4 under the absolute error distortion (requiring
approximately twice as many quantization levels), or a quantization step ∆/

√
3 to achieve

the same worst-case distortion ∆2/12 under the squared error distortion (approximately√
3 times as many quantization levels). In sum, lossy source coding with known source

distribution gives a short description, whereas lossy source coding with arbitrary source
gives a longer description but has a stronger guarantee. Channel simulation achieves the
best of both worlds in this example since it has a description about as short as lossy source
coding with known source distribution, and has a worst-case guarantee that holds for every
source distribution.

Intuitively, the randomization in channel simulation allows us to “average over” different
values of x in order to produce a compression uniformly good for all values of x, similar to
how a mixed strategy provides a better worst-case expected payoff in game theory.

9We remark that (1.6) is weaker than (1.5) since (1.5) requires that the distortion is always small,
whereas (1.6) only requires that the expectation of the distortion is small. If we cannot allow the distortion
to be large due to some hard constraints of the system, then (1.5) is more suitable. However, if we are
imposing a worst-case distortion constraint merely because the source distribution PX is unknown, then
(1.6) would also be reasonable.
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1.6 Privacy

Local differential privacy. Suppose a user holds the data X, and wants to reveal some,
but not too much information about X to an untrusted server. For example, if X represents
the location of the user, he/she may want to convey an approximation location to the server
in order to obtain some restaurant recommendations in the district, but not the precise
address due to privacy concern (Andrés et al., 2013). The user would apply a randomized
algorithm, called a privacy mechanism (Dwork et al., 2006; Dwork and Roth, 2014), on
X to produce a noisy version Y , and send Y to the server instead. For instance, if X ∈ R,
one may apply an additive noise mechanism (Dwork and Roth, 2014) by adding a noise Z
to produce Y = X + Z. Two popular examples are the Gaussian mechanism (where Z is
a Gaussian random variable) and the Laplace mechanism (where Z is a Laplace random
variable) (Dwork and Roth, 2014). Ignoring the computational aspect, a privacy mechanism
can be regarded as a noisy channel PY |X , and additive noise mechanisms correspond to
additive noise channels. A popular mathematical criterion for privacy is local differential
privacy (Evfimievski et al., 2003; Kasiviswanathan et al., 2011).

Definition 1 ((ε, δ)-local differential privacy (Kasiviswanathan et al., 2011)). We say that
the conditional distribution PY |X is (ε, δ)-locally differentially private, ε, δ ≥ 0, if for every
pair x1, x2 ∈ X , and measurable set S ⊆ Y, we have

P(Y ∈ S |X = x1) ≤ eε · P(Y ∈ S |X = x2) + δ, (1.7)

where Y follows PY |X given X.

Intuitively, for two different values of the data x1, x2, the output Y given X = x1 should
have a similar distribution as the output Y given X = x2, so it is hard for a party observing
only Y to tell x1 and x2 apart. The parameter ε is called the privacy budget, whereas the
parameter δ is called the privacy leakage. If δ = 0, we omit δ and simply call (1.7) ε-local
differential privacy (also referred to as pure local differential privacy, in contrast to the case
δ > 0 called approximate local differential privacy).

But how should the user send Y to the server, preferably using as few bits as possible?
If Y is a real number, it cannot be compressed into finitely many bits. In this situation, a
quantization is often performed on Y before transmission, which retains the privacy, but
introduces an additional distortion, and may destroy the desirable statistical properties of
Y .

Observant readers would notice that this is the problem channel simulation aims to
solve. Channel simulation allows the user to send a description M of finitely many bits,
for the server (which might share a common randomness W with the user) to be able
to generate Y following the conditional distribution PY |X . For example, the generic 1-bit
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protocol is a popular method for approximately simulating a privacy-preserving channel
PY |X using only one bit of communication (Bassily and Smith, 2015). Intuitively, a good
privacy-preserving channel should be highly noisy, and a highly noisy channel with a small
capacity costs a small number of bits to simulate. The goal of privacy (to ensure Y reveals
little information about X) aligns nicely to the goal of channel simulation (to compress the
description needed to simulate PY |X as much as possible).

There is one caveat—channel simulation preserves the conditional distribution PY |X , but
it might not retain the privacy property of PY |X . The server not only knows Y , but also the
description M and the common randomness W which may reveal more information about
X (Shah et al., 2022; Shahmiri et al., 2024). For example, one simple channel simulation
scheme is to have the user send M = X and have the server generate Y |X ∼ PY |X itself,
revealing all information about X, and failing completely at privacy.

To solve this issue, we may design the channel simulation scheme with privacy taken
into account, making sure that the conditional distribution PW,M |X from the data X to the
decoder’s observation (W,M) is differentially private as well, i.e., PW,M |X satisfies Definition
1. Refer to Figure 1.4. Examples include minimal random coding (Havasi et al., 2019; Shah
et al., 2022) (Section 3.4),10 generic 1-bit protocol (Bassily and Smith, 2015) (Section 3.2.3),
local pseudo-randomizer (Feldman and Talwar, 2021) (Section 3.5.3), GenProt (Bun et al.,
2019) (Section 3.5.3), dyadic quantized Laplace mechanism (Shahmiri et al., 2024) (Section
3.6.4), and Poisson private representation (Liu et al., 2024) (Section 3.3.5).11 These schemes
(except dyadic quantized Laplace mechanism) are applicable to general privacy mechanisms
PY |X with a small privacy budget. Differentially-private channel simulation schemes that
can be applied to general PY |X are also called generic transformation in the differential
privacy literature (Bassily and Smith, 2015; Bun et al., 2019).

Distributed mean estimation and federated learning. We then discuss how channel
simulation can be applied to distributed mean estimation (Duchi et al., 2013). There are
n users with data X1, . . . ,Xn ∈ Rd, respectively, and would like to communicate to the
server so as to allow it to compute an estimate µ̂ of the mean n−1∑

i Xi. There are two
ways to impose privacy constraints—local differential privacy where the users do not want
the server to know the Xi’s precisely, and central differential privacy where the goal is only
to disallow a party who observes µ̂ to learn individual Xi’s precisely (Dwork and Roth,
2014). A prominent application is federated learning (McMahan et al., 2017; Kairouz et al.,
2021; Abadi et al., 2016; McMahan et al., 2018), where the users would like to allow the
server to train a machine learning model using the users’ data, but due to privacy concerns,

10Interestingly, minimal random coding is a channel simulation scheme with privacy guarantee, without
the need of modifications.

11Poisson private representation is the only known exact channel simulation scheme for general privacy
mechanisms with differential privacy guarantees.
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Figure 1.4: Top: An uncompressed local differential privacy mechanism, where the user applies the privacy
mechanism PY |X on the data X to produce Y and send it to the server. Privacy depends on the conditional
distribution PY |X from the data X to the observation Y of the untrusted server. Bottom: The mechanism
after being simulated via channel simulation. Privacy depends on the conditional distribution PW,M|X (not
PY |X) from the data X to the observation (W,M) of the untrusted server.

they do not want the server to learn too much about their data, and/or they do not want
the resultant model to reveal the data of individual users. Channel simulation has been
applied to distributed mean estimation and federated learning in order to compress the
communication between the users and the server, while guaranteeing local and/or central
differential privacy (Shah et al., 2022; Lang et al., 2023; Hasırcıoğlu and Gündüz, 2024;
Hegazy et al., 2024; Yan et al., 2023; Liu et al., 2024).

1.7 Distribution Preserving Quantization and Rate-Distortion-
Perception Tradeoff

Lossy compression concerns the compression of a source X, such that the reconstruction
X̂ is close to X in the sense that the distortion d(X, X̂) is small, where d is the distortion
function. However, it has been noted by Li et al. (2011) and Blau and Michaeli (2018)
that a small distortion does not equate a better perceptual quality of the reconstruction.
In addition to having a small distortion, we should also ensure that the reconstruction X̂
looks natural. In the works on distribution preserving quantization (Li et al., 2010; Li et al.,
2011) and distribution preserving lossy compression (Tschannen et al., 2018), it was argued
that a natural-looking X̂ should have the same distribution as the source X, so that it is
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impossible for an observer to tell the output X̂ apart from natural samples of X.
To capture the notion of perceptual quality, it was proposed by Blau and Michaeli

(2018) and Blau and Michaeli (2019) that we should control the divergence δ(PX , PX̂)
between the distribution of X and the distribution of X̂, where δ is a divergence between
two distributions (e.g., KL divergence, total variation distance or Wasserstein distance).
A small δ(PX , PX̂) means it is hard to tell the output X̂ apart from natural samples of
X. If we require δ(PX , PX̂) = 0, it reduces to the aforementioned distribution preserving
quantization setting.

Although conventional lossy compression schemes usually give a deterministic mapping
from X to X̂, we need to utilize randomness to guarantee perceptual quality. Consider an
example where X is a random image belonging to one of two classes: cat images and dog
images. A deterministic lossy compression scheme that compresses the image to one bit may
map every cat image to the “average” of the cat images, and map every dog image to the
“average” of the dog images. This gives a large divergence δ(PX , PX̂), and it would be easy
to tell the outputs of the scheme apart from natural images by looking at their diversity (the
outputs of the scheme will keep repeating the same two images). Furthermore, the “average”
of the cat images might not even look like a natural cat image. On the other hand, if the
encoder compresses an image to its class, and the decoder generates a random cat image
upon receiving the class “cat”, or generates a random dog image upon receiving the class
“dog”, then the output will have perfect perceptual quality. Therefore, the mapping from X

to X̂ needed for a good perceptual quality is generally not a deterministic mapping, but a
noisy channel. The compression scheme to create the best noisy channel can be regarded as
a channel simulation scheme.

To study the tradeoff between compression rate, distortion and perceptual quality,
the rate-distortion function can be generalized to the following rate-distortion-perception
function (Blau and Michaeli, 2019; Matsumoto, 2018; Matsumoto, 2019):

R(D,P ) := min
PX̂|X :E[d(X,X̂)]≤D, δ(PX ,PX̂)≤P

I(X; X̂).

One particularly interesting property is that if X, X̂ ∈ Rn and we are using the squared
error distortion d(x, x̂) := ‖x− x̂‖2, then R(D, 0) ≤ R(D/2,∞), i.e., we can achieve perfect
perceptual quality if we are willing to have a mean squared error twice as large (Blau and
Michaeli, 2019).

Operationally, a one-shot lossy compression scheme with unlimited common randomness
shared between the encoder and the decoder (Theis and Wagner, 2021) consists of a
common randomness source W ∼ PW , a (possibly stochastic) encoder PM |W,X that emits
the description M (in a discrete set, e.g., M ∈ N) given W and the source symbol X, and a
(possibly stochastic) decoder PX̂|W,M that emits the reconstruction X̂ given W,M . The goal
is to minimize the conditional entropy H(M |W ) (which is approximately how many bits are
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needed to compress M conditional on W ), under the constraint that E[d(X, X̂)] ≤ D and
δ(PX , PX̂) ≤ P . Invoking the channel simulation result (1.2) in (Li and El Gamal, 2018b),
it has been shown in (Theis and Wagner, 2021) that there exists a scheme with

H(M |W ) ≤ R(D,P ) + log2
(
R(D,P ) + 1

)
+ 4,

and hence giving an operational meaning to the rate-distortion-perception function.
Interested readers are referred to (Zhang et al., 2021; Chen et al., 2022; Wagner, 2022) for

further discussions on the rate-distortion-perception tradeoff, and (Saldi et al., 2013; Saldi
et al., 2014; Saldi et al., 2015) for generalizations of distribution preserving quantization,
where the marginal distribution of the output is constrained to be another given distribution.

Another related line of research is semantic communications (Weaver, 1953; Bao et al.,
2011; Gündüz et al., 2022; Shao et al., 2022; Erdemir et al., 2023), which concerns the
transmission of the semantic information (loosely speaking, the meaning) of the source.
Channel simulation has been applied to semantic communications in (Gündüz et al., 2022;
Pase et al., 2023).

1.8 Simulating Quantum Measurements via Classical Com-
munication

Quantum mechanics presents a different view to particles and information compared to
classical physics. But how different are they? Are they different in the same sense of how an
object’s length in meters is different from its length in feet (technically different numbers,
but effortlessly convertible)? Or are they really fundamentally different, with conversion
between them being generally impossible? To investigate the difference between classical
and quantum physics, we can study how classical resources can be converted to quantum
resources and vice versa.

A quantum bit (qubit) is a unit of quantum information, referring to a system with
two orthonormal basis states |0〉 and |1〉. Unlike a classical bit which can be either 0 or
1, a (pure state) qubit is in the form α|0〉 + β|1〉, where α, β ∈ C with |α|2 + |β|2 = 1.12

This extra generality suggests that a qubit may be “worth more than” a classical bit. How
many classical bits is a qubit worth? Quantum teleportation (Bennett et al., 1993) shows
that Alice can transfer a qubit of information to Bob by transmitting two classical bits
(assuming Alice and Bob have prior shared entanglement). On the other hand, superdense
coding (Bennett and Wiesner, 1992) demonstrates that Alice can transmit two classical bits

12Generally, a pure state of n entangled qubits is in the form
∑

i∈{0,1}n αi|i〉 where αi ∈ C with∑
i∈{0,1}n |αi| = 1.
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to Bob by sending one qubit (assuming Alice and Bob have prior shared entanglement).
This seems to suggest a “1 qubit = 2 classical bits” conversion rate.13

Nevertheless, one cannot simply treat one qubit as two classical bits (or else quantum
information theory would become so much easier). Quantum teleportation and superdense
coding require prior shared entanglement in the form of the Bell state (Bell, 1964): Alice
and Bob each holds one qubit, where the two qubits are entangled with a state |Φ+〉 =
(1/
√

2)(|00〉+ |11〉). Shared entanglement is very different from shared classical information.
Bell’s theorem (Bell, 1964) shows that no amount of classical shared randomness (i.e.,
sharing a classical random variable W among Alice and Bob; also called local hidden
variables) can simulate the Bell state. No conversion in the form “1 pair of entangled qubits
= n shared classical random bits” is possible. This is a fundamental result in quantum
mechanics, which opens up the avenue of experimentally verifying, through conducting
measurements on Bell states, that we are indeed living in a quantum reality.

We briefly describe Bell’s experiment. Assume Alice and Bob have a pair of entangled
qubits with the Bell state. Alice and Bob will measure their qubits with respect to the
operators R(x) and R(y) respectively (x, y ∈ [0, 2π)), where R(x) denotes the operator for
the von Neumann measurement

R(x) :=
(

cosx sin x
sin x − cosx

)
.

Let A,B ∈ {−1, 1} be the outcomes of Alice’s and Bob’s measurements respectively. The
joint probability matrix of A,B is given by (Brassard et al., 1999)(

1
2 cos2(x−y2 ) 1

2 sin2(x−y2 )
1
2 sin2(x−y2 ) 1

2 cos2(x−y2 )

)
. (1.8)

Bell’s theorem (Bell, 1964) states that there does not exist a classical random variable W
and functions A = f(W,x) and B = g(W, y) such that the joint distribution of A,B is (1.8)
for every x, y.

While Bell’s theorem states that it is impossible to simulate the Bell state via classical
shared randomness, it does not forbid the simulation of the Bell state via classical com-
munication. If we also allow Alice to send a classical message M to Bob that may depend
on her measurement x, i.e., (A,M) = f(W,x) and B = g(W,M, y), then it is possible to
ensure that the joint distribution of A,B is (1.8) for every x, y (Maudlin, 1992; Brassard
et al., 1999).

Characterizing how much communication and common randomness is needed to simulate
the Bell state can shed light on the gap between quantum and classical information. To this
end, various protocols have been proposed. If we allow Alice and Bob to share unlimited

13Without prior shared entanglement, a qubit can only convey one bit of classical information (Holevo,
1973; Frenkel and Weiner, 2015).
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Figure 1.5: Left: Measurement of entangled qubits. Right: Simulating the measurement via channel
simulation applied on the channel fΘ|Z (1.9).

classical common randomness / local hidden variables W before the protocol commences,
and Alice can send a fixed number of bits to Bob, then a protocol using 4 bits was given by
Brassard et al. (1999),14 and a protocol using 3 bits was given by Csirik (2002). If we allow
unlimited common randomness, and Alice can send a variable number of bits to Bob, then
a protocol using an expected 1.485 bits was given by Steiner (2000), and a protocol using
an expected 1.19 bits was given by Cerf et al. (2000).15 For the situation without common
randomness W between Alice and Bob, Massar et al. (2001) gave a protocol with expected
≤ 11 bits of interactive communications;16 and Li and El Gamal (2018a) gave a protocol
with expected ≤ 9 bits of one-way communication.

The protocols in (Steiner, 2000; Li and El Gamal, 2018a) are based on the following
observation by Feldmann (1995). Assume there is a noisy channel PΘ|Z (Θ, Z ∈ [0, 2π))
from Alice to Bob with a conditional density function

fΘ|Z(θ|z) := 1
2 max {cos(z − θ), 0} . (1.9)

Alice generates A ∼ Unif({±1}) and sends Z through the channel, where Z = x if A = 1,
or Z = x+ π mod 2π if A = −1. Bob receives Θ and outputs B = sgn(cos(y −Θ)). It can
be checked that (A,B) follows the correct joint distribution in (1.8). Therefore, any channel
simulation scheme for the channel PΘ|Z can give a protocol for simulating the Bell state. For
example, Steiner (2000) applied the rejection sampling scheme for channel simulation (see
Section 3.2), whereas Li and El Gamal (2018a) applied the dyadic decomposition scheme
(see Section 4.2). Refer to Figure 1.5 for an illustration.

It is also of interest to generalize this setting to the simulation of a system of n Bell
states. In this case, it is insufficient to simply run the protocol n times, and an exponential

14Brassard et al. (1999) also gave a protocol using 8 bits for general von Neumann measurements, not
only those parametrized by x ∈ [0, 2π).

15The bound 1.19 by Cerf et al. (2000) applies also to general von Neumann measurements.
16Massar et al. (2001) also gave a bound ≤ 20 for general positive-operator-valued measurements.
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amount of communication is needed (Brassard et al., 1999; Massar et al., 2001).
Another setting is to simulate a measurement on a quantum system held by Alice, where

the measurement result is given to Bob. We would like to simulate this measurement by
allowing Alice and Bob to share common randomness, and allowing Alice to perform classical
communication to Bob. It has been shown by Berta et al. (2014) that the asymptotic amount
of communication needed can be given in terms of the quantum mutual information.

1.9 Communication Complexity and Message Compression

Consider a two-party interactive protocol for computing a function (Yao, 1979). Alice holds
a random variable X, and Bob holds another independent random variable Y . They are
allowed k rounds of interactive communications, i.e., Alice sends message M1 (as a function
of X) to Bob, and then Bob sends message M2 (as a function of Y,M1) to Alice, and then
Alice sends messageM3 (as a function of X,M1,M2) to Bob, and so on up toMk. Their goal
is to allow Alice and Bob to compute the function f(X,Y ) at the end of the protocol with
an error probability at most ε, using the smallest amount of interactive communications
Mk = (M1, . . . ,Mk). The smallest amount of communications is called the (deterministic
ε-error) communication complexity of f , which we denote as Cε(f).17 Channel simulation
(usually referred to as message compression in the communication complexity literature)
can be applied to compress the interactive communications to an amount approximately
given by the mutual information, stripping away unnecessary parts of the message (Jain
et al., 2003; Harsha et al., 2010; Barak et al., 2010). We briefly describe the idea below.

A central problem in communication complexity is the direct sum problem (Chakrabarti
et al., 2001), which asks whether computing n copies of f requires Θ(n) times the amount of
communication needed for computing one copy of f . Suppose Alice holds an i.i.d. sequence
Xn = (X1, . . . , Xn), and Bob holds an independent i.i.d. sequence Y n = (Y1, . . . , Yn).
The direct sum problem asks whether the communication complexity for computing
f(X1, Y1), . . . , f(Xn, Yn) with an error probability at most ε, denoted as Cε(fn), has to be
Θ(n) times the communication complexity of computing one copy f(X,Y ), i.e., whether
Cε(fn) = Θ(nCε(f)).

To prove a direct sum result, one would start with the optimal protocol for computing
n copies of f with an amount of communications Cε(fn), and construct a new protocol
that computes only one copy f(X,Y ) when Alice and Bob hold X and Y respectively
(Chakrabarti et al., 2001; Jain et al., 2003; Harsha et al., 2010). If we can construct such a

17We take Cε(f) to be worst-case (over values of X and Y ) total length of M1, . . . ,Mk, which are
variable-length codewords, under the constraint that Alice and Bob can output f(X,Y ) with an error
probability at most ε (averaged over the distribution of X,Y ). Here Cε(f) is only meant to represent the
approximate amount of communication, and hence we will omit the precise definition.
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new protocol that only uses an amount of communications n−1Cε(fn), then we have shown
that simulating one copy of f cannot be less efficient than simulating n copies. One way to
construct this new protocol is to have Alice take Xi = X (where i is a fixed index) and
generate the other entries (Xj)j 6=i i.i.d. at random, Bob take Yi = Y and generate (Yj)j 6=i
i.i.d. at random, apply the optimal n-fold protocol to compute f(X1, Y1), . . . , f(Xn, Yn),
and use the i-th entry f(Xi, Yi) = f(X,Y ) only. However, this will only construct a 1-fold
protocol with an amount of communication the same as the n-fold protocol, and show
the obvious fact that Cε(f) ≤ Cε(fn). In order to reduce the amount of communication,
note that a lot of the communications M1,M2, . . . are for the calculation of irrelevant
entries (f(Xj , Yj))j 6=i, and we should strip away the irrelevant parts of M1, . . . ,Mk and
retain only the parts relevant to (Xi, Yi). Using channel simulation (1.2) on the channel
Xi →M1, Alice can compress the message M1 into a new message V1 of expected length
≈ I(Xi;M1), so that Bob can recover M1 using V1. Technically, Bob does not recover M1,
but another random variable M̃1 that has the same conditional distribution given Xi as
M1 (i.e., PM̃1|Xi = PM1|Xi), which is all that matters since we are not trying to preserve
the information in M1 about (Xj)j 6=i anyway. Next, using channel simulation (1.2) on
the channel Yi → M2 conditional on M1 (i.e., applying the channel simulation result on
the conditional distribution PYi,M2|M1=m1 if M1 = m1), Bob can compress M2 into a new
message V2 of expected length ≈ I(Yi;M2|M1). Refer to Figure 1.6 for an illustration.

Repeating this argument for each Ma, the expected total length would be

≈ I(Xi;M1) + I(Yi;M2|M1) + I(Xi;M3|M2) + · · ·

≤
k∑
a=1

I(Xi, Yi;Ma|Ma−1)

= I(Xi, Yi;Mk).

Since
n∑
i=1

I(Xi, Yi;Mk) ≤ I(Xn, Y n;Mk) ≤ H(Mk) ≤ Cε(fn),

there must exist an i such that the expected total length of the protocol is . n−1Cε(fn).
Hence, we have obtained a 1-fold protocol with expected total length approximately upper-
bounded by n−1 times the total length of the n-fold protocol. This is the main idea of the
direct sum result by Harsha et al. (2010) (also see (Chakrabarti et al., 2001; Jain et al.,
2003)).18 Interested readers are referred to (Barak et al., 2010; Braverman and Garg, 2014;
Brody et al., 2016; Rao and Yehudayoff, 2020) for more discussions on message compression
in communication complexity settings.

18Note that Cε(f) is the worst-case total length instead of the expected total length, and hence Markov’s
inequality is needed in (Harsha et al., 2010) to bound the worst-case total length.
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1.10 Coordination Problems

Consider the task assignment problem in (Cuff et al., 2010) described as follows. There
are k tasks labeled 1, . . . , k. In each time slot i = 1, . . . , n, one uniformly randomly chosen
task Xi ∼ Unif({1, . . . , k}) is assigned to Alice. After observing X1, . . . , Xn, Alice sends a
message M ∈ {1, . . . , b2nRc} at a rate R bits per time slot to Bob, allowing Bob to decide
on a sequence of tasks Y1, . . . , Yn, such that Alice and Bob will not work on the same task
at the same time, i.e., Xi 6= Yi for all i. One strategy is to take Yi to be the task after Xi in
the cyclic order (i.e., Yi = (Xi mod k) + 1), which requires a communication rate R > log2 k

for large n. Another strategy is to take Yi = 1 if Xi 6= 1, or Yi = 2 if Xi = 1, which requires
R > 1

k log2 k + k−1
k log2

k
k−1 .

The optimal strategy (Cuff et al., 2010) is not to choose Yi as a function of Xi, but to
make Xi → Yi a noisy channel. Applying channel simulation on the channel PY |X(y|x) = 0
if y = x, or PY |X(y|x) = 1/(k − 1) if y 6= x, we have a scheme that requires a rate
R > I(X;Y ) = log2

k
k−1 . This scheme also has the benefit that (Xi, Yi) is uniformly

distributed over {(x, y) ∈ {1, . . . , k}2 : x 6= y}, i.i.d. over i = 1, . . . , n. As a result, the
empirical joint distribution of (Xi, Yi)i=1,...,n tends to Unif({(x, y) ∈ {1, . . . , k}2 : x 6= y})
as n→∞, ensuring that the tasks are evenly assigned.

This setting is an example of the general study on coordination capacity (Cover and
Permuter, 2007; Cuff et al., 2010), which concerns the amount of communication needed for
the nodes in a network to simulate the desired joint distribution. There are two kinds of
distribution requirements. First, strong coordination requires the joint distribution of the
outputs of the nodes to approach the prescribed distribution (e.g., (Xi, Yi) ∼ Unif(· · · ) i.i.d.
in the task assignment problem). Second, empirical coordination only requires the empirical
joint distribution of the output sequences to approach the prescribed distribution (e.g.,
the empirical joint distribution of (Xi, Yi)i=1,...,n tends to Unif(· · · ) in the task assignment
problem).

Coordination settings can also be found in cooperative game theory, where a team of
players can cooperate through rate-limited communications in order to decide on their
actions, with a goal of maximizing their expected payoff against their opponent’s action
(Cuff, 2008). In game theory, the optimal minimax strategy is often a mixed strategy
where players select their actions at random. Hence, the players should not waste the
communication bandwidth to divulge their actions noiselessly, but should instead convey the
minimal amount of information necessary to establish the desired joint distribution given by
the mixed strategy. Empirical coordination is insufficient against an opponent who knows
the strategy,19 and strong coordination is necessary to ensure the worst-case payoff. Refer

19For example, the optimal mixed strategy for rock-paper-scissors (numbered 1, 2, 3) is Unif({1, 2, 3}).
The strategy X1 = 1, X2 = 2, X3 = 3 satisfies the empirical distribution constraint, but will lose every
match against an opponent who knows the strategy. We need X1, X2, . . . to be truly random.
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to (Gossner et al., 2006; Anantharam and Borkar, 2007; Cuff, 2013; Satpathy and Cuff,
2014; Le Treust and Tomala, 2018; Li and El Gamal, 2018a) for studies on coordination
strategies for cooperative games.

This monograph focuses almost exclusively on strong coordination, which implies
empirical coordination. For channel simulation under the empirical coordination constraint,
readers are referred to the work on the joint empirical distribution between the source and
reconstruction sequences in lossy source coding in (Kramer and Savari, 2007; Weissman
and Ordentlich, 2005).

1.11 Other Applications

For applications to statistical learning, techniques in channel simulation (more specifically,
the rejection sampling scheme (Harsha et al., 2010; Braverman and Garg, 2014)) have
been employed to study learners that use a limited amount of information from the sample
(Bassily et al., 2018). Channel simulation is applied to a minimax learning setting with
limited communication in (Li et al., 2018). The application of channel simulation via
rejection sampling to smoothed online learning was investigated by Block and Polyanskiy
(2023). Channel simulation was used by Sefidgaran et al. (2024) to reduce the communication
cost of statistical learning.

Channel simulation is related to coupling from the past (Propp and Wilson, 1996; Propp
and Wilson, 1998), a method for the exact sampling from the stationary distribution of a
Markov chain. The layered multishift coupler (Wilson, 2000), one of the earliest channel
simulation schemes for additive noise channels, was initially conceived as a technique for
coupling from the past. Refer to (Hegazy and Li, 2022) for discussions on the connections
between coupling from the past and channel simulation.

1.12 Preliminaries—Prefix-free Codes

In this section, we review some basic concepts about fixed-length and variable-length codes,
which are needed for the encoding of the description in channel simulation. For source
coding or channel simulation settings where the encoder can send a description M to the
decoder, one may impose a strict limit on the length of the description, resulting in a
fixed-length description. If we require that the description M must fit within ` bits, then
we would restrict M ∈ {0, 1}` or M ∈ {1, . . . , 2`}. For one-shot settings, we often allow a
slightly finer granularlity and impose that the cardinality of the description does not exceed
a fixed limit N, i.e., M ∈ {1, . . . ,N}, where N does not need to be a power of 2.

Alternatively, one may allow the description to be variable-length. Here we restrict
attention to prefix-free codes (Cover and Thomas, 2006). Write {0, 1}∗ =

⋃∞
`=0{0, 1}` for the
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set of bit sequences of any length. A codebook C ⊆ {0, 1}∗ satisfies the prefix-free condition
if a, b ∈ C and a 6= b implies a is not a prefix of b. We require M to be an element in a fixed
prefix-free codebook C. Prefix-free codes are also called instantaneous codes (Cover and
Thomas, 2006) since the decoder can read the bits of M one by one, and stop reading when
the sequence of bits read so far is a codeword in C, without the need of looking into the
future bits since there cannot be another longer codeword. This property makes prefix-free
codes useful for the design of decoding algorithms and communication protocols. Popular
prefix-free codes include the Huffman code (Huffman, 1952), the Shannon code (Shannon,
1948), and Elias’ codes for integers (Elias, 1975).

The performance metric of a fixed-length code is the fixed length ` or the cardinality
N, whereas the performance metric of a variable-length code is the expected description
length E[|M |]. The use of the expected length is justified by the law of large numbers. If we
repeat n times a scheme with expected length r, the total length will be close to nr with
high probability, and we can truncate or pad it to a (n+ o(n))r-bit fixed-length code with
low error probability.

The same also holds when we are concatenating different variable-length schemes. The
prefix-free condition ensures that we can concatenate two (possibly different) prefix-free
codebooks C1, C2, and the resultant codebook C = {a‖b : a ∈ C1, b ∈ C2} will still be prefix-
free.20 If we concatenate n prefix-free codewords of expected lengths r1, . . . , rn, then the
total length will likely be close to

∑n
i=1 ri. Therefore, there is no need for every component

in a file format, or every packet in a communication protocol, to have a fixed limit on the
length. As long as each component has a small expected length, the total memory usage or
traffic over the network will average out due to the law of large numbers.

Examples of prefix-free codes include the Shannon code (Shannon, 1948) and the
Huffman code (Huffman, 1952), both of which encode a random variable X into a prefix-free
codeword f(X) ∈ C with an expected length E[|f(X)|] that satisfies

H(X) ≤ E[|f(X)|] ≤ H(X) + 1 bit.
This provides a convenient way to bound the expected length, showing that it is often good
enough to bound the entropy H(M) instead of E[|M |] since it is off by at most 1 bit.

The Shannon code (Shannon, 1948), also known as the Shannon-Fano code due to
a related construction by Fano (1949), encodes x into a codeword of length |f(x)| =
d− log2 PX(x)e, and generally does not attain the smallest possible E[|f(X)|]. Its advantage
is that the expected length can be bounded even when the distribution of the actual input
deviates from the distribution PX that we design the code for. When X ∼ QX follows
another distribution, we have

EX∼QX [|f(X)|] ≤ H(QX , PX) + 1 bit,
20The same may not hold for other kinds of variable-length codes, such as uniquely decodable codes in

general (Cover and Thomas, 2006).
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where H(QX , PX) := −
∑
x∈X QX(x) log2 PX(x) is the cross entropy.

The Huffman code (Huffman, 1952) is proved to achieve the minimum E[|f(X)|],
making it the optimal choice when the distribution of X is known. Nevertheless, it does
not generally satisfy |f(x)| ≤ − log2 PX(x) + 1,21 and hence does not guarantee that
EX∼QX [|f(X)|] ≤ H(QX , PX) + 1. Therefore, Huffman code is less suitable for theoretical
guarantees when the precise actual distribution is unknown.

Prefix-free codebooks are not only useful for encoding descriptions sent by an encoder,
but also for generating random variates, for example, via the discrete distribution-generating
(DDG) tree (Knuth and Yao, 1976). This will be elaborated in Section 9.1.1.

21An example (taken from (Cover and Thomas, 2006) with a slight variation) is PX(1) = 0.35, PX(2) =
0.33, PX(3) = 0.31, PX(4) = 0.01. The Huffman code gives |f(1)| = 1, |f(2)| = 2, |f(3)| = |f(4)| = 3. We
have |f(3)| > − log2 PX(3) + 1.
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Enc DecX Y |X ∼ PY |X
M ∈ CW

W ∼ PW

Figure 2.1: One-shot channel simulation with common randomness.

2 The Channel Simulation Setting

2.1 Definition and Notations

We start with the one-shot channel simulation setting with unlimited common randomness
depicted in Figure 2.1. We first give an informal description, and then state a more precise
definition later in Definition 2. Suppose we want to simulate the channel PY |X with input
symbol X ∈ X . There is a common random source W ∼ PW available to the encoder and
the decoder. The encoder observes W and the input X ∼ PX , and sends a description M
to the decoder. The decoder uses W and M to produce Y . The goal is to have a Y that
follows the prescribed distribution PY |X given X, while minimizing the expected amount of
communication.

There are two options for the assumptions. If we assume a known source distribution
(KS), we assume X ∼ PX for a known PX , and we are allowed to design the scheme
according to PX . The scheme should have a short expected description length averaged over
X ∼ PX . If we assume arbitrary source (AS), then no PX is given, and the scheme needs to
have a short expected description length for every X ∈ X . We now define the setting more
precisely.

Definition 2 (One-shot variable-length exact channel simulation with unlimited com-
mon randomness). Consider a general (discrete/continuous) channel PY |X and a general
source distribution PX if the source distribution is known. A one-shot variable-length
channel simulation scheme with unlimited common randomness is characterized by a tuple
(PW , (Cw)w∈W , PM |W,X , PY |W,M ) described below:

• Common randomness. There is a common random source W ∈ W, W ∼ PW
available to the encoder and the decoder, where we can choose an arbitrary distribution
PW as a part of the coding scheme.

• Codebook. Let (Cw)w∈W be a family of prefix-free codebook which we can design
as a part of the coding scheme, i.e., each Cw ⊆ {0, 1}∗ is a prefix-free codebook (see
Section 1.12).
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• Encoder. The encoder observes W and a source symbol X ∈ X (X ∼ PX for known
source distribution), and sends a description M ∈ CW produced by passing W,X
through a conditional distribution PM |W,X fromW×X to {0, 1}∗ (called the encoding
Markov kernel). We require that M ∈ CW with probability 1. The encoding Markov
kernel PM |W,X represents a stochastic (randomized) encoding function. In case if the
encoding is deterministic, we can have M = f(W,X) where f :W ×X → {0, 1}∗ is
the encoding function.

• Decoder. The decoder then outputs Y ∈ Y produced by passing W,M through a
conditional distribution PY |W,M from W × {0, 1}∗ to Y (called the decoding Markov
kernel). The decoding Markov kernel PY |W,M represents a stochastic decoding function.
In case if the decoding is deterministic, we can have Y = g(W,M) where g : W ×
{0, 1}∗ → Y is the decoding function.

• Requirement. We require Y |X ∼ PY |X exactly.1

• Performance metric.

– For known source distribution, we are interested in the smallest expected length
E[|M |] of the prefix-free description M . Let

L∗ := inf E
[
|M |

]
be the infimum of the expected lengths among all schemes satisfying the require-
ment Y |X ∼ PY |X (L∗ =∞ if there is no such scheme).

– For arbitrary source, we are interested in the worst-case expected length supx∈X E[|M | | X =
x]. Now, the quantity of interest L∗ would be the infimum of the set of achievable
worst-case expected lengths among all schemes satisfying the requirement, i.e.,

L∗ = inf sup
x∈X

E
[
|M |

∣∣X = x
]
. (2.1)

be the infimum of the expected lengths among all schemes satisfying the re-
quirement Y |{X = x} ∼ PY |X(·|x) for all x ∈ X (L∗ = ∞ if there is no such
scheme).

1This can be relaxed in approximate settings, where Y only follows PY |X approximately.
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The requirement that M is a prefix-free codeword in CW ensures that the encoder can
send M through a noiseless bit channel, and the decoder would know the position where M
ends without reading any bits further than M , and hence the bit channel can be reused
for other purposes. This is because both the encoder and the decoder know W , they know
which codebook CW to use, and hence they are able to synchronize and know where M
ends. Nevertheless, most schemes (e.g., the construction used in Theorem 4 later) require
only a single codebook C that does not depend on W . We allow the flexibility of choosing
different codebooks for different values of W in the problem setting only for the sake of full
generality. The synchronization of the description M and the common randomness W will
be discussed in detail in Section 2.3.

We describe two alternative ways to describe the channel simulation setting.

Ensemble of lossy compression schemes. Another way of understanding Definition
2 is to think of a channel simulation scheme as an ensemble of lossy compression schemes
indexed by w ∈ W (Li et al., 2011). For each w, we have an encoding function x 7→ f(w, x) ∈
Cw (assuming a deterministic encoding function), and a decoding function m 7→ g(w,m)
(assuming a deterministic decoding function). Each pair of encoding and decoding function
can have their own prefix-free codebook Cw. The requirement is that the conditional
distribution of the output Y given the input X, when averaged over the ensemble W ∼ PW ,
is the prescribed channel PY |X .

Remote generation. Yet another way to interpret Definition 2 is to consider the
following remote generation/sampling problem. The encoder and the decoder share a
common random source W ∼ PW . The encoder observes a distribution P in a class of
distributions P, and sends a description M ∈ CW to the decoder (who knows the class P
but not the precise distribution P prior to receiving M), in order to allow the decoder to
produce a sample Y ∼ P . Unlike the usual sampling (or random number generation) setting
where a single party knows the distribution and produces a sample from that distribution,
here the sampling process is distributed among two parties—the encoder who knows the
distribution, and the decoder who must produce a sample. The channel simulation setting in
Definition 2 can be regarded as a remote generation setting with P = {PY |X(·|x)}x∈X , and
P = PY |X(·|X), so having Y ∼ PY |X(·|X) would mean that the channel PY |X is simulated
successfully.

The setting in Definition 2 is very general, and many other settings in this monograph
are special cases of this setting where additional constraints are imposed. We now describe
several categories of channel simulation settings and constraints (with their abbreviations
in parentheses).
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Discrete (D), Continuous output (C) or General (G) channels. The default
assumption is that PY |X is a general channel defined in an arbitrary Polish space. Some
constructions in this monograph only applies to discrete channels PY |X , where X and Y lie
in finite discrete spaces. Some other constructions only applies to channels with continuous
output, i.e., PY |X(·|x) is a continuous distribution for every x. There are also constructions
that work specifically for additive continuous noise channels, i.e., Y = X + Z where Z is a
continuous noise. The 1D case (X,Y, Z ∈ R) is denoted as “1DAC”, whereas the n-D case
(X,Y,Z ∈ Rn) is denoted as “nDAC”.

One-shot (1), Finite-blocklength (F) or Asymptotic (∞). In Definition 2, the
encoder only observes one symbol X, and the decoder only outputs one symbol Y . Such a
setting is referred to as one-shot. However, one should not treat X as just one bit or one
small input symbol to a channel. Instead, X,Y can be anything, from numbers to sequences
to images to any random object one can define. This is why one-shot is regarded as the
most general setting. Nevertheless, there are situations where one may want to restrict
attention to the case where X = (X1, . . . , Xn) is an i.i.d. sequence, Y = (Y1, . . . , Yn) is
also a sequence, and the channel to be simulated P (y1, . . . , yn|x1, . . . , xn) =

∏n
i=1 P (yi|xi)

is memoryless. This is referred to as finite-blocklength when n is finite, and asymptotic
when n→∞. The benefit of the asymptotic setting is that one can often apply the law of
large numbers to obtain simpler results (e.g., the reverse Shannon theorem (Bennett et al.,
2002) stated in terms of the channel capacity). The asymptotic setting will be discussed in
Sections 5, 6 and 7.

Approximate (A) or Exact (E). In Definition 2, we require Y to follow the conditional
distribution PY |X exactly. While we focus on the exact setting in this section, it is also
possible to relax this condition, and only require Y to approximately follow PY |X under
a certain metric. One-shot approximate settings (e.g. likelihood encoders (Cuff, 2013;
Watanabe et al., 2015; Song et al., 2016) and minimal random coding (Havasi et al., 2019;
Flamich et al., 2020)) will be discussed in Section 3.4 and Section 8, and the asymptotic
fixed-length approximate setting will be discussed in Sections 5, 6 and 7.

Fixed-length (FL) or Variable-length (VL) description. While Definition 2 allows
a variable-length description M ∈ CW ⊆ {0, 1}∗. One may also require a fixed-length
description. If we require that the description M must fit within ` bits, then we would
restrict M ∈ C = {0, 1}`. For one-shot settings, we often allow a slightly finer granularlity
and impose that the cardinality of the description does not exceed a fixed limit N, i.e.,
M ∈ {1, . . . ,N}, where N does not need to be a power of 2. However, requiring a fixed-length
description often necessitates relaxing the distribution constraint on Y to an approximate
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constraint. The one-shot approximate fixed-length setting will be discussed in Section 8,
and the asymptotic approximate fixed-length setting will be discussed in Sections 5, 7. It is
possible to have fixed-length description with exact distribution constraint, which will be
briefly discussed in Section 3.7, though it does not appear to yield elegant results, and may
result in a significant penalty on the description length.

Known source distribution (KS) or Arbitrary source (AS). If the source dis-
tribution X ∼ PX is known, then we can design the scheme according to PX , and we are
interested in the expected length E[|M |]. If the source distribution is not known, then
we cannot design the scheme according to PX , and we are interested in the worst-case
expected length E[|M |] among all input distribution PX . It is straightforward to show that
the worst-case expected length is supx∈X E[|M | | X = x]. The arbitrary source case is
perhaps closer to the usual interpretation of channels which can accept any input with or
without known distribution. For results that apply to both known source distribution and
arbitrary source, we denote them as “KAS”.

No / Limited / Unlimited common randomness (NCR / LCR / UCR). Defini-
tion 2 allows the encoder and the decoder to share the common randomness W . We often do
not mind the amount of common randomness, and allow PW to be any (discrete/continuous)
distribution. Unlimited common randomness is actually not an unreasonable assmption,
which will be explained in Section 2.3. Nevertheless, if one cannot tolerate any common
randomness, channel simulation is possible without any common randomness, but often at
the expense of more complicated schemes that require more communication. Channel simu-
lation without common randomness will be discussed in Sections 4, 6. One can also impose
a limit on the common randomness and study the tradeoff between common randomness
and communication, which will be discussed in Section 7. One can even limit the amount
of local randomness available at the encoder and the decoder, which will be discussed in
Section 9.4.

Privacy. As discussed in Section 1.6, if we intend to keep the data X private from the
decoder, it is not sufficient to ensure that the channel PY |X is differentially private since
the decoder also knows (W,M). The actual “channel” mapping the data to the information
at the decoder is PW,M |X instead of PY |X . We say that the channel simulation scheme is
(ε, δ)-locally differentially private (Dwork et al., 2006; Shah et al., 2022; Shahmiri et al.,
2024) if the conditional distribution PW,M |X is (ε, δ)-locally differentially private (Definition
1). Given that the channel PY |X to be simulated is differentially private, it is often of
interest to determine whether PW,M |X is still differentially private.
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Channel simulation results in this monograph will be labelled by the aforementioned
abbreviations to indicate their assumptions. Refer to the Notations section for a lookup
table. For example, the one-shot exact variable-length channel simulation setting for a
general channel PY |X with known source distribution and unlimited common randomness
is abbreviated as “G/1/E/VL/KS/UCR”. In this setting, the minimum expected length of
the prefix-free description L∗ is bounded in terms of the mutual information I = I(X;Y )
by (Harsha et al., 2010; Li and El Gamal, 2018b; Li, 2024)

I ≤ L∗ ≤ I + log2(I + 2) + 3 bits.

This will be elaborated in Section 3.

2.2 Overview of Various Channel Simulation Approaches

We give an overview of various approaches to constructing channel simulation schemes
discussed in this monograph.

Rejection sampling (G/1/E/VL/KAS/UCR). In Section 3.2, we study how the
rejection sampling scheme for random number generation can be viewed as a channel
simulation scheme, which is one of the earlier approaches to channel simulation (Steiner,
2000). The greedy version of the rejection sampling scheme (Harsha et al., 2010) was the
first one-shot channel simulation scheme attaining an expected length close to the mutual
information.
Properties:

• One-shot, exact, variable-length, known or arbitrary source distribution, requires
unlimited common randomness.

• General (discrete/continuous) sources and channels.

• Greedy rejection sampling (Harsha et al., 2010; Flamich and Theis, 2023) attains an
expected length of

E[|M |] ≤ I(X;Y ) + log2
(
I(X;Y ) + log2(4e)

)
+ log2(8e) bits

in one-shot, and hence is asymptotically optimal (attains the asymptotic rate I(X;Y )).

• (Non-exact) variants that ensure differential privacy exist (Bassily and Smith, 2015;
Feldman and Talwar, 2021) (Sections 3.2.3, 3.5.3).

• Causal sampling scheme (Liu and Verdú, 2018) (see Section 3.5).

42



Exponential and Poisson functional representation (G/1/E/VL/KAS/UCR).
In Section 3.3, we study how a Poisson process can be used as a codebook, giving a one-shot
channel simulation scheme attaining an expected length close to the mutual information,
with a proof of Theorem 4 with a small constant. This is the approach investigated in (Li
and El Gamal, 2018b; Li and Anantharam, 2021).
Properties:

• One-shot, exact, variable-length, known or arbitrary source distribution, requires
unlimited common randomness.

• General (discrete/continuous) sources and channels.

• Attains an expected length of

E[|M |] ≤ I(X;Y ) + log2
(
I(X;Y ) + 2

)
+ 3 bits

in one-shot (the best known constant), and hence is asymptotically optimal (Li and
El Gamal, 2018b; Li, 2024).

• Exact variants that ensure differential privacy exist (Liu et al., 2024) (Section 3.3.5).

• Noncausal sampling scheme (Liu and Verdú, 2018) (see Section 3.5).

Likelihood encoder and minimal random coding (G/1/A/FL/KAS/UCR). In
Section 3.4, we will return to a more conventional approach of generating a fixed-size
codebook in an i.i.d. manner, with a likelihood encoder (Cuff, 2013; Watanabe et al., 2015;
Song et al., 2016) for choosing a codeword randomly (for known source distribution). This
is closely related to minimal random coding (Havasi et al., 2019; Flamich et al., 2020) (for
arbitrary source). In Section 3.5.3, we also discuss ordered random coding (Theis and Yosri,
2022), a variant of minimal random coding that also combines ideas of Poisson functional
representation. The analysis is deferred to Section 5.6.
Properties:

• One-shot, approximate (with vanishing total variation distance), fixed-length, known
or arbitrary source distribution, requires unlimited common randomness.

• General (discrete/continuous) sources and channels.

• Asymptotically optimal.

• Ensures 2ε-differential privacy if PY |X ensures ε-differential privacy (Shah et al., 2022).

• Noncausal sampling scheme (see Section 3.5).
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Subtractively dithered quantization and layered randomized quantizers (AC/
1/E/(FL or VL)/KAS/UCR). In Section 3.6, we return to the earliest example of
channel simulation for additive uniform noise channels via subtractive dithering (Roberts,
1962; Schuchman, 1964; Ziv, 1985; Gray and Stockham, 1993), and discuss how it can be
generalized to nonuniform noises via layered randomized quantizers (Wilson, 2000; Hegazy
and Li, 2022).
Properties:

• One-shot, exact, fixed or variable-length, known or arbitrary source distribution,
requires unlimited common randomness.

• (Scalar/vector) additive noise channels with continuous noises only.

• One shot exactly optimal for uniform noise (in the sense of minimizing the conditional
entropy).

• In the large-SNR asymptotic setting (X is uniform over a large set), direct layered
randomized quantizer is optimal (Hegazy and Li, 2022).

• A variant that ensures differential privacy for additive Laplace noise exist (Shahmiri
et al., 2024) (Section 3.6.4).

• Not a sampling scheme.

Dyadic decomposition (C/1/E/VL/KAS/NCR). In Section 4.2, we discuss the
dyadic decomposition scheme for simulating continuous channels (Li and El Gamal, 2017;
Li and El Gamal, 2018a). The dyadic decomposition scheme has the advantage that it does
not require any common randomness. Nevertheless, the results are often not stated in terms
of the mutual information unless additional assumptions on X,Y are imposed.
Properties:

• One-shot, exact, variable-length, known or arbitrary source distribution, does not
require any common randomness.

• Continuous channels only.

• Attains an expected length within a constant gap from I(X;Y ) in one-shot for jointly
log-concave distributions over R2.

• Not differentially private.

• Not a sampling scheme.
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Soft covering (G/(1 or F or ∞)/A/FL/KS/(N or L or UCR)). In Sections 5, 6
and 7, we discuss the soft covering lemma (Wyner, 1975a; Cuff, 2013) or channel resolvability
(Han and Verdú, 1993), which is a popular theoretical tool for proving asymptotic channel
simulation results, and various results that can be proved using this lemma. The one-shot
soft-covering lemma will be discussed in Section 8.
Properties:

• Asymptotic (though one-shot bounds exist), approximate (with vanishing total varia-
tion distance), fixed-length, known source distribution, no/limited/unlimited common
randomness.

• General (discrete/continuous) sources and channels (though most existing analyses
focus on discrete).

• Asymptotically optimal.

• Not differentially private, but can be made secure against an eavesdropper that only
observes the description but not the common randomness (Cuff, 2013) (Section 10.4).

• Noncausal sampling scheme.

Method of types (D/∞/E/VL/KAS/UCR). In Section 5.2, we will discuss the
original asymptotic channel simulation scheme with unlimited common randomness in
(Bennett et al., 2002), which divide the input sequence into type classes, and transmit the
index of the input-output pair within the joint type class.
Properties:

• Asymptotic, exact, variable-length, known or arbitrary source distribution, exponentially-
large common randomness.

• Discrete sources and channels only.

• Asymptotically optimal.

• Not differentially private.

• Noncausal sampling scheme.

Table 2.1 compares these approaches and highlights their advantages and disadvantages.

Remark 3. The meaning of the columns of Table 2.1 are explained in Section 2.1. “1D
additive unimodal noise channels” means “general 1-dimensional additive noise channel with
continuous unimodal noise distribution”. “n-D add. cont. noise channel” means “general
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Classical rejection sampling 3.2.1 X X X X X X X X X X X X X X

Greedy rejection sampling 3.2.2 X X X X X X X X X X X X X X

Approximate rejection sampling 3.2.3 X X X X X X X X X X X X X X

Sriramu-Wagner 5.1 X X X X X X X X X X X X X –

Generic 1-bit protocol 3.2.3 X X X X X X X X X – – – X X

Rejection

sampling

Local pseudo-randomizer 3.5.3 X X X X X X X X X X X X X X

Poisson functional representation 3.3 X X X X X X X X X X X X X X

AD* coding 3.3.5 Y ∈ R X X X X X – X X X X

Greedy Poisson rejection samp. 3.5.3 X X X X X X X X X X X X X X

Poisson

process

Poisson private representation 3.3.5 X X X X X X X X X X X X X X

Minimal random coding 3.4 X X X X X X X X X X X X X XImportance

sampling Ordered random coding 3.5.3 X X X X X X X X X X X X X X

Simple quantization 3.6.1 X X X X X X X X X X X X X –

Direct layered quantizer 3.6.2 X X X X X X X X X – X X X –

Shifted layered quantizer 3.6.2 X X X X X X X X X – X X X –

Shift-periodic quantizer 3.6.3 X X X X X X X X X X X X X –

Rejection-sampled univ. quant. 3.6.3 X X X X X X X X X X X X X –

Rotated dithered quantization 3.6.4 Gaussian only X X X X X X X X X –

Dithered

quantization

Dyadic quantized Laplace 3.6.4 Laplace only X X X X X – X X X –

Nonnegative matrix factorization 4.1 X X X X X X X X X X X – X –

Dyadic decomposition 4.2 X X X X X X X X X X X X X –

Soft covering 7.1 X X X X X X X X X X X X X X

Method of types 5.2 X X X X X X X X X X X – X X

Table 2.1: Properties of various channel simulation schemes. Refer to the “Section” column for details and
references. There is no single scheme that is the best in all aspects, and the choice of scheme should depend
on which properties are desired in the particular scenario. “–” means “not applicable”. Refer to Remark 3
for explanations.
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n-dimensional additive noise channel with continuous noise distribution”. “Asymptotically
optimal” means that when applied to simulate n copies of the channel PY |X with known
source distribution, i.e., Xn ∼ PnX and Y n|Xn ∼ PnY |X (perhaps approximately), the
description rate approaches I(X;Y ) as n→∞.2 “Logarithmic gap from optimum” means
that for one-shot simulation with known source distribution, we have an expected description
length I(X;Y ) +O(log(I(X;Y ) + 1)).3 “Constant gap from opt. for high SNR” means that
when applied on the additive noise channel Y = X + Z with X ∼ Unif(0, t) (or X uniform
over a large ball for n-dimensional channels), the expected description length of the scheme
is within a constant away from the optimum when t→∞ (see Sections 3.6.2 and 3.6.3).4
The meaning of “causal sampling scheme” is explained in Section 3.5.5

2.3 Why Unlimited Common Randomness? Why Prefix-free?
Why Expected Length?

One may have several questions regarding Definition 2: Why can we assume unlimited
common randomness? Why do we use variable-length prefix-free codes? Why is the expected
length E[|M |] a reasonable performance measure?

The answer to the first question is simple: because common randomness is everywhere.
True common randomness can be shared between the encoder and the decoder in advance,
for example, by storing a pre-generated common sequence of random numbers generated
from a true random source. Alternatively, they can use publicly available randomness sources,
sometimes known as random beacons (Rabin, 1983; Clark and Hengartner, 2010), such as
a satellite broadcasting random numbers at regular time intervals (Rabin, 1983), stock
market data (Clark and Hengartner, 2010), lotteries data (Bowe et al., 2017), blockchain
data (Bowe et al., 2017), and a book containing lots of random digits (RAND Corporation,
2001).

Nevertheless, in practice, we do not usually require true randomness, and pseudo-
randomness is often used instead. The encoder and the decoder can share a common random
seed (e.g., 64-bit) beforehand using a small amount of communication, and use it to initialize
two synchronized pseudorandom number generators (PRNGs), which will allow them to
generate a practically unending shared stream of random numbers, providing the common
randomness needed for all tasks that await them in the future. The amount of actual

2This is not applicable if the scheme only applies to 1D channels, or if the distribution of (Xn, Y n) does
not approach PXPY |X as n→∞.

3This is not applicable if the distribution of (X,Y ) does not approach PXPY |X as the description length
grows.

4This is not applicable if the scheme is not applicable to 1D additive noise channels with continuous
noise, or if the distribution of (X,Y ) does not approach PXPY |X as the description length grows.

5This is not applicable if the scheme is not a sampling scheme.
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communication needed (the 64-bit random seed) is significantly smaller than the amount
of (pseudo)randomness that can be generated by the PRNGs. Common randomness is so
inexpensive that even an unlimited amount is realistically achievable.

The first usage of synchronized PRNGs to generate unlimited common randomness in
channel simulation appeared in the pioneering work on subtractive dithering by Roberts
(1962), which used synchronized PRNGs to generate the dither signals (see Section 3.6).
The assumption that common randomness can be generated by synchronized PRNGs has
become quite common in the study of subtractive dithering (Zamir and Feder, 1992),
channel simulation (Havasi et al., 2019; Agustsson and Theis, 2020; Flamich et al., 2020)
and differential privacy (Bassily and Smith, 2015), though it is not without practical
concerns (Gray and Stockham, 1993; Wannamaker et al., 2000). One concern is that the
output of a PRNG is not truely random, and is merely a deterministic function of the
seed, so it may violate the mathematical properties of ideal common randomness (Gray
and Stockham, 1993). Whether PRNGs are acceptable substitutes for true randomness is
an interesting discussion that is out of the scope of this monograph. Interested readers
are referred to (Kneusel, 2018). This monograph adopts the common strategy of works on
randomized algorithms—assume the availability of true randomness in theoretical analyses,
and utilize PRNGs when discussing implementation aspects of the algorithms. If one prefers
schemes that do not make the theoretically questionable assumption that unlimited common
randomness can be generated from a finite seed, one may instead use the channel simulation
schemes that require no common randomness in Section 4.

To answer the remaining questions, let us study the following practical scenario. We
are compressing a heterogeneous data sequence X1, . . . , Xn and transmitting it through
a bit stream (over a network or into a file), where each Xi ∼ PXi may follow a different
distribution. For example, for an image or audio, different frequency components may have
different distributions, and the entries in the metadata (e.g. resolution, date and location of
creation, etc.) may even be lying in completely different spaces. We want the reconstructed
sequence Y1, . . . , Yn to follow some prescribed conditional distributions Yi|Xi ∼ PYi|Xi . To
achieve this,

• The encoder first initializes a PRNG using a random seed S and writes the seed to
the bit stream.

• Then, for each i = 1, . . . , n, the encoder...

– uses the PRNG to generate the common randomness Wi; and
– applies a one-shot channel simulation scheme with common randomness Wi to

encode Xi into Mi ∈ Ci,Wi , and writes Mi to the bit stream.

• The decoder first reads S from the bit stream and initializes a PRNG.
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• Then, for each i = 1, . . . , n, the decoder...

– uses the PRNG to generate Wi;
– uses the prefix-free codebook Ci,Wi to obtain Mi from the bit stream; and
– uses one-shot channel simulation to decode Mi into Yi.

The Mi’s being prefix-free codewords guarantees that they can be concatenated even
if they belong to different codebooks, and the encoder and the decoder will always be
synchronized. Although unlimited common randomness might sound prohibitive, practically
it only amounts to adding a small random seed at the beginning of the file.

Each channel simulation scheme that maps Xi to Yi is a tiny component in the overall
scheme, which must behave “responsibly”. This means:

• They must keep the encoder and decoder synchronized, so the bits in the stream
corresponding to different indices i’s will not interfere each other. This is achieved by
the use of prefix-free codes.

• They are allowed to use the PRNGs synchronized between the encoder and the
decoder, which is an inexpensive “public resource” available to all components of the
scheme. However, they must keep the PRNG synchronized after the scheme, so it can
be reused for other tasks later. This means the encoder and the decoder must use
their PRNGs the same number of times.

• The expected communication E[|Mi|] should be as little as possible.

Law of large numbers tells us that the total length is approximately
∑n
i=1 E[|Mi|]. Therefore,

as long as each component fulfil its responsibility to minimize E[|Mi|] separately, the total
length will also be approximately minimized. Compared to conventional block codes in
information theory where the whole sequence X1, . . . , Xn is encoded together, the one-
shot variable-length approach, such as Huffman coding (Huffman, 1952) and the channel
simulation schemes in this section, is more “modular” in the sense that the code for each Xi

can be designed separately, allowing the code to be simpler and applicable to heterogeneous
data. It also allows the decoder to obtain Y1, . . . , Yn in a streaming manner, reducing the
delay.

If the channel simulation scheme is a small component of a larger picture, it is reasonable
to minimize the expected length E[|M |]. On the other hand, if this one channel simulation
scheme is the main part of the whole protocol (e.g., if we are compressing a large image or
video by one use of a giant monolithic channel simulation scheme), and there is a strict limit
on the number of bits used by the protocol, then we no longer have law of large numbers to
help us, and we should instead give a small upper bound on |M |, i.e., we should minimize
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ess sup |M |. This is the same as using fixed-length schemes where M is always a fixed-length
bit sequence. Unfortunately, fixed-length exact channel simulation does not admit schemes
and analyses as elegant as those for variable-length description. This will be briefly discussed
in Section 3.7. It is also possible to relax the exact constraint on the distribution of Y
to an approximate one, which will be discussed in Sections 5, 7, 8. Fixed-length schemes
may require a significantly longer description than variable-length schemes, for the same
reason that fixed-length lossless compression is less efficient than variable-length lossless
compression (e.g., Huffman code)—the fixed-length encoding fails to adapt to the variability
of the amount of information in the input X.
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3 One-shot Channel Simulation with Unlimited Common
Randomness

This section concerns one-shot channel simulation with unlimited common randomness
(Definition 2). It is mostly devoted to the simulation of general channels in the one-shot
exact variable-length case with unlimited common randomness, abbreviated as “G/1/E/
VL/KAS/UCR”, though we will also discuss schemes for restricted classes of channels and
approximate schemes. The central result in this section is that the minimum expected
length is approximately the mutual information I(X;Y ) for known source distribution, and
approximately the channel capacity C for arbitrary source.

Theorem 4 (G/1/E/KAS/UCR (Harsha et al., 2010; Li and El Gamal, 2018b)). For the
one-shot exact variable-length channel simulation setting for a general (discrete/continuous)
channel PY |X with unlimited common randomness:

• For known source distribution, the minimum expected length of the prefix-free descrip-
tion L∗ is bounded in terms of the mutual information I = I(X;Y ) by

I ≤ L∗ ≤ I + log2(I + 2) + 3 bits.

• For arbitrary source, the minimum worst-case expected length of the prefix-free de-
scription L∗ is bounded in terms of the channel capacity C := supPX I(X;Y ) by

C ≤ L∗ ≤ C + log2(C + 2) + 3 bits.

Note that the lower bounds L∗ ≥ I (for known source distribution) and L∗ ≥ C (for
arbitrary source) are immediate since E[|M |] ≥ H(M) ≥ I(X;M |W ) ≥ I(X;M,W ) ≥
I(X;Y ) due to I(X;W ) = 0 and the Markov chain X ↔ (M,W )↔ Y .

The earliest form of this result was proved by Harsha et al. (2010), who showed that
for discrete channels, L∗ ≤ I + (1 + o(1)) log2(I + 1) for known source distribution, and
L∗ ≤ C+(1+o(1)) log2(C+1) for arbitrary source, using a rejection sampling scheme. This is
improved by Braverman and Garg (2014) to L∗ ≤ I+log2(I+1)+O(1) for discrete channels
and known source distribution. The first result for general (discrete/continuous) channels
in the form of Theorem 4 was given by Li and El Gamal (2018b) using a construction
called the Poisson functional representation. More recent analyses on the rejection sampling
scheme can be found in (Liu and Verdú, 2018; Flamich and Theis, 2023). In Section 3.3, we
will present the proof of Theorem 4 using the Poisson functional representation construction
in (Li and El Gamal, 2018b; Li and Anantharam, 2021; Li, 2024), which gives the smallest
constants for the bound in Theorem 4 to the best of the author’s knowledge.1

1Li and El Gamal (2018b) gave the bound I + log2(I + 1) + 5. This was improved by Li and Anantharam
(2021) to I + log2(I + 1) + 4.732. The bound I + log2(I + 2) + 3 in Theorem 4, which is the best bound to
the best of the author’s knowledge, was given by Li (2024) using a slightly improved analysis.

51



PY |XX Y φX Y = φ(W,X)

W ∼ PW

Figure 3.1: The conditional distribution formulation (left) and the functional formulation (Shannon, 1948)
(right) of a channel.

Regarding the logarithmic term in Theorem 4, it was shown by Braverman and Garg
(2014) that the logarithmic term is necessary for upper bounds that are stated only in
terms of the mutual information I = I(X;Y ), in the sense that there is a sequence of
source-channel pairs (PX , PY |X) where I →∞ and L∗ ≥ I + log2(I + 1) + c where c is a
constant. An explicit constant c = −1 is given by Li and El Gamal (2018b). Note that this
does not mean L∗ ≥ I + log2(I + 1) + c in general (e.g., if X = Y ∼ Unif({0, 1}`), then we
have L∗ = I = `).

This section is organized as follows. In Section 3.1, we present a useful view of the
channel simulation setting with unlimited common randomness as a functional representation
problem. In Sections 3.2, 3.3 and 3.4, we present three approaches to the simulation of
general channels. These approaches are examples of sampling schmes, which are explained
in Section 3.5. In Section 3.6, we discuss schemes based on dithering quantization for the
simulation of additive noise channels. In Section 3.7, we discuss one-shot exact fixed-length
channel simulation.

3.1 Functional Representation Lemma

Before we continue with the channel simulation discussion, let’s take a huge step back and
ask, what is a channel? We often think of a channel as a conditional distribution PY |X ,
which we call the conditional distribution formulation. However, in Shannon’s original model
of a communication channel (Shannon, 1948) (see Figure 3.1), a channel is instead given
as a deterministic function φ : W × X → Y mapping the input X and a random noise
W ∼ PW independent of X to the output Y , which we call the functional formulation.
In the conditional distribution formulation, the channel is a “random mapping” from X

to Y . In the functional formulation, the channel is a deterministic mapping φ, and all its
randomness comes from the noise W .

For special cases such as additive noise channels where φ(w, x) = x+ w, it is apparent
that it can be expressed using either formulation. It turns out that the two formulations
of channels are equivalent in general. This fact is known as the functional representation
lemma (El Gamal and Kim, 2011; Hajek and Pursley, 1979; Willems and Meulen, 1985;
Kallenberg, 2002), which states that for any conditional distribution PY |X , there exists a
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distribution PW and a function φ : W × X → Y such that if X ∼ PX is independent of
W ∼ PW , and Y = φ(W,X), then (X,Y ) ∼ PXPY |X .2

Given a conditional distribution PY |X , its functional representation (PW , φ) may not be
unique. For instance, for the binary symmetric channel where X,Y ∈ {0, 1}, PY |X(1|0) =
PY |X(0|1) = α ∈ [0, 1/2], we can take W ∼ Bern(α) and Y = X ⊕W (exclusive or), or
take PW (0) = PW (1) = α, PW (2) = 1− 2α, and Y = W if W 6= 2, and Y = X if W = 2.
There is no “canonical” way to find the functional representation (PW , φ). However, some
representations may be better under certain metrics. For example, we may choose “the
noise W that is the most informative about the output Y ”, i.e., the representation that
maximizes I(W ;Y ), or equivalently, minimizes H(Y |W ). Loosely speaking, this noise W
will decompose the output Y into “the part that comes from the noise” I(W ;Y ), and “the
part that comes from the input” H(Y |W ). Under this criterion, for the binary symmetric
channel, the former representation gives H(Y |W ) = 1, whereas the latter representation
gives H(Y |W ) = 1 − 2α, and hence we would choose the latter representation over the
former.

The functional representation of a channel is closely related to the channel simulation
setting. A channel simulation code (PW , (Cw)w∈W , f, g) with deterministic encoding function
f :W ×X → {0, 1}∗ and deterministic decoding function g :W × {0, 1}∗ → Y corresponds
to the functional representation (PW , φ) where φ(w, x) = g(w, f(w, x)).3 For the other
direction, given a functional representation (PW , φ) of PY |X , we can construct a code for
channel simulation (with known source distribution) by taking the common randomness to
be W , the encoding function f(w, x) to be the encoding of y = φ(w, x) in the Huffman code
constructed using the distribution PY |W (·|w) (we take the prefix-free codebook Cw to be the
Huffman codebook constructed using the distribution PY |W (·|w)), and the decoding function
g(w,m) to be the decoding of m into y = φ(w, x) using the Huffman code constructed using
the distribution PY |W (·|w). The expected length of the encoding is bounded by

H(Y |W ) ≤ E[|M |] ≤ H(Y |W ) + 1.

The optimality of Huffman code implies that this construction is optimal among channel
simulation codes corresponding to the same functional representation (PW , φ).

Therefore, the problem of finding the optimal channel simulation code with known
source distribution is approximately equivalent to finding the functional representation
(PW , φ) with the smallest conditional entropy H(Y |W ). Define the minimal conditional

2Refer to (El Gamal and Kim, 2011) for a proof for the discrete case, and Kallenberg, 2002, Prop. 6.13
for the general case.

3If encoding and decoding are stochastic, we can always move the local randomness at the encoder and
the decoder to the unlimited common randomness W . Therefore, without loss of generality, we can assume
that encoding and decoding are deterministic, and all the randomness in the scheme is contained in W . This
argument works only when privacy is not a concern, since moving the local randomness at the encoder to W
may harm the privacy, considering that the decoder has access to W .
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Figure 3.2: Functional representation and channel simulation.

entropy as (Li and El Gamal, 2018b)4

H∗ := inf
PW |X,Y :W⊥⊥X,H(Y |X,W )=0

H(Y |W ). (3.1)

Note that the condition W ⊥⊥ X and H(Y |X,W ) = 0 means that (PW , φ) is a functional
representation of the channel PY |X for some φ. The answer to the channel simulation
problem is within one bit from H∗:

H∗ ≤ L∗ ≤ H∗ + 1.

Moreover, we have the following lower bound, which was observed in (Li and El Gamal,
2018b).

Proposition 5. We have

I(X;Y )
(a)
≤ H∗ ≤ L∗ ≤ H∗ + 1, (3.2)

and equality holds in the lower bound in (a) if there exists a functional representation
(PW , φ) with X ↔ Y ↔W forming a Markov chain (e.g., if W is a function of Y ).

Proof. If W ⊥⊥ X and H(Y |X,W ) = 0, then

H(Y |W ) = I(X;Y |W )
= I(X;Y |W ) + I(X;W )
= I(X;Y ) + I(X;W |Y )
≥ I(X;Y ).

Equality holds if X ↔ Y ↔W forms a Markov chain.

Theorem 4 says that the mutual information lower bound in Proposition 5 is tight within
a logarithmic gap. In the following sections, we will investigate various code constructions
for the channel simulation problem, and how close they are to the mutual information lower
bound.

4Li and El Gamal (2018b) studied the excess functional information instead, defined as Ψ = H∗−I(X;Y ).
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3.2 Rejection Sampling
3.2.1 Classical Rejection Sampling

Rejection sampling (Devroye, 1986) is a popular method for random number generation,
which, interestingly, can also serve as a channel simulation method. Early examples of
applications of rejection sampling for channel simulation include the simulation of the Bell
state via communication by Steiner (2000), and the direct sum result in communication
complexity by Jain et al. (2003). Rejection sampling is also the basis of the schemes in
(Harsha et al., 2010; Braverman and Garg, 2014).

We review the rejection sampling construction. Suppose we can generate random
variates from a reference distribution Q is a distribution over Y, and we have generated
Ȳ1, Ȳ2, . . .

iid∼ Q. We have also generated U1, U2, . . .
iid∼ Unif(0, 1) independent of (Ȳi)i∈N+ .

Now we want to obtain a random variate from another distribution P satisfying P � Q, i.e.
P is absolutely continuous with respect to Q. To do so, we will read (Ȳi, Ui) one by one, and
accept the first (Ȳi, Ui) where Ui ≤ γ dP

dQ(Ȳi), where dP
dQ is the Radon-Nikodym derivative,5

and γ is a constant satisfying γ dP
dQ(y) ≤ 1 for all y ∈ Y. In other words, we output

Y = ȲK , where K := min
{
i ∈ N+ : Ui ≤ γ

dP
dQ(Ȳi)

}
.

It can be checked that Y ∼ P follows the desired distribution. Since the acceptance
probability at each iteration is

P
(
Ui ≤ γ

dP
dQ(Ȳi)

)
=
∫
Y
γ

dP
dQ(Ȳi)Q(dy) = γ,

the distribution of K is Geom(γ), i.e., the geometric distribution with support N+ and
parameter γ.

It was observed by Steiner (2000) that the rejection sampling scheme can be treated
as a remote generation scheme, and hence a channel simulation scheme. The encoder and
the decoder agree on a reference distribution Q, and share the common randomness W =
(Ȳi)i∈N+ . Suppose the encoder observes a distribution P , and wants the decoder to produce a
sample from P . To accomplish this, the encoder applies rejection sampling to obtain the index
K := min{i ∈ N+ : Ui ≤ γ dP

dQ(Ȳi)} using the local randomness U1, U2, . . .
iid∼ Unif(0, 1),

where γ is a constant (which may depend on P ) satisfying γ dP
dQ(y) ≤ 1 for all y ∈ Y. The

encoder encodes K into M and sends it to the decoder. The decoder recovers K from M

and outputs Y = ȲK . Refer to Figure 3.4 for an illustration.
To obtain a channel simulation scheme in the form of Definition 2 where the encoder

observes X instead of P , we simply take P = PY |X(·|X), which guarantees that the decoder
5If P,Q are both discrete, then dP

dQ (y) = P (y)/Q(y). If they are both continuous with probability density
functions fP , fQ, then dP

dQ (y) = fP (y)/fQ(y).

55



produces Y following the correct conditional distribution PY |X(·|X). Now the constant γX
may depend on the choice of X, and must satisfy γx

dPY |X(·|x)
dQ (y) ≤ 1 for all x, y. The chosen

index is

K = min
{
i ∈ N+ : Ui ≤ γX

dPY |X(·|X)
dQ (Ȳi)

}
. (3.3)

In (Steiner, 2000), the values γx = γ do not depend on x. In this case, we have
K ∼ Geom(γ) regardless of the value of X, giving the following result.

Theorem 6 (Classical rejection sampling (G/1/E/VL/KS/UCR) (Steiner, 2000)). Let
γ > 0 be a constant satisfying γ dPY |X(·|x)

dQ (y) ≤ 1 for all x, y. Then the rejection sampling
scheme with constant γx = γ has a conditional entropy bounded by

H(Y |W ) ≤ − log2 γ −
1− γ
γ

log2(1− γ).

Proof. To bound the conditional entropy H(Y |W ), note that Y is a function of (K,W ),
and hence H(Y |W ) ≤ H(K|W ) ≤ H(K) is upper-bounded by the entropy of Geom(γ).

To implement this scheme, the encoder applies rejection sampling to obtain the index
K, encodes it into M ∈ {0, 1}∗ using Huffman coding (Huffman, 1952) for the distribution
K ∼ Geom(γ) with expected length E[|M |] ≤ H(K) + 1, and sends it to the decoder. The
decoder decodes K and outputs ȲK by looking up the common random sequence (Ȳi)i.

The communication cost of classical rejection sampling in Theorem 6 is approximately
− log2 γ, which is at least log2 supx,y

dPY |X(·|x)
dQ since γ dPY |X(·|x)

dQ (y) ≤ 1 for all x, y. This
is generally larger than I(X;Y ) which is approximately the optimal communication cost
(Theorem 4). The problem is that the choice of γ must accommodate the largest values
of dPY |X(·|x)

dQ (y), regardless of how unlikely those values are going to appear. In the next
section, we will discuss a scheme based on rejection sampling with a smaller communication
cost.

3.2.2 Greedy Rejection Sampling

We describe the strategy by Harsha et al. (2010), which modifies the acceptance rule of
rejection sampling. In the original rejection sampling scheme for sampling from P using
samples from Q, we accept the first (Ȳi, Ui) where Ui ≤ γ dP

dQ(Ȳi). The acceptance rule does
not depend on the iteration number. This may not be the best strategy if our goal is to
accept as early as possible.

Assume we want to design the acceptance rule for the first iteration in a way that
maximizes the acceptance probability at the first iteration. Assume P,Q are discrete for now.
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We draw Ȳ1 ∼ Q independent of U1 ∼ Unif(0, 1). Assume that we accept Ȳ1 if U1 ≤ ρ1(Ȳ1),
where ρ1(y) ∈ [0, 1] is the acceptance probability at iteration 1 if the sample is y. Let K be
the iteration number of the first acceptance. Since we want to obtain a sample from P at
the end, we must have P (y) ≥ P(Y = y, K = 1) = Q(y)ρ1(y). Therefore, to maximize the
acceptance probability at the first iteration, we should take ρ1(y) = min{P (y)/Q(y), 1}.
We can write P as the following mixture

P (y) =
(∑

y′

Q(y′)ρ1(y′)
) Q(y)ρ1(y)∑

y′ Q(y′)ρ1(y′)

+
(
1−

∑
y′

Q(y′)ρ1(y′)
) P (y)−Q(y)ρ1(y)

1−
∑
y′ Q(y′)ρ1(y′) ,

where the first component Q(y)ρ1(y)∑
y′ Q(y′)ρ1(y′) = P(Y = y |K = 1) is contributed by the

first iteration. Therefore, the remaining iterations should yield a sample from the second
component P (y)−Q(y)ρ1(y)

1−
∑

y′ Q(y′)ρ1(y′) . We can then repeat this construction recursively to maximize
the acceptance probability at the second iteration, third iteration, and so on.

We now describe the scheme in detail. Consider the general strategy where we accept
the first (Ȳi, Ui) where Ui ≤ ρi(Ȳi), where ρi(y) ∈ [0, 1] is the acceptance probability at
iteration i if the sample is y. In other words, we output

Y = ȲK , where K := min
{
i ∈ N+ : Ui ≤ ρi(Ȳi)

}
. (3.4)

We have

sk := P(K ≥ k)

= P
(
∀i ≤ k − 1 : Ui > ρi(Ȳi)

)
=

k−1∏
i=1

P
(
Ui > ρi(Ȳi)

)

=
k−1∏
i=1

(
1− E[ρi(Ȳ )]

)
,

where Ȳ ∼ Q. For discrete P,Q, this scheme yields Y ∼ P where

P (y) =
∞∑
k=1

P(K = k)P(Y = y |K = k)

=
∞∑
k=1

P(K = k) Q(y)ρk(y)∑
y′ Q(y′)ρk(y′)

= Q(y)
∞∑
k=1

P(K = k) ρk(y)
E[ρk(Ȳ )]
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= Q(y)
∞∑
k=1

(
k−1∏
i=1

(
1− E[ρi(Ȳ )]

)
−

k∏
i=1

(
1− E[ρi(Ȳ )]

)) ρk(y)
E[ρk(Ȳ )]

= Q(y)
∞∑
k=1

ρk(y)
k−1∏
i=1

(
1− E[ρi(Ȳ )]

)
= Q(y)

∞∑
k=1

ρk(y)sk.

For general P,Q, it can be shown that

dP
dQ(y) =

∞∑
k=1

ρk(y)sk. (3.5)

Therefore, the goal is to design ρi(y) satisfying (3.5) for given P,Q that results in a small
K. The idea in (Harsha et al., 2010) is to greedily maximize P(K = 1), and then maximize
P(K = 2), and so on. To this end, we will maximize ρ1(y) subject to ρ1(y) ≤ 1 and
ρ1(y)s1 ≤ dP

dQ(y) as required by (3.5), and then maximize ρ2(y) subject to ρ2(y) ≤ 1 and
ρ1(y)s1 + ρ2(y)s2 ≤ dP

dQ(y), and so on. This yields the recursive formula

ρk(y) = min
{ 1
sk

(dP
dQ(y)−

k−1∑
j=1

ρj(y)sj
)
, 1
}
, (3.6)

where sk can also be recursively computed together with ρk(y) as s1 = 1 and

sk = sk−1(1− E[ρk−1(Ȳ )]) (3.7)

for k ≥ 2. By construction, once ρk(y) = 0, we will always have ρk+1(y) = ρk+2(y) = · · · = 0.
Also, if ρk(y) > 0, k ≥ 2, we must have ρk−1(y) = 1.6 Hence, the sequence (ρk(y))k∈N+ for
any given y must be in the form 1, . . . , 1, r, 0, 0, . . ., where 0 ≤ r < 1. Therefore, (3.6) can
also be written as

ρk(y) = min
{

max
{ 1
sk

(dP
dQ(y)−

k−1∑
j=1

sj

)
, 0
}
, 1
}
. (3.8)

The recurrence relation on sk in (3.7) can also be written as s1 = 1, and

sk = sk−1 − E

min
{

max
{dP

dQ(Ȳ )−
k−2∑
j=1

sj , 0
}
, sk−1

} (3.9)

for k ≥ 2, where Ȳ ∼ Q. This is the greedy rejection sampling scheme in (Harsha et al.,
2010), and has been analyzed in (Liu and Verdú, 2018; Flamich and Theis, 2023). Refer

6If ρk(y) > 0, k ≥ 2, then dP
dQ (y)−

∑k−1
j=1 ρj(y)sj > 0, and ρk−1(y) < s−1

k−1( dP
dQ (y)−

∑k−2
j=1 ρj(y)sj), so

we have ρk−1(y) = 1.
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(Ȳ1, U1)
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Figure 3.3: An illustration of the greedy rejection sampling scheme applied on Q being the uniform
distribution over an interval, and P being a Gaussian distribution (truncated so it fits within the interval),
shown as the blue shape in the figure. The distribution P is sliced horizontally. Iteration i = 1 corresponds
to the lowest slice, and we accept Ȳ1 if the point (Ȳ1, U1) falls in the blue region. Iteration i = 2 corresponds
to the second slice, and we accept Ȳ2 if the point (Ȳ2, U2) falls in the blue region, and so on until we accept
a point (which is Ȳ3 in the figure).

to Figure 3.3 for an illustration of greedy rejection sampling, and to Figure 3.4 for an
illustration of the differences between classical rejection sampling and greedy rejection
sampling.

The following result was proved in (Flamich and Theis, 2023), which refines upon the
result in (Harsha et al., 2010).7

Theorem 7 (Greedy rejection sampling (Harsha et al., 2010; Flamich and Theis, 2023)).
The greedy rejection sampling scheme given by (3.6) achieves

E[log2K] ≤ DKL(P‖Q) + log2(2e).
7Harsha et al. (2010) showed E[log2 K] ≤ DKL(P‖Q) + 2 log2 e for discrete P,Q. Flamich and Theis

(2023) proved E[log2 K] ≤ DKL(P‖Q) + log2(2e) for general P,Q.
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Figure 3.4: An illustration of classical rejection sampling and greedy rejection sampling, applied on Q
being the uniform distribution over an interval, and P being a Gaussian distribution (truncated so it fits
within the interval). While classical rejection sampling has the same acceptance probability at each iteration,
greedy rejection sampling has a higher acceptance probability at the first iteration (indicated by the larger
blue area).

Proof. The proof here is mostly based on (Flamich and Theis, 2023). Write g(y) :=
(dP/dQ)(y). Define Y,K as in (3.4). Recall that Y ∼ P and sk = P(K ≥ k). We first show
that the scheme terminates almost surely, or equivalently, limk→∞ sk = 0. Assume the
contrary that limk→∞ sk =: s∞ > 0. By (3.9), letting Ȳ ∼ Q,

1− s∞ = E

 ∞∑
k=2

min
{

max
{dP

dQ(Ȳ )−
k−2∑
j=1

sj , 0
}
, sk−1

}
= E

 ∞∑
k=2

min
{ k−1∑
j=1

sj ,
dP
dQ(Ȳ )

}
−min

{ k−2∑
j=1

sj ,
dP
dQ(Ȳ )

}
= E

[dP
dQ(Ȳ )

]
= 1,

contradicting with s∞ > 0. Hence, limk→∞ sk = 0.
If (K,Y ) = (k, y) is a possible outcome, then ρk(y) > 0, and g(y) >

∑k−1
j=1 sj ≥ (k−1)sk

by (3.8). Hence we have K − 1 ≤ g(Y )/sK almost surely, and

E[log2K] ≤ E
[
log2

(
g(Y )
sK

+ 1
)]

= E
[
log2

g(Y )
sK

]
+ E

[
log2

(
1 + sK

g(Y )

)]
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≤ E
[
log2

g(Y )
sK

]
+ log2

(
1 + E

[
sK
g(Y )

])
≤ E

[
log2

g(Y )
sK

]
+ log2

(
1 + E

[ 1
g(Y )

])
≤ E

[
log2

g(Y )
sK

]
+ log2 2,

where the last line is because E[1/g(Y )] =
∫

1/((dP/dQ)(y))P (dy) ≤ 1. Note that
E[log2 g(Y )] = DKL(P‖Q), and

E[− log2 sK ] = −
∞∑
k=1

(log2 sk)P(K = k)

= −
∞∑
k=1

(log2 sk)(sk − sk+1)

= −
∫ 1

0
log2 smax{k: sk≥t} dt

≤ −
∫ 1

0
log2 t dt

= log2 e.

Hence, E[log2K] ≤ DKL(P‖Q) + log2(2e).

We can then use Theorem 7 to bound the performance of the greedy rejection sampling
scheme applied to the channel simulation setting with known or arbitrary source distribution
in Definition 2.

Corollary 8 (Greedy rejection sampling (G/1/E/VL/KAS/UCR) (Harsha et al., 2010;
Flamich and Theis, 2023)). For the channel simulation setting, the greedy rejection sampling
scheme given by (3.6) achieves:

• (Known source distribution)

E[log2K] ≤ I(X;Y ) + log2(2e),

and a conditional entropy

H(Y |W ) ≤ I(X;Y ) + log2
(
I(X;Y ) + log2(4e)

)
+ log2(4e) bits.

• (Arbitrary source)
sup
x∈X

E[log2K |X = x] ≤ C + log2(2e),

where C := supPX I(X;Y ), and a worst-case expected length

sup
x∈X

E
[
|M |

∣∣X = x
]
≤ C + log2

(
C + log2(4e)

)
+ log2(8e) bits.
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Proof. For the known source distribution case, applying the greedy rejection sampling
scheme on P = PY |X(·|x), Q = PY , we have

E[log2K] ≤ E[DKL(PY |X(·|X)‖PY )] + log2(2e)
≤ I(X;Y ) + log2(2e).

To bound the conditional entropy H(Y |W ), note that Y is a function of (K,W ), and hence
H(Y |W ) ≤ H(K|W ) ≤ H(K). The bound on H(K) can be obtained via the cross entropy
between the distribution of K and the Zipf distribution Zipf(1 + 1/(I(X;Y ) + log2(2e))),
which is given in Appendix A.

For the arbitrary source case, we invoke the result by Kemperman (1974) (also see
Polyanskiy and Wu, 2024, Theorem 5.9) about the saddle point characterization of channel
capacity: if C := supPX I(X;Y ) <∞, then there exists a unique Q over Y such that

C = sup
PX

EX∼PX
[
DKL(PY |X(·|X) ‖Q)

]
. (3.10)

If the supremum in C = supPX I(X;Y ) is attained by P ∗X , then Q is the Y -marginal of
P ∗XPY |X . Applying the greedy rejection sampling scheme on P = PY |X(·|x) and Q, we have

E
[
log2K

∣∣X = x
]
≤ DKL

(
PY |X(·|x)

∥∥Q)+ log2(2e)
≤ C + log2(2e). (3.11)

We encode K into M using a Shannon code (Shannon, 1948) constructed for the Zipf
distribution Zipf(1 + 1/(C + log2(2e))). The expected length can be bounded by one plus
the cross entropy between the distribution of K and the Zipf distribution, which is bounded
in Appendix A.

Implementation details. The pseudocode for the greedy rejection sampling algorithm
(Harsha et al., 2010; Liu and Verdú, 2018; Flamich and Theis, 2023) is given in Algorithm
1. The inputs to the algorithms are Q (the reference distribution, taken to be PY for
the channel simulation setting), the Radon-Nikodym derivative g(y) := (dP/dQ)(y) of
the desired distribution P with respect to Q (for the channel simulation setting, take
P = PY |X(·|X)), an estimate of the channel capacity C (for the arbitrary source case;
for known source distribution, take C = I(X;Y ); C is not needed if the Elias delta
code (Elias, 1975) is used instead of the Shannon code), and a pseudorandom number
generator (PRNG) G synchronized between the encoder and the decoder (see Remark
10). The expected number of samples needed by the encoding and decoding algorithms is
O(2D∞(P‖Q)) = O(ess supy∈Y dP

dQ(y)) (Flamich and Theis, 2023).8 Refer to Section 3.5 for
more discussions on the sample complexity.

8Theorem 7 states that E[log2 K] ≤ DKL(P‖Q) + log2(2e). One might expect E[K] > 2DKL(P‖Q) by
taking exponential on both sides. This does not work since 2t is convex instead of concave, and we instead
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The pseudocode assumes that the Shannon code (Shannon, 1948) is used for the encoding
of the index k. Other codes for positive integers such as the Elias delta code (Elias, 1975)
can also be used. For more choices of codes, refer to Appendix A.

Remark 9. Algorithm 1 assumes that the expectation in Step 9 (corresponding to (3.9))
can be computed precisely. If Y is finite, this can be computed as a summation. However, if
Y is continuous, this computation may or may not be feasible depending on P and Q. In
Sections 3.3 and 3.4, we will study other channel simulation schemes that does not require
computation of expectation or integral.

Remark 10. For the common randomness, the encoder should keep a PRNG G1, and
the decoder should keep a PRNG G2. These two PRNGs should be synchronized at the
beginning of the scheme (e.g., they are initialized by the same seed). The encoder and
decoder must “behave responsibly” (see Section 2.3), meaning that G1 and G2 must also
be synchronized when the scheme finishes, so the PRNGs can be reused for other tasks. In
Algorithm 1, the encoder and the decoder use the PRNG the same number of times, and
hence they are still synchronized after the algorithm. In practice, the encoder only needs
to generate the random seed and send it to the decoder once, so that they can initialize
their PRNGs in sync, and then use the PRNGs to generate common randomness for all the
channel simulation tasks that follow.

Remark 11. Some PRNG algorithms allow fast “jumping ahead” to the state after n uses
of the PRNG, i.e., advancing the state of the PRNG as if n random numbers are generated.
For example, linear congruential generators and permuted congruential generators allow
jumping ahead n steps in O(logn) time (O’Neill, 2014). For another class of PRNGs that
allow jumping, counter-based pseudorandom number generators (Salmon et al., 2011) are
PRNGs where the internal state is an integer, and the state is incremented each time a
random number is generated. A counter-based PRNG allows jumping to the state after n
uses of the PRNG, simply by increasing the state by n. Therefore, in the decoding algorithm
in Algorithm 1, if the number of calls to the PRNG per sample y ∼ Q is fixed, then we can
jump to the state after the k∗ − 1 rejected samples are generated in O(1) time, without
having to actually generate those k∗ − 1 rejected samples, reducing the decoding time
complexity from O(k∗) to O(1).9 The use of counter-based PRNG in channel simulation

have E[K] = O(2D∞(P‖Q)) since the expectation is dominated by values of y with large dP
dQ (y) that requires

searching through a large number of samples to find.
9In the case where each sample y ∼ Q is generated using a variable number of calls to the PRNG (e.g.,

y is generated using rejection sampling), the decoder cannot jump to the state after k∗ − 1 samples are
generated. In this case, the encoder should instead send the cumulative number of calls to the PRNG when
the k∗-th sample is generated (i.e., the state of the PRNG at that time, minus the initial state of the PRNG),
so the decoder can increment the state of the PRNG by that number. As long as the expected number of
calls per sample is finite, this only incurs a constant penalty on the encoding length.
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Algorithm 1 Greedy rejection sampling (Harsha et al., 2010) (also see (Flamich and Theis,
2023))
Procedure Encode(Q, g, C,G) :
Input: distribution Q, density g(y) := (dP/dQ)(y),

capacity C, PRNG G

Output: description M ∈ {0, 1}∗

1: s← 1 . the sk in (3.9)
2: a← 0 . stores ∑k−1

j=1 sj
3: for k = 1, 2, . . . do
4: Generate y ∼ Q using G

5: ρ← min
{

max
{1
s

(
g(y)− a

)
, 0
}
, 1
}

6: with probability ρ (using local randomness)
7: return Shannon encoding of k for Zipf(1 + 1/(C + log2(2e)))

. see Appendix A for other codes
8: end with
9: s′ ← s− EȲ∼Q

[
min

{
max

{
g(Ȳ )− a, 0

}
, s
}]

. see Remark 9
10: a← a+ s

11: s← s′

12: end for

Procedure Decode(Q,C,M,G) :
Input: Q, C, M ∈ {0, 1}∗, G
Output: sample Y

1: Decode M to k∗ using Shannon code for Zipf(1 + 1/(C + log2(2e)))
2: for k = 1, 2, . . . , k∗ do . may jump the PRNG instead;
3: Generate y ∼ Q using G . see Remark 11
4: end for
5: return y
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has been noted by Liu et al. (2024).

3.2.3 Other Variants of Rejection Sampling

Several other variants of the rejection sampling algorithm have been studied.

Braverman-Garg scheme for compressing the index (D/1/E/VL/KAS/UCR).
The classical rejection sampling scheme uses a common randomness W = (Ȳi)i∈N+ ,
Ȳ1, Ȳ2, . . .

iid∼ Q, and a local randomness U1, U2, . . .
iid∼ Unif(0, 1) at the encoder. Since

common randomness is unlimited, we may move (Ui)i to the common randomness, and
consider the common randomness to be W = (Ȳi, Ui)i∈N+ instead. The advantage is that
now the encoder can encode K conditional on (Ȳi, Ui)i since the decoder also knows (Ȳi, Ui)i.
In (Braverman and Garg, 2014), for a finite output space Y, a rejection sampling scheme
with a carefully designed encoding function of K given (Ȳi, Ui)i yields the following bound
on the conditional entropy

H(Y |W ) ≤ I(X;Y ) + log2
(
I(X;Y ) + 1

)
+O(1),

where O(1) denotes an absolute constant, similar to the bound for greedy rejection sampling
(Corollary 8). Interested readers are referred to (Braverman and Garg, 2014) for details.

Generic 1-bit protocol (G/1/A/FL/KAS/UCR). The classical rejection sampling
scheme, with the index K as the description, does not preserve privacy, in the sense that
P(Ȳi)i,K|X may not be differentially private (Definition 1) even when PY |X is differentially
private.10 Intuitively, each iteration of rejection sampling is a measurement on the input X.
Even if each measurement is noisy, taking a large number of independent noisy measurements
may still reveal significant information.

To make the scheme differentially private, the idea of the generic 1-bit protocol (1-bit-
PROT) by Bassily and Smith (2015) is to perform only one iteration of rejection sampling
(3.3). If the encoder rejects the first sample, it immediately declares failure, i.e., we take
K = 1 if U1 ≤ γ

dPY |X(·|X)
dQ (Ȳ ), and K = 0 (indicating failure) otherwise. The decoder

receives K and outputs Ỹ = Ȳ if K = 1, and Ỹ = e (a special erasure symbol) if K = 0.
The erasure symbol Ỹ = e indicates failure.

10Consider X ∼ Bern(1/2), Y |X ∼ Bern(a + (1 − 2a)X) for 0 < a < 1/2 (i.e., PY |X is a binary
symmetric channel). This channel is ln((1− a)/a)-locally differentially private. To apply classical rejection
sampling, we take Q = Bern(1/2), and 0 < γ ≤ 1

2(1−a) which ensures γ dPY |X (·|x)
dQ (y) ≤ 1. However,

P(Ȳ1 = · · · = Ȳn = 0, K > n |X = 0) = (1/2 − γ(1 − a))n,which has an arbitrarily large ratio from
P(Ȳ1 = · · · = Ȳn = 0, K > n |X = 1) = (1/2 − γa)n for large n, implying that rejection sampling is not
ε-differentially private for any ε > 0.
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Technically, Ỹ does not follow the conditional distribution PY |X , but an “erased version”
PỸ |X , where Ỹ is generated from PY |X with probability γ, or Ỹ = e with probability 1− γ.
This makes the scheme more suitable for the situation where there are a large number of
n users, where user i has the data Xi and wants to convey a noisy version Yi distributed
according to a privacy-preserving randomizer PY |X to the server (Bassily and Smith, 2015).
The goal of the server is not to gain information about individual users, but rather to
obtain an aggregate statistic using Y1, . . . , Yn (e.g., the mean n−1∑n

i=1 Yn). Suppose that
instead of having Yi following PY |X , the server now has the erased versions Ỹi following
PỸ |X . The server will still be able to compute the statistic using the non-erased entries
among Ỹ1, . . . , Ỹn (e.g., the mean can be estimated as |{i : Ỹi 6= e}|−1∑

i: Ỹi 6=e Ỹi). The
advantage of 1-bit-PROT is that only one bit of communication per user is needed to convey
the K’s, and the local differential privacy (Definition 1) of PY |X is preserved (under certain
conditions).

Approximate rejection sampling (G/1/A/FL/KAS/UCR). An approximate re-
jection sampling scheme where the distribution requirement on Y is approximate instead
of exact were studied in (Block and Polyanskiy, 2023), where a fixed number of samples
Ȳ1, . . . , Ȳn

iid∼ Q are used, and the encoder sends an arbitrary description if all n samples are
rejected. To increase the acceptance probability and reduce the number of samples needed,
instead of performing rejection sampling on the target distribution P , it is performed
on the distribution of Y ∼ P conditional on the event that γ0

dP
dQ(Y ) ≤ 1, where γ0 is

an appropriately chosen constant. Due to the two sources of error (having only a finite
number of samples, and modifying the target distribution), this scheme can only simulate
the target distribution approximately, though it can be carried out using a fixed-length
description K ∈ {1, . . . , n}. Refer to (Block and Polyanskiy, 2023) for various upper and
lower bounds on the number of samples needed. Also refer to (Flamich and Wells, 2024) for
an improvement on the scheme in (Block and Polyanskiy, 2023).

Greedy rejection coding with partition process (G/1/E/VL/KAS/UCR). In
(Flamich et al., 2024), an additional partitioning step was introduced to the greedy rejection
sampling algorithm, which can improve the running time. The idea (similar to Flamich
et al. (2022)) is to partition the output space Y in a hierarchical manner, so as to allow
faster searching of the accepted sample. It is suitable when dP/dQ is unimodal.

More variants of the rejection sampling scheme will be discussed in Section 3.5.3. In the
next section, we present a different but related scheme, which is used to prove Theorem 4.
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3.3 Exponential and Poisson Functional Representation
3.3.1 Exponential Functional Representation for Discrete Output

In classical and greedy rejection sampling, we generate a sequence of samples Ȳ1, Ȳ2, . . .,
and select one sample as the output Y . The index i of Ȳi can be regarded as the “time” of
the sample. Samples with smaller time are more likely to be chosen. This property is useful
for variable-length channel simulation schemes, since we can assign a shorter description to
samples with a smaller time.

In this section, we will describe another channel simulation scheme for discrete Y . Unlike
the rejection sampling scheme, here all values in Y are regarded as “samples”, and the
time of a sample is drawn as an exponential random variable in an i.i.d. manner. The
exponential distribution with rate r, denoted as Exp(r), is the continuous distribution with
probability density function re−rz for z ≥ 0. If Z ∼ Exp(r), then Z/a ∼ Exp(ar) for a > 0.
An elementary property of exponential random variables is that if we have two independent
exponential random variables Z1 ∼ Exp(r1), Z2 ∼ Exp(r2), then min{Z1, Z2} ∼ Exp(r1 +
r2), and P(Z1 < Z2) = r1/(r1 + r2). Generalizing this to n exponential random variables, if
we have a sequence Z1, . . . , Zn of independent random variables where Zi ∼ Exp(ri), ri > 0,
then for any a1, . . . , an ≥ 0 that are not all zeros,

P
(

argmin
i

Zi
ai/ri

= y

)
= ay∑n

i=1 ai
, (3.12)

where we assume Zi/(ai/ri) = ∞ if ai = 0. If (a1, . . . , an) is a probability vector, then
argminiZi/(ai/ri) gives a sample of the probability distribution. This provides a method
to generate samples from a discrete probability distribution. This method (after taking
logarithm) is known as the Gumbel-max trick (Huijben et al., 2022), which is often used in
machine learning.11

It was observed in (Li and El Gamal, 2018b) that (3.12) gives a scheme for the simulation
of a channel with discrete output, which is called the exponential functional representation
scheme. Suppose we want to simulate the discrete channel PY |X with input distribution
PX , where Y ∈ [n] is a finite discrete random variable. The common randomness is taken
to be W = (Z1, . . . , Zn), which is a sequence of independent random variables where
Zy ∼ Exp(Q(y)), where Q is some distribution over Y, called the reference distribution.
Upon observing X, the encoder produces

Y = argmin
y

Zy
P (y)/Q(y) , (3.13)

11One benefit of the Gumbel-max trick (Huijben et al., 2022) is that the sequence a1, . . . , an does not
need to add up to 1. We can generate a sample from the normalized distribution by scanning through the
sequence a1, . . . , an only once, without the need to calculate

∑n

i=1 ai beforehand.
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where P (y) := PY |X(y|X), computes the rank K of ZY among Z1, . . . , Zn (i.e., K = 1 if ZY
is the smallest among Z1, . . . , Zn, K = 2 if ZY is the second smallest, etc.), and transmit K
to the decoder. The decoder can then find the entry ZY which is ranked the K-th among
Z1, . . . , Zn, and output its index Y . This scheme guarantees that Y follows the distribution
P (y) = PY |X(y|X), and hence the channel PY |X is simulated.12 The smaller Zy’s are more
likely to be chosen in the argmin in (3.13). This makes K likely to be small, and require a
short codeword if we encode K using a prefix-free code over positive integers (e.g., Elias
delta code (Elias, 1975)). Here Zy can be regarded as the “time” of the value y, and we are
more likely to choose values that are seen “earlier”. Refer to Figure 3.6 for an illustration.
We defer the performance analysis to the next section.

3.3.2 Poisson Functional Representation for General Output

The exponential functional representation applies only to a discrete Y . In this subsection,
we will present a generalization via Poisson processes which applies to general Y .

Informal limiting argument for the Poisson process. We first motivate the use of
Poisson processes using an informal limiting argument. If Y ∈ R and Q is a continuous
distribution, a natural attempt is to apply the exponential functional representation (3.13)
on the quantized Ŷ∆ = ∆bY/∆ + 1/2c ∈ ∆Z and take the quantization step ∆ → 0.
Write P̂∆ for the distribution of Ŷ∆ when Y ∼ P , and Q̂∆ for the distribution of Ŷ∆

when Y ∼ Q, and let Ẑŷ ∼ Exp(Q̂∆(ŷ)). The rule (3.13) becomes argmin
ŷ∈∆Z

Ẑŷ
P̂∆(ŷ)/Q̂∆(ŷ) which,

when ∆→ 0, intuitively “approaches” argmin
y∈R

Zy
(dP/dQ)(y) where (dP/dQ)(y) is the Radon-

Nikodym derivative (when P,Q are continuous, it is the ratio between their probability
density functions). The remaining issue is the distribution of Zy, which should be the “limit”
of the stochastic process Ẑŷ ∼ Exp(Q̂∆(ŷ)). If we plot the points (ŷ, Ẑŷ) ∈ R2, these points
lie on the lines ŷ = ∆k for k ∈ Z, where the spacing ∆ between the lines decreases to 0.
Nevertheless, the “density of points” on each line ŷ = ∆k approaches 0 since each line only
contains one point Ẑŷ ∼ Exp(Q̂∆(ŷ)) with a mean 1/Q̂∆(ŷ)→∞ as ∆→ 0. Therefore, it
is reasonable to expect the points (ŷ, Ẑŷ)ŷ∈∆Z to have a limiting distribution.

To study this distribution, we order the points in ascending order of their Ẑ-coordinates.
Let (Ȳi, Ti)i∈N+ be the points (ŷ, Ẑŷ)ŷ∈∆Z ordered according to T1 ≤ T2 ≤ · · · .13 Think

12Exponential functional representation can be regarded as a channel simulation scheme where the
encoder observes X and wants the decoder to generate Y following P = PY |X(·|X), or equivalently, a
remote generation scheme where the encoder observes a distribution P and wants the decoder to generate Y
following P . Refer to the discussions after Definition 2.

13For a channel simulation scheme that utilizes this ordering idea without the limiting argument, refer to
ordered random coding (Theis and Yosri, 2022) in Section 3.5.3.
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Figure 3.5: An illustration of the points (ŷ, Ẑŷ) where ŷ ∈ ∆Z, Ẑŷ ∼ Exp(Q̂∆(ŷ)), sorted in ascending
order of the second coordinate to become (Ȳi, Ti) with T1 ≤ T2 ≤ · · · . The arrival time along each vertical
line at ŷ is Exp(Q̂∆(ŷ)). At the beginning, we are waiting for any one of all the lines, and the waiting time
is T1 ∼ Exp(

∑
ŷ
Q̂∆(ŷ)) = Exp(1). After the first arrival, we are waiting for all except one line, and hence

T2 − T1 should be approximately Exp(1) as well.

of Ti as the arrival time of the point (Ȳi, Ti). The first arrival time is T1 = minŷ Ẑŷ ∼
Exp(

∑
ŷ Q̂∆(ŷ)) = Exp(1), and we have Ȳ1 ∼ Q̂∆ due to the property of exponential

random variables discussed in Section 3.3.1. We then study the next inter-arrival time
T2 − T1. Condition on the event that the first point is (Ȳ1, T1) = (ȳ1, t1). We know that
we will not see another point with Ȳi = ȳ1. Nevertheless, for another line ŷ = ∆k with
∆k 6= ȳ1, we know that the point on this line has not arrived yet by time t, and hence by
the memoryless property of exponential distribution, the waiting time Ẑŷ − t ∼ Exp(Q̂∆(ŷ))
still follows the same exponential distribution. This gives T2 − T1 ∼ Exp(

∑
ŷ 6=ȳ1 Q̂∆(ŷ)) =

Exp(1− Q̂∆(ȳ1)) ≈ Exp(1) conditioned on (Ȳ1, T1) = (ȳ1, t1). We can see that the situation
between time T1 and time T2 is the same as the situation between time 0 and time T1,
except that we no longer have points on the line ŷ = ȳ1, which is inconsequential since this
is merely one out of many lines. Hence, T2 − T1 should also approximately follow Exp(1),
and Ȳ2 should approximately follow Q̂∆ ≈ Q, independent of (Ȳ1, T1). Continuing this
argument, we can see that T1, T2−T1, T3−T2, . . . are approximately i.i.d. following Exp(1),
and Ȳ1, Ȳ2, . . . are approximately i.i.d. following Q. In other words, (Ȳi, Ti)i is approximately
an i.i.d. process and a Poisson process put together. Refer to Figure 3.5 for an illustration.

Definition of the Poisson functional representation. We now formally define the
Poisson process construction without the aforementioned informal limiting argument. We
first discuss the case where Y is discrete. Recall that a Poisson process with rate r is
a stochastic process T1 ≤ T2 ≤ · · · with i.i.d. inter-arrival times following Exp(r), i.e.,
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T1, T2− T1, T3− T2, . . .
iid∼ Exp(r). We write this as (Ti)i∈N+ ∼ PP(r). Letting (Ty,i)i∈N+ ∼

PP(Q(y)), independent across y ∈ Y, and noting that mini Ty,i = Ty,1 ∼ Exp(Q(y)), (3.13)
can be equivalently written as

Y = argmin
y

min
i

Ty,i
PY |X(y|X)/Q(y) . (3.14)

We now merge the points Ty,i into a single Poisson process. To this end, we utilize the
splitting property of Poisson process (Last and Penrose, 2017), which states that if we
consider the points in a Poisson process with rate r, where for each point, we randomly
assign a class to it, with a probability Q(y) of assigning it to class y (where Q is a discrete
distribution), then the points in class y form a Poisson process with rate rQ(y), and
these Poisson processes for different y’s are independent of each other. In other words,
if (Ti)i ∼ PP(r), and (Ȳi)i

iid∼ Q is an i.i.d. sequence following a discrete distribution Q

independent of (Ti)i, then (Ti)i: Ȳi=y ∼ PP(rQ(y)) (i.e., selecting only the points Ti where
Ȳi = y) are independent across y ∈ Y. Therefore, letting (Ti)i ∼ PP(1), and (Ȳi)i

iid∼ Q

independent of (Ti)i, (3.14) can be equivalently written as

Y = ȲK , where K := argmini
Ti

PY |X(Ȳi|X)/Q(Ȳi)
. (3.15)

Note that (3.15) does not only hold for discrete Q and PY |X(·|X), but also for general
Q and PY |X(·|X). In this case, we have

Y = ȲK , where K := argmini
Ti

g(Ȳi|X)
, (3.16)

where
g(y|x) :=

dPY |X(·|x)
dQ (y)

is the Radon-Nikodym derivative. This way, we can guarantee that Y |X ∼ PY |X . Refer to
Figure 3.6 for an illustration. The property that this construction yields Y |X ∼ PY |X has
been observed by Maddison (2016) in a different context of simulating random samples
in Monte Carlo simulations. Refer to the work on A* sampling by Maddison et al. (2014)
for applications of this property to machine learning. This is also the key ingredient of
the Poisson functional representation scheme for channel simulation by Li and El Gamal
(2018b), which is utilized in the proof of Theorem 4.

Recall that in greedy rejection sampling (Section 3.2.2), each sample Ȳi has a time i ∈ N+

which is a positive integer. In the Poisson functional representation, the time of the sample Ȳi
is Ti, where the times (Ti)i are generated according to a Poisson process. In greedy rejection
sampling, the encoder does not only look at the samples Ȳi and their times to determine
the accepted sample; it also requires additional local randomness Ui ∼ Unif(0, 1) at the
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(Ȳ7, T7)
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Exponential functional representation Poisson functional representation

Figure 3.6: Left: an illustration of the exponential functional representation, where Y = {1, 2, 3, 4}. For the
argmin in (3.13), note that miny Zy/(PY |X(y|x)/Q(y)) = min{γ > 0 : ∃y : Zy = γPY |X(y|x)/Q(y)}, and
hence the argmin in (3.13) can be regarded as having a shape γPY |X(y|x)/Q(y) (blue shape in the figure),
which we keep “inflating” this shape by increasing γ until it hits the first point Zy, and the point it hits
corresponds to the Y selected in (3.13) (Y = 2 in the figure).
Right: an illustration of the Poisson functional representation. We can convert the exponential functional
representation to the Poisson functional representation by having a Poisson process of points for each value
of y (instead of only one exponential random variable Zy), and then merging the points into a single Poisson
point process over the 2D plane. We again have a shape γ dPY |X (·|x)

dQ (y) (blue shape in the figure), which we
keep “inflating” by increasing γ until it hits the first point (Ȳi, Ti), and the point it hits corresponds to the
Y selected in (3.16) (ȲK = 2 in the figure).
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encoder. In the Poisson functional representation, the selection rule (3.16) depends only on
the samples Ȳi and their times Ti, which are parts of the common randomness. Therefore, a
major difference between rejection sampling and Poisson functional representation is that
Poisson functional representation moves the randomness needed for the selection of sample
to the times Ti, which is part of the common randomness.

A point process of pairs (Ȳi, Ti). Another way to view the Poisson functional represen-
tation construction is to treat (Ȳi, Ti)i as a point process over the space Y × [0,∞). To this
end, we utilize a more general definition of Poisson process over a general measure space
(Last and Penrose, 2017). A (proper) Poisson process with intensity measure µ (an s-finite
measure) over a measurable space is a random collection of points (Xi)i∈[N ] (where the
number of points N ∈ N0 ∪ {∞} is random and can be countably infinite) such that for any
measurable set B in the measurable space, the number of points in B follows a Poisson
distribution with rate µ(B), i.e.,

|{i : Xi ∈ B}| ∼ Poi (µ(B)) ,

and also for disjoint B1, . . . , Bn, the numbers of points |{i : Xi ∈ Bj}| are independent
across j ∈ [n], i.e., the points at different locations are independent of each other. We write
this as (Xi)i ∼ PP(µ).

Note that the Poisson process over [0,∞) with rate 1 is a Poisson process with intensity
measure λ[0,∞), which denotes the Lebesgue measure over [0,∞). Since (Ȳi)i is generated
independently from (Ti)i, it follows from the marking theorem (Last and Penrose, 2017)
that (Ȳi, Ti)i ∼ PP(Q× λ[0,∞)) is a Poisson point process with intensity measure Q× λ[0,∞)
(the product measure between Q and λ[0,∞)). We can think of Ȳi as an i.i.d. generated label
attached to the point Ti.

If (Xi)i is a Poisson process, then for any measurable function f , the mapped points
(f(Xi))i is a Poisson process as well.14 Since we are interested in generating Y following
PY |X(·|x) instead of Q, our goal is to apply a suitable mapping on (Ȳi, Ti)i so that the new
intensity measure is PY |X(·|x)× λ[0,∞), which means that the first coordinates of the points
in the new process will be i.i.d. following PY |X(·|x). Note that if (Ti)i is a Poisson process
over [0,∞) with rate r, then (aTi)i is a Poisson process over [0,∞) with rate r/a for a > 0.
Therefore, we can apply a larger scaling factor on Ti if we want to make the value of Ȳi
more rare. Loosely speaking, if we apply a scaling factor 1/g(y|x) = 1/(dPY |X(·|x)/dQ)(y)
to the points with Ȳi = y, then we can change the “intensity” of those points from Q(y) to
PY |X(y|x). Indeed, the points

(Ȳi, T̃i)i: g(Ȳi|x) 6=0, where T̃i := Ti

g(Ȳi|x)
, (3.17)

14This is a consequence of the mapping theorem (Last and Penrose, 2017).
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Figure 3.7: Left: a Poisson process (Ȳi, Ti)i ∼ PP(Q× λ[0,∞)). Right: a Poisson process (Ȳi, T̃i)i: g(Ȳi) 6=0 ∼
PP(P × λ[0,∞)), obtained by scaling the time coordinate of the points in the original Poisson process by
T̃i := Ti/g(Ȳi), g(y) := (dP/dQ)(y). Basically, we look at all points in the original process on the vertical
line Ȳi = y, and scale the points up or down by a factor 1/g(y). Such a scaling will affect the rate of the
points on the line Ȳi = y by a factor of g(y), and hence the new process will have an intensity measure
Qg × λ[0,∞) = P × λ[0,∞).

form a Poisson process with intensity measure PY |X(·|x)× λ[0,∞), which follows from the
mapping theorem (Last and Penrose, 2017). The process (Ȳi, T̃i)i can be formed by attaching
i.i.d. labels following PY |X(·|x) to a Poisson process over [0,∞) with rate 1 (up to reordering
of the points). Therefore, for the point (Ȳi, T̃i) with the smallest T̃i, its value of Ȳi will
follow PY |X(·|x). Refer to Figure 3.7 for an illustration.

3.3.3 Analyses of the Communication Cost

To prove Theorem 4, we utilize the following result in Li and Anantharam, 2021, Eqn. (29).
The bound (3.19) is referred to as the Poisson matching lemma in (Li and Anantharam,
2021).

Lemma 12 (Poisson functional representation (Li and Anantharam, 2021)). Fix two
distributions P � Q,15 and let g(y) := (dP/dQ)(y). Let (Ti)i∈N+, 0 ≤ T1 ≤ T2 ≤ · · · be a
Poisson point process with rate 1, (Ȳi)i∈N+

iid∼ Q independent of (Ti)i∈N+, and

Y = ȲK , where K := argmini
Ti

g(Ȳi)
,

15P � Q means P is absolutely continuous with respect to Q, which is necessary for dP/dQ to be defined.
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where Ti/g(Ȳi) =∞ if g(Ȳi) = 0. Then Y ∼ P , and K ∈ N+ is conditionally a geometric
random variable given Y , with

K|Y ∼ Geom
((
EY ′∼Q

[
max{g(Y ), g(Y ′)}

∣∣Y ])−1)
.

As a result,16

E[log2K] ≤ DKL(P‖Q) + 1 bit, (3.18)

and
P(K > 1 |Y ) ≤ 1− 1

g(Y ) + 1 ≤ g(Y ) (3.19)

almost surely.

Proof. The following arguments are based on (Li and Anantharam, 2021).17 We now
condition on the event (ȲK , TK) = (y0, t0), i.e., the point (Ȳi, Ti)i with the smallest Ti/g(Ȳi)
is (ȲK , TK) = (y0, t0). Since a point (Ȳi, Ti) with g(Ȳi) = 0 will never be selected as (ȲK , TK)
(it gives Ti/g(Ȳi) =∞), we can assume g(y0) 6= 0. The event (ȲK , TK) = (y0, t0) means two
things: 1) there is no point in the region {(y, t) : t/g(y) < t0/g(y0)}, and 2) there exists a
point (y0, t0). Since the points in a Poisson process at different locations are independent of
each other, our knowledge about the two regions {(y, t) : t/g(y) < t0/g(y0)} and {(y0, t0)}
does not affect the distribution of points outside of the two regions, which are (Ȳi, Ti)i 6=K .
Let S := {(y, t) : t/g(y) ≥ t0/g(y0)}. Conditional on (ȲK , TK) = (y0, t0), we know that the
remaining points (Ȳi, Ti)i 6=K ∼ PP((Q× λ[0,∞))|S) follows a Poisson process with intensity
measure (Q× λ[0,∞))|S , which denotes the measure Q× λ[0,∞) restricted to the set S, i.e.,
(Q× λ[0,∞))|S(A) = (Q× λ[0,∞))(A ∩ S).

Recall thatK is the rank of the point (ȲK , TK) among (Ȳi, Ti)i when ordered in increasing
order of Ti. Therefore

K = |{i 6= K : Ti < TK}|+ 1.

Conditional on (ȲK , TK) = (y0, t0), we have (Ȳi, Ti)i 6=K ∼ PP((Q × λ[0,∞))|S), and the
number of points with Ti < TK = t0 follows a Poisson distribution with rate given by the
(Q× λ[0,∞))|S-measure of the set {(y, t) : t < t0}, which is∫

Y
λ[0,∞) (t : t < t0, t/g(y) ≥ t0/g(y0)) Q(dy)

16It was proved in Li and Anantharam, 2021, Prop. 4 that E[log2 K] ≤ DKL(P‖Q) + log2 e. This was
slightly improved in (Li, 2024) to E[log2 K] ≤ DKL(P‖Q) + 1.

17A more general result where K is the index of the j-th smallest Ti/g(Ȳi) was proved in Li and
Anantharam, 2021, Appendix A. The proof here is based on specializing (Li and Anantharam, 2021) to the
case j = 1. Readers may also refer to (Khisti et al., 2024) for another proof of (3.19).
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=
∫
Y

max
{
t0 −

t0g(y)
g(y0) , 0

}
Q(dy)

= t0
g(y0)

∫
Y

max {g(y0)− g(y), 0} Q(dy)

= t0
g(y0)EY

′∼Q
[
max

{
g(y0)− g(Y ′), 0

}]
= αt0, (3.20)

where α := EY ′∼Q[max{g(y0)− g(Y ′), 0}]/g(y0). Hence,

(K − 1) | {(ȲK , TK) = (y0, t0)} ∼ Poi(αt0). (3.21)

We now consider the distribution of TK . Let T̃i := Ti/g(Ȳi). We have seen that (Ȳi, T̃i)i: g(Ȳi)6=0 ∼
PP(P × λ[0,∞)), which can be formed by attaching i.i.d. labels following P to a Poisson
process over [0,∞) with rate 1. Therefore, T̃K = mini: g(Ȳi)6=0 T̃i ∼ Exp(1) is an exponential
random variable, independent of ȲK which is an independent label attached to T̃K . Condi-
tional on ȲK = y0, we still have T̃K ∼ Exp(1), and hence TK = T̃Kg(y0) ∼ Exp(1/g(y0)).
Therefore, the conditional distribution of K − 1 conditional on ȲK = y0 is an exponen-
tial mixture of the Poisson distributions in (3.21), i.e., we have TK ∼ Exp(1/g(y0)) and
(K − 1)|TK ∼ Poi(αTK). The resultant distribution of K is the geometric distribution with
parameter18

1
1 + αg(y0)

= 1
1 + EY ′∼Q [max {g(y0)− g(Y ′), 0}]

= 1
EY ′∼Q [max {g(y0), g(Y ′)}] ,

where the last line is because EY ′∼Q[g(Y ′)] =
∫

(dP/dQ)(y)Q(dy) =
∫
P (dy) = 1. Therefore,

by Jensen’s inequality,19

E[log2K] ≤ E [log2 E[K|Y ]]
= E

[
log2 EY ′∼Q

[
max{g(Y ), g(Y ′)}

∣∣Y ]]
≤ E

[
log2 EY ′∼Q

[
g(Y ) + g(Y ′)

∣∣Y ]]
18There is an intuitive reason why an exponential mixture of Poisson distributions is a geometric

distribution with support N0. Fix λ, α > 0. Let (Ti)i ∼ PP(λ+α) labeled with (Wi)i
iid∼ Bern(α/(λ+α)), and

K := min{i : Wi = 0}. ThenK ∼ Geom(λ/(λ+α)). Also, since (Ti)i:Wi=0 ∼ PP(λ) and (Ti)i:Wi=1 ∼ PP(α)
are two independent Poisson processes, we have TK = mini:Wi=0 Ti ∼ Exp(λ), and K − 1 = |{i : Wi =
1, Ti < TK}| ∼ Poi(αt) conditional on TK = t. Hence if T ∼ Exp(λ) and (K − 1)|T ∼ Poi(αT ), then
K ∼ Geom(λ/(λ+ α)) = Geom(1/(1 + α/λ)).

19This step appeared in (Li, 2024).
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= E [log2 (g(Y ) + 1)]

= E [log2 g(Y )] + E
[
log2

(
1 + 1

g(Y )

)]
≤ E [log2 g(Y )] + log2

(
1 + E

[ 1
g(Y )

])
≤ E [log2 g(Y )] + log2 2,

where the last line is because E[1/g(Y )] =
∫

1/((dP/dQ)(y))P (dy) ≤ 1. Hence, (3.18)
follows from E [log2 g(Y )] = DKL(P‖Q). For (3.19),

P(K > 1 |Y ) = 1−
(
EY ′∼Q

[
max{g(Y ), g(Y ′)}

∣∣Y ])−1

≤ 1−
(
EY ′∼Q

[
g(Y ) + g(Y ′)

∣∣Y ])−1

= 1− 1
g(Y ) + 1 .

We remark that Lemma 12 can also be used to prove several other results, including
various multi-terminal source and channel coding results in (Li and Anantharam, 2021),
and the pairwise optimal coupling results in (Angel and Spinka, 2019; Li and Anantharam,
2019), though we will not discuss these applications here.

We now prove the “known source distribution” case in Theorem 4, which is the conse-
quence of Proposition 5 and the following result called the strong functional representation
lemma in (Li and El Gamal, 2018b). We present the version in (Li, 2024) with a slightly
better constant than (Li and El Gamal, 2018b).

Theorem 13 (Strong functional representation lemma (G/1/E/VL/KAS/UCR) (Li and
El Gamal, 2018b; Li, 2024)). For any PX and PY |X , there exists a functional representation
(PW , φ) (i.e., φ :W ×X → Y satisfying that if X ∼ PX is independent of W ∼ PW , and
Y = φ(W,X), then (X,Y ) ∼ PXPY |X) such that

H(Y |W ) ≤ I(X;Y ) + log2
(
I(X;Y ) + 2

)
+ 2 bits.

Moreover, if X ,Y are finite, then we can have |W| ≤ |X |(|Y| − 1) + 2.

Proof. Let Q = PY be the Y -marginal of PXPY |X . Let (Ti)i ∼ PP(1), (Ȳi)i
iid∼ PY indepen-

dent of (Ti)i, and Y = ȲK where K := argminiTi/g(Ȳi|X), and

g(y|x) :=
dPY |X(·|x)

dPY
(y).
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By Lemma 12,
E
[
log2K

∣∣X = x
]
≤ DKL

(
PY |X(·|x)

∥∥PY )+ 1. (3.22)

Taking expectation over X gives

E[log2K] ≤ I(X;Y ) + 1. (3.23)

Take the common randomness to be W = (Ȳi, Ti)i. To bound the conditional entropy
H(Y |W ), note that Y is a function of (K,W ), and hence H(Y |W ) ≤ H(K|W ) ≤ H(K).
The bound on H(K) can be bounded via the cross entropy between the distribution of K
and the Zipf distribution Zipf(1 + 1/(I(X;Y ) + 1)), which is given in Appendix A. Please
refer to (Li and El Gamal, 2018b) for the cardinality bound |Z| ≤ |X |(|Y| − 1) + 2.

To prove the “arbitrary source” case in Theorem 4, we use the same arguments as in
the proof of Corollary 8. The proof is similar and is omitted.

Although the Poisson functional representation shares some similarities with rejection
sampling, there is one fundamental difference. Rejection sampling is causal (Liu and Verdú,
2018), in the sense that one can read the samples Ỹi one by one, and decide when to stop and
output the current Ỹi as Y without looking at future Ỹi’s. Poisson functional representation
is noncausal in the sense that in order to decide whether to output the current Ỹi, we may
need to look at the Ỹi’s with a larger time. Refer to Section 3.5 for more discussions and
bounds on causal and noncausal sampling schemes.

3.3.4 Implementation Considerations

The pseudocode for the Poisson functional representation (Li and El Gamal, 2018b) (also
see (Maddison, 2016; Theis and Yosri, 2022)) is given in Algorithm 2. The inputs to the
algorithms are Q (the reference distribution, taken to be PY for the channel simulation
setting), the Radon-Nikodym derivative g(y) := (dP/dQ)(y) of the desired distribution P
with respect to Q (for the channel simulation setting, take P = PY |X(·|X)), an upper-bound
g∗ ≥ supy g(y),20 an estimate of the channel capacity C (for the arbitrary source case; for
known source distribution, take C = I(X;Y ); C is not needed if the Elias delta code (Elias,
1975) is used instead of the Shannon code), and a pseudorandom number generator (PRNG)
G. The expected number of samples needed by the encoding and decoding algorithms
is O(2D∞(P‖Q)) = O(ess supy∈Y dP

dQ(y)) (Maddison, 2016). Refer to Section 3.5 for more
discussions on the sample complexity, and to Appendix A for various methods for the
encoding of the index k∗.

20g∗ is used for detecting when we can stop generating the Poisson process in Algorithm 2. This technique
has appeared in (Maddison, 2016).
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Algorithm 2 Poisson functional representation (Li and El Gamal, 2018b; Maddison, 2016)
(also see (Theis and Yosri, 2022))
Procedure Encode(Q, g, g∗, C,G) :
Input: distribution Q, density g(y) := (dP/dQ)(y),

bound g∗ ≥ supy g(y), capacity C, PRNG G

Output: description M ∈ {0, 1}∗

1: Initialize PRNG G′ using a seed generated by G

. it is preferrable to jump the PRNG instead; see Remark 14
2: t← 0, t̃∗ ←∞, k∗ ← 0
3: for k = 1, 2, . . . do
4: t← t+ Exp(1) . Exp(1) is a new exponential random variate

. generated using local randomness (not G,G′)
5: if t/g∗ ≥ t̃∗ then . no new points can have t/g(y) < t̃∗

6: return Shannon encoding of k∗ for Zipf(1 + 1/(C + 1))
. see Appendix A for other codes

7: end if
8: Generate y ∼ Q using G′

9: t̃← t/g(y)
10: if t̃ < t̃∗ then
11: t̃∗ ← t̃ . update minimizer of t/g(y)
12: k∗ ← k

13: end if
14: end for

Procedure Decode(Q,C,M,G) :
Input: Q, C, M ∈ {0, 1}∗, G
Output: sample Y

1: Initialize PRNG G′ using a seed generated by G

. it is preferrable to jump the PRNG instead; see Remark 14
2: Decode M to k∗ using Shannon code for Zipf(1 + 1/(C + 1))
3: for k = 1, 2, . . . , k∗ do . may jump the PRNG instead;
4: Generate y ∼ Q using G′ . see Remark 11
5: end for
6: return y

78



Remark 14. For the common randomness in Algorithm 2, the encoder should keep a PRNG
G1, and the decoder should keep a PRNG G2, where the two PRNGs are assumed to be
synchronized at the beginning of the scheme, and must still be synchronized after the scheme
so the PRNGs can be reused for other tasks. The need of synchronization is the reason why
the encoder and the decoder need to initialize another PRNG G′ with a seed generated
using G1,G2, and then use G′ instead of G1,G2 in the algorithm. This way, G1,G2 can be
synchronized since they are used once in both the encoding and the decoding function. If we
ignore this step and use G1,G2 directly, then G1 may be invoked a larger number of times
than G2 since k∗ may be less than the number of samples y ∼ Q generated by the encoder.
This is a minor nuisance of noncausal sampling schemes, which is not needed for causal
sampling schemes (e.g., Algorithm 1). See Section 2.3 for the importance of synchronization,
and Section 3.5 for discussions on causal and noncausal sampling schemes.

The aforementioned approach to use the existing PRNG to initialize a new PRNG relies
on the assumption that the random numbers generated by the new PRNG are independent
of the future random numbers generated by the existing PRNG. This may or may not be
a reasonable assumption depending on the PRNG used. A better approach is to instead
perform the following at the beginning of the encoding and decoding algorithms: 1) create
G′, the PRNG to be used in the algorithm, as a (deep) copy of the existing PRNG G (i.e.,
G′ has the same state as G); and 2) jump G ahead a large number of steps, say 250 (i.e.,
update the state of G to be as if 250 random numbers are generated). This way, we can
ensure that the number generated by G′ will not overlap the future numbers generated by
G, unless we call G′ more than 250 times which takes an extremely long time. There are fast
methods to jump a PRNG (Haramoto et al., 2008a; Haramoto et al., 2008b; O’Neill, 2014),
which are implemented in popular libraries (e.g., (NumPy Developers, 2024)). Also, it is
straightforward to jump counter-based pseudorandom number generators (Salmon et al.,
2011) (see Remark 11).

3.3.5 Variants of Poisson Functional Representation

We discuss several variants of the Poisson functional representation and the A* sampling
(Maddison et al., 2014; Maddison, 2016) below.

Space partitioning (G/1/E/VL/KAS/UCR). A shortcoming of Algorithm 2 is that it
has an exponential encoding time complexity O(2D∞(P‖Q)) = O(supy∈Y dP

dQ(y)) (Maddison,
2016), which can be prohibitive for large D∞(P‖Q). More efficient algorithms can be
designed if we impose additional assumptions on the distributions. For example, Flamich et
al. (2022) proposed several methods based on A* sampling (Maddison et al., 2014; Maddison,
2016), namely AS*, AD* and DAD* coding, for the situation where Y ∈ R is a scalar.
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The real line R is hierarchically partitioned as a binary tree. The algorithm then searches
the tree to locate the sample Y to be communicated. Under the assumption that dP

dQ(y)
is unimodal, AS* coding achieves a linear time complexity O(D∞(P‖Q)). Nevertheless,
the expected description length of AS* coding has a multiplicative gap from the optimum.
On the other hand, the expected description length of AD* coding has a logarithmic gap
from the optimum, but it is not proved (only conjectured) that AD* coding has a time
complexity O(D∞(P‖Q)) (Flamich et al., 2022). Also refer to (Flamich, 2023) for a scheme
that also utilizes a partition of the real line, and to (He et al., 2024b) for a modification
of the Poisson functional representation, which utilizes a partition of the space to quickly
search for samples lying in the support of the target distribution.

Poisson private representation (G/1/E/VL/KAS/UCR). The exponential and
Poisson functional representations do not preserve differential privacy.21 The reason is that
Y is a deterministic function of X and the common randomness. To ensure privacy, the
encoder should be stochastic. In the Poisson private representation by (Liu et al., 2024),
the encoder also applies (3.17) to transform the points points (Ȳi, Ti) (a Poisson process
with intensity measure Q× λ[0,∞)) by scaling the time

T̃i := Ti

g(Ȳi|x)
,

where g(y|x) = (dPY |X(·|x)/dQ)(y), to form a Poisson process (Ȳi, T̃i) with intensity
measure PY |X(·|x)× λ[0,∞). Now, instead of choosing the point with the smallest T̃i, the
encoder chooses the point (ȲK , T̃K) randomly with

P(K = k) = T̃−αk∑∞
i=1 T̃

−α
i

,

where α > 1 is a parameter. This ensures ȲK ∼ PY |X(·|x) exactly. Note that only (Ȳi)i is
shared in the common randomness. The arrival times (Ti)i, as well as the randomness in
the generation of K above, are local randomness of the encoder. It was shown by Liu et al.
(2024) that

E[log2K] ≤ D(PY |X(·|x)‖Q) + log2 3.56
min{(α− 1)/2, 1} ,

and if PZ|X is (ε, δ)-locally differentially private (Definition 1), then P(Ȳi)i,K|X (where
(Ȳi)i,K are the decoder’s observations) is (2αε, 2δ)-locally differentially private. Refer to
(Liu et al., 2024) for other results on the differential privacy of Poisson private representation.

21Consider X ∼ Bern(1/2) and Y |X ∼ Bern(a + (1 − 2a)X) (i.e., a binary symmetric channel) with
0 < a < 1/2. This channel is ln((1 − a)/a)-locally differentially private. Take Q = Bern(1/2) in the
exponential functional representation. If Z0 = Z1, then Y = argminyZy/(PY |X(y|X)/Q(y)) will be equal to
X. If the decoder observes Z0 = Z1, it can know the precise value of X.
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More variants of the Poisson functional representation scheme will be discussed in
Section 3.5.3.

3.4 Likelihood Encoder and Minimal Random Coding

Importance sampling (Kloek and Van Dijk, 1978; Liu, 2004) is a technique that allows
us to estimate the mean of a function of a distribution when we can only access samples
from another distribution. Suppose we are given i.i.d. samples Ȳ1, . . . , ȲN following the
reference distribution Q. If we are interested in estimating EY∼P [f(Y )] for a different target
distribution P , we can give an estimate

N∑
i=1

f(Ȳi)
dP
dQ(Ȳi)∑N
j=1

dP
dQ(Ȳj)

,

where dP/dQ is the Radon-Nikodym derivative. The idea is that, while Ȳ1, . . . , ȲN are
samples of Q, we can transform it into “weighted samples” of P by attaching an importance
weight dP

dQ(Ȳi) to Ȳi.
This is the basis of the minimal random coding scheme (Havasi et al., 2019) for channel

simulation with arbitrary source. Suppose a reference distribution Q over Y is known to
both the encoder and the decoder. The encoder and decoder have common randomness
Ȳ1, . . . , ȲN

iid∼ Q. Now the encoder observes the input X, and wants to convey a sample Ȳ
with distribution P = PY |X(·|X) to the decoder.22 To this end, the encoder perform the
following steps:

1. Compute the importance weights αi := dP
dQ(Ȳi) of each sample.

2. Generate a random number K ∈ [N] with P(K = k) = αk∑N
i=1 αi

.

3. Encode K into dlog2 Ne bits and transmit it.

The decoder simply decodes K and outputs Ỹ = ȲK . For the implementation, we can
employ the Gumbel-max trick or the exponential-min trick in Section 3.3.1 to draw the
random number K without having to store the whole sequences of Ȳi’s and αi’s, which has
been noted by Theis and Yosri (2022). Refer to Algorithm 3 for the pseudocode, and refer
to Figure 3.8 for an illustration.

22Minimal random coding can be regarded as a channel simulation scheme where the encoder observes X
and wants the decoder to generate Y following P = PY |X(·|X), or equivalently, a remote generation scheme
where the encoder observes a distribution P and wants the decoder to generate Y following P . Refer to the
discussions after Definition 2.
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Algorithm 3 Minimal random coding and likelihood encoder (Havasi et al., 2019; Cuff,
2013) (also see (Theis and Yosri, 2022))
Procedure Encode(Q, g,N,G) :
Input: distribution Q, density g(y) := (dP/dQ)(y),

sample size N, PRNG G

Output: index k ∈ [N]

1: t∗ ←∞
2: for i = 1, . . . ,N do
3: Generate y ∼ Q using G

4: t← Exp(1)/g(y) . Exp(1) is a new exponential random variate
. generated using local randomness (not G)

5: if t < t∗ then
6: t∗ ← t

7: y∗ ← y

8: k ← i

9: end if
10: end for
11: return k

Procedure Decode(Q,N, k,G) :
Input: Q, N, k ∈ [N], G
Output: sample Y

1: for i = 1, . . . ,N do . may jump the PRNG instead;
2: Generate y ∼ Q using G . see Remark 11
3: if i = k then
4: y∗ ← y

5: end if
6: end for
7: return y∗
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yȲ1Ȳ2 Ȳ3Ȳ4 Ȳ5 Ȳ6Ȳ7Ȳ8 Ȳ9 Ȳ10

Figure 3.8: An illustration of the minimal random coding scheme, applied on Q being the uniform
distribution over an interval, and P = PY |X(·|x) being a Gaussian distribution (truncated so it fits within
the interval), shown as the blue shape in the figure. Each sample point in Ȳ1, . . . , ȲN

iid∼ Q is selected with
a probability proportional to αi = dP

dQ (Ȳi), indicated by the length of the stem at Ȳi in the figure. Even
though the points Ȳi are generated from Q, since we are more likely to select a point Ȳi with a large dP

dQ (Ȳi),
the selected point can have a distribution close to P .

If the source distribution PX is known, then we can take Q = PY to be the Y -marginal
of PXPY |X . If X,Y are discrete, then

αi =
PY |X(Ȳi|X)
PY (Ȳi)

=
PX|Y (X|Ȳi)
PX(X)

is proportional to the likelihood PX|Y (X|Ȳi). In this case, the above procedure is known as
the likelihood encoder (Cuff, 2013; Watanabe et al., 2015; Song et al., 2016).

Note the similarity between this scheme and the random coding scheme for lossy
compression (Cover and Thomas, 2006), which also involves a random codebook Ȳ1, . . . , ȲN

iid∼
Q. The difference is that, for lossy compression, we select the Ȳi that is closest to the input
X. For likelihood encoder/minimal random coding, we instead use a stochastic encoder
to select Ȳi in a random manner. Such randomness is unnecessary for lossy compression
since the goal is only to minimize the distortion between the input and the output, but
can be helpful for channel simulation since it helps shaping the output into the desired
distribution.

Approximation guarantees of minimal random coding. This scheme is approximate
in the sense that the distribution of Ỹ is not exactly P = PY |X(·|X). This is the reason
we denote the output as Ỹ instead of Y since PỸ |X (the actual conditional distribution
of the output) is not exactly PY |X . Nevertheless, it is straightforward to check that the
distribution of Ỹ approaches P as N → ∞. In (Havasi et al., 2019), it was shown that
N ≈ 2DKL(P‖Q) suffices for a good approximation for a fixed P = PY |X(·|x) (the situation
where X is not fixed will be discussed later in this section), where DKL denotes the Kullback-
Leibler divergence. Therefore, the encoding length of the index K ∈ [N] is approximately

83



log2 N ≈ DKL(P‖Q). We state Lemma D.1 of Theis and Yosri (2022), which was proved
using Theorem 3.2 of Havasi et al. (2019) (which in turn was proved by invoking Theorem
1.2 of Chatterjee and Diaconis (2018)).

Theorem 15 (Minimal random coding (G/1/A/FL/KAS/UCR) (Theis and Yosri, 2022)).
Consider any fixed reference distribution Q and target distribution P = PY |X(·|x) � Q.
Assume N = 2DKL(P‖Q)+t for some t ≥ 0. The distribution P̃ of the output Ỹ of minimal
random coding satisfies

δTV(P̃ , P ) ≤ 4

√√√√2−t/4 + 2
√
P
(
ιP‖Q(Y ) > DKL(P‖Q) + t

2

)
,

where Y ∼ P , ιP‖Q(Y ) := log2
dP
dQ(Y ), and δTV(PỸ , P ) := supE⊆Y |P̃ (E) − P (E)| is the

total variation distance (Section 5.3).

A small δTV(P̃ , P ) means that Ỹ is approximately distributed as P . Readers are referred
to Section 5.3 for discussions on δTV. Note that E[ιP‖Q(Y )] = DKL(P‖Q). In order to
guarantee a small δTV(P̃ , P ) when N ≈ 2DKL(P‖Q), we need ιP‖Q(Y ) to be concentrated
around its mean DKL(P‖Q), so the probability that ιP‖Q(Y ) > DKL(P‖Q) + t/2 is small.
We will also include an analysis of the likelihood encoder using the techniques in (Cuff, 2013;
Yassaee, 2015) later in Sections 5.6 and 8.2, where we discuss fixed-length approximate
schemes in detail.

A downside of minimal random coding is that the sample size N must be exponential
in DKL(P‖Q) similar to greedy rejection sampling and Poisson functional representation,
leading to an exponential time complexity. Refer to Section 3.5 for more discussions on the
sample complexity. Techniques for alleviating this downside were investigated in (Flamich
et al., 2020; Flamich et al., 2022).

Also, note that if our goal is to simulate a channel PY |X where the input X is not fixed,
then we apply minimal random coding with the target distribution P = PY |X(·|X) that
depends on X. In order to guarantee that the output Ỹ approximately follows PY |X for most
input X, we require a description length log2 N ≥ DKL(PY |X(·|X)‖Q) with high probability
for X ∼ PX (in the known source distribution case in Definition 2). Assuming that we take
Q = PY to be the Y -marginal of PXPY |X , we have to select a description length log2 N
large enough to accommodate the largest possible values of DKL(PY |X(·|x)‖PY ) (and also
the variability of ιPY |X(·|x)‖PY (Y ) as in Theorem 15), and hence log2 N will generally have to
be larger than I(X;Y ) = EX∼PX [DKL(PY |X(·|X)‖PY )]. This is a downside of using a fixed-
length code to encode K, instead of a variable-length code as in greedy rejection sampling
and Poisson functional representation that can adapt to the value of X. In Section 3.5.3, we
will discuss ordered random coding (Theis and Yosri, 2022), which uses a variable-length
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code to compress K in the minimal random coding in order to reduce the description length
to close to I(X;Y ).

Differential privacy of minimal random coding. A nice property of minimal random
coding is that it guarantees differential privacy (Definition 1) as long as the original channel
PY |X is differentially private, albeit with a two-fold increase of the privacy budget (Shah
et al., 2022).

Theorem 16 (ε-DP of minimal random coding (Shah et al., 2022)). If PY |X is ε-locally
differentially private, then minimal random coding P(Ȳi)i,K|X (with any reference distribution
Q) is 2ε-locally differentially private.

Proof. We use similar arguments as Shah et al. (2022), restricted to the case where Y
is discrete for the sake of simplicity. Consider any x1, x2 ∈ X . By Definition 1, we have
e−εPY |X(y|x2) ≤ PY |X(y|x1) ≤ eεPY |X(y|x2) for all y ∈ Y. For every (ȳi)i∈[N] ∈ YN and
k ∈ [N],

P(Ȳi)i,K|X((ȳi)i, k|x1)

= P(Ȳi)i((ȳi)i)PK|(Ȳi)i,X(k|(ȳi)i, x1)

= P(Ȳi)i((ȳi)i)
PY |X(ȳk|x1)/Q(ȳk)∑N
i=1 PY |X(ȳi|x1)/Q(ȳi)

≤ P(Ȳi)i((ȳi)i)
eεPY |X(ȳk|x2)/Q(ȳk)∑N
i=1 e

−εPY |X(ȳi|x2)/Q(ȳi)
= e2εP(Ȳi)i,K|X((ȳi)i, k|x2),

where the first equality is because (Ȳi)i is independent ofX. Therefore, P(Ȳi)i,K|X is 2ε-locally
differentially private.

The penalty factor 2 can be reduced, but at the expense of having a small privacy
leakage δ as in (ε, δ)-differential privacy. Interested readers are referred to (Shah et al.,
2022) for details. Another scheme for federated learning with differential privacy based on
minimal random coding has been studied in (Triastcyn et al., 2021).

3.5 Discussions on Sampling Schemes
3.5.1 Properties of Sampling Schemes

In this section, we discuss greedy rejection sampling in Section 3.2.2, exponential and
Poisson functional representation in Section 3.3, and minimal random coding in Section

85



3.4. We first start with their similarities. All of these three schemes are sampling schemes
(Liu and Verdú, 2018) for remote generation, which utilize an i.i.d. sequence Ȳ1, Ȳ2, . . .

iid∼ Q

generated from a reference distribution Q as common randomness, with an encoder that
selects an entry ȲK from the sequence and transmits the index K to the decoder, and a
decoder that outputs Y = ȲK which is required to follow the target distribution P (taken to
be PY |X(·|X) for the channel simulation setting in Definition 2) exactly or approximately.

A subclass of sampling schemes is causal sampling schemes, where at iteration k, the
encoder is not allowed to look at future samples Ȳk+1, Ȳk+2, . . . in order to decide whether
to select K = k, i.e., the event K = k is independent of (Ȳk+1, Ȳk+2, . . .) (Liu and Verdú,
2018). Greedy rejection sampling is causal, whereas Poisson functional representation and
minimal random coding are noncausal. Noncausal schemes may require extra care for the
synchronization between the encoder and the decoder (see Remark 14).

All these schemes satisfy E[log2K] > DKL(P‖Q) (possibly under some additional as-
sumptions),23 and hence requires a communication cost approximately DKL(P‖Q) (possibly
with a logarithmic gap). Schemes that achieves an approximate DKL(P‖Q) communication
cost are termed relative entropy coding in (Flamich et al., 2020).

Sample complexity. Readers may notice in the previous sections that all these schemes
have sample complexity (number of samples Ȳ1, Ȳ2, . . . that the encoder reads) exponential
in DKL(P‖Q) (or D∞(P‖Q)). This requirement is actually fundamental, as shown by Liu
and Verdú (2018).

Theorem 17 (Liu and Verdú 2018). For any sampling scheme on Ȳ1, Ȳ2, . . .
iid∼ Q with an

output distribution ȲK ∼ P , we have

E[K] ≥ 2D2(P‖Q)−1 ≥ 2DKL(P‖Q)−1,

where D2(P‖Q) := log2 EY∼P [(dP/dQ)(Y )] is the order-2 Rényi divergence.

Proof. We repeat the arguments by Liu and Verdú (2018) here. First assume Ȳi is discrete.
We have

P(K = k|ȲK = y) = P(K = k, Ȳk = y)
P (y) ≤ Q(y)

P (y) .

Hence

E[K|ȲK = y] =
∞∑
k=0

P(K > k|ȲK = y)

23Greedy rejection sampling has E[log2 K] ≤ DKL(P‖Q) + log2(2e) (Theorem 7). Poisson functional
representation has E[log2 K] ≤ DKL(P‖Q) + 1 (Theorem 12). For minimal random coding, we have
E[log2 K] ≤ E[log2 N] > DKL(P‖Q) if log2

dP
dQ (Y ) is concentrated around DKL(P‖Q) (Theorem 15).
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≥
∞∑
k=0

max
{

1− kQ(y)
P (y) , 0

}

≥
∫ ∞

0
max

{
1− tQ(y)

P (y) , 0
}

dt

= P (y)
2Q(y) ,

and E[K] ≥ 2−1EY∼P [P (Y )/Q(Y )]. If Ȳi is not discrete, we discretize it by considering
Ȳ ′i = f(Ȳi) for some function f with discrete codomain, which gives E[K] ≥ 2D2(P ′‖Q′)−1

where P ′, Q′ are discretized versions of P,Q, respectively. The proof is completed by taking
the supremum over all such functions f .

This lower bound can be improved to E[K] ≥ 2D∞(P‖Q) for causal sampling schemes
(Goc and Flamich, 2024; Liu and Verdú, 2018). Another hardness result was given by
Agustsson and Theis (2020), who showed that there is no polynomial-time (with respect
to DKL(P‖Q)) sampling algorithm with an output distribution within a total variation
distance at most 1/12 from the target distribution P , assuming RP 6= NP where RP is
the class of problems with randomized polynomial-time algorithms. Also refer to (Block
and Polyanskiy, 2023; Goc and Flamich, 2024; Flamich and Wells, 2024) for other lower
bounds on the sample complexity of sampling schemes. This limitation makes these sampling
schemes suitable only for simulating channels with small capacities (e.g., privacy-preserving
channels (Bassily and Smith, 2015; Liu et al., 2024), or additive noise channels with a low
dimension). To improve the running time, the approach by Flamich et al. (2022), Flamich
et al. (2024), and Flamich (2023) is to partition the space Y so as to allow more efficient
searching for the ȲK that is more likely to be chosen. This approach often requires additional
assumptions on P,Q (e.g., dP/dQ is unimodal).

3.5.2 Comparison between Different Approaches to Sampling Schemes

We highlight the key differences between the three approaches:

Rejection sampling is a causal sampling scheme, where the encoder scans Ȳ1, Ȳ2, . . . one
by one until it stops and chooses the current ȲK , and sends the variable-length encoding of
K (see Algorithm 1). It does not require looking into samples of larger time in order to
determine whether to accept the current sample. Rejection sampling is exact in the sense
that Y ∼ P exactly. Greedy rejection sampling achieves an expected length upper-bounded
by I(X;Y ) + log2(I(X;Y ) + log2(4e)) + log2(8e) in one-shot (Corollary 8). The algorithm
for greedy rejection sampling requires computation of expectations (see (3.9) and Step 9 in
Algorithm 1), which may or may not be feasible depending on P and Q.
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Poisson functional representation is a noncausal sampling scheme, where the encoder
scans Ȳ1, Ȳ2, . . . one by one until it stops and chooses a current or past sample ȲK , and sends
the variable-length encoding of K (see Algorithm 2). Poisson functional representation is
exact, and achieves an expected length upper-bounded by I(X;Y ) + log2(I(X;Y ) + 2) + 3
in one-shot (Theorem 13, the best known constant). The algorithm for Poisson functional
representation (Algorithm 2) requires only a way to generate the samples Ȳi, the Radon-
Nikodym derivative g(y) = (dP/dQ)(y), and an upper bound g∗ ≥ supy g(y).

Minimal random coding and likelihood encoder are noncausal sampling schemes,
where the encoder scans all samples Ȳ1, Ȳ2, . . . , ȲN, selects a sample ȲK (non-uniformly) at
random, and sends the fixed-length encoding of K. Unlike rejection sampling and Poisson
functional representation, there is no “time” attached to a sample, and all samples are
treated equally. Since there are no “samples with smaller times” that are more likely to be
chosen, there is no reason to use a variable-length code, and a fixed-length code should be
used to encode K. Minimal random coding is approximate, in the sense that the conditional
distribution of Y given X approaches PY |X as N → ∞. Minimal random coding may or
may not achieve a length close to I(X;Y ) in one-shot, though it achieves a rate I(X;Y ) in
the asymptotic setting (see Sections 5.6 and 8.2). The algorithm for minimal random coding
(Algorithm 3) requires only a way to generate the samples Ȳi and the Radon-Nikodym
derivative g(y) = (dP/dQ)(y).

In sum, the advantage of greedy rejection sampling is its exactness and causality;
the advantage of Poisson functional representation is its exactness, requiring only the
computation of simple quantities (g(y) and g∗) in the algorithm, and a smaller bound on
the encoding length; and the advantage of minimal random coding is requiring only the
computation of simple quantities (g(y)) in the algorithm, and a fixed number of samples,
which makes fixed-length encoding applicable.

3.5.3 Other Sampling Schemes

We review some other sampling schemes studied in the literature. Some of them are
combinations of the three approaches discussed in the previous sections.

Ordered random coding (G/1/E/VL/KAS/UCR). A method which is based on the
Poisson functional representation and minimal random coding, called ordered random coding,
was proposed by Theis and Yosri (2022). Recall that we may utilize the Gumbel-max trick or
the exponential-min trick to select the sample ȲK in minimal random coding—we generate
Ȳ1, . . . , ȲN

iid∼ Q, Z1, . . . , ZN
iid∼ Exp(1), and take K = argminiZi/dP

dQ(Ȳi) (see Algorithm 3).
In ordered random coding, Z1, . . . , ZN are generated using the common randomness (instead
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of the local randomness at the encoder), and the pairs (Ȳi, Zi) are sorted in ascending order
of Zi, to form (Ȳ(i), Z(i))i∈[N] where Z(1) ≤ · · · ≤ Z(N).24 After sorting, the samples Ȳ(i) with
smaller indices i become more likely to be chosen by K = argminiZ(i)/

dP
dQ(Ȳ(i)), and hence

we can use a variable-length code on K that assigns a shorter length to smaller values in
order to reduce the communication cost (compared to minimal random coding).25

Ordered random coding has the same conditional distribution of the output Ỹ = Ȳ(K)
given the input X as minimal random coding, and hence the bound in Theorem 15 also
applies. Like minimal random coding, ordered random coding is approximate, and is subject
to the same requirements on N as minimal random coding (see Section 3.4). Nevertheless,
unlike minimal random coding where the description length log2 N increases unboundedly
with N, the description length of ordered random coding does not grow unboundedly as N
increases. In fact, ordered random coding approaches the Poisson functional representation
(Section 3.3.2) when N→∞. Similar to Poisson functional representation, ordered random
coding can achieve a conditional entropy upper-bounded by I(X;Y ) + log2(I(X;Y ) + 1) + 4
for channel simulation in the known source distribution case (Definition 2) (Theis and Yosri,
2022).

Compared to Poisson functional representation, ordered random coding ensures thatK ≤
N, and at most N samples Ȳ1, . . . , ȲN are needed, whereas Poisson functional representation
(Algorithm 2) requires a number of samples that is unbounded but has a finite expectation.
Also note that ordered random coding (like minimal random coding) is approximate, whereas
Poisson functional representation is exact.

Readers are also referred to (Phan et al., 2024) for a related importance sampling based
compression scheme.

Greedy Poisson rejection sampling (G/1/E/VL/KAS/UCR). The greedy Poisson
rejection sampling scheme, which is a causal sampling scheme (like greedy rejection sampling)
that utilizes a Poisson process (like Poisson functional representation), was investigated by
Flamich (2023). As in Poisson functional representation, we let (Ti)i ∼ PP(1), (Ȳi)i

iid∼ Q.
Unlike Poisson functional representation which selects ȲK with K = argminiTi/g(Ȳi|X) for
g(y|x) := dPY |X(·|x)

dQ (y) (3.16), here we select ȲK with

K = min
{
k : Ti ≤ σ(g(Ȳi|X))

}
,

24Theis and Yosri (2022) considers the Gumbel random variables Gi = − log2 Zi instead, which is an
equivalent formulation after taking logarithm.

25Refer to (Theis and Yosri, 2022) for a more efficient algorithm that does not require generating all
N samples. Note that ordered random coding does not retain the differential privacy property of minimal
random coding, since the sequence Z1, . . . , ZN becomes a part of the common randomness instead of the
local randomness at the encoder. Without this local randomness, the encoder in ordered random coding
becomes deterministic, and cannot preserve privacy.
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for a suitable function σ : [0,∞)→ [0,∞) defined in (Flamich, 2023). This allows us to scan
the points in increasing order of Ti and accept the first point satisfying Ti ≤ σ(g(Ȳi|X)),
without the need of looking at future points. Greedy Poisson rejection sampling achieves a
conditional entropy H(Y |W ) ≤ I(X;Y ) + log2(I(X;Y ) + 1) + 6 (Flamich, 2023).

Local pseudo-randomizer (G/1/A/FL/KAS/NCR). In the classical rejection sam-
pling scheme (Section 3.2.1), we generate Ȳ1, Ȳ2, . . .

iid∼ Q over Y and U1, U2, . . .
iid∼ Unif(0, 1),

and accept the first (ȲK , UK) where UK ≤ γ dP
dQ(ȲK). In the sampling schemes discussed

in the previous sections, the encoder transmits the index K of the selected sample ȲK . In
case Y is a finite set, the encoder may simply transmit Y = ȲK . Unfortunately, in practice,
we often desire an output Y that lies in a large set, or is even continuous. But can we
really output a continuous Y in practice? If we are using a pseudorandom number generator
(PRNG) that has a fixed-size internal state to produce Ȳ1, Ȳ2, . . ., then the number of choices
of Y will also be limited to the number of possible states.

This is the idea utilized in the local pseudo-randomizer by Feldman and Talwar (2021).
Assume G : {0, 1}` → Y is a PRNG, satisfying that when S ∼ Unif({0, 1}`) is a random
seed, then G(S) approximately follows Q. The local pseudo-randomizer algorithm generates
S1, S2, . . .

iid∼ Unif({0, 1}`) and U1, U2, . . .
iid∼ Unif(0, 1), computes Ȳi = G(Si), accepts the

first (ȲK , UK) where UK ≤ γ dP
dQ(ȲK), and transmits SK (instead of K) to the decoder

using ` bits. The decoder simply outputs Ỹ = G(SK). No common randomness between
the encoder and the decoder is needed. This algorithm only produces Ỹ that approximately
follows the desired conditional distribution PY |X , and the quality of Ỹ depends on the
quality of the PRNG. An advantage of local pseudo-randomizer is its privacy property.
The decoder only observes SK , which has the same information as Ỹ = G(SK) about X.
Therefore, as long as Ỹ does not leak too much information about X, SK will not leak too
much information as well.

To compare local pseudo-randomizer with minimal random coding, note that local pseudo-
randomizer also uses a fixed set of 2` candidates {G(s)}s∈{0,1}` . The rejection sampling
procedure eventually selects one of the candidates Ỹ with a probability proportional to
dP
dQ(Ỹ ). The difference between minimal random coding and local pseudo-randomizer is
that the latter fixes the PRNG G and hence the set of candidate, whereas minimal random
coding uses the common randomness to randomize the set of candidates. Also, local pseudo-
randomizer utilizes a rejection sampling procedure to select Ỹ without scanning through all
candidates, making the scheme efficient even when ` is large.

GenProt (G/1/A/FL/KAS/UCR). A scheme proposed by Bun et al. (2019), called
GenProt, also uses a fixed number of samples Ȳ1, . . . , ȲN

iid∼ Q like minimal random coding. It
then utilizes a different method to select the sample ȲK by first randomly rejecting a subset
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of the samples, and then selecting a non-rejected sample uniformly at random. GenProt is
an approximate channel simulation scheme (the channel is only simulated within a small
total variation distance). An advantage of GenProt is that it can convert an approximate
differential privacy mechanism into a pure differential privacy mechanism.

3.6 Subtractively Dithered Quantization and Universal Quan-
tization

3.6.1 Subtractively Dithered Scalar Quantization

In this section, we discuss the notion of subtractively dithered quantization (Roberts, 1962;
Schuchman, 1964; Ziv, 1985; Gray and Stockham, 1993) mentioned in the introduction,
which is perhaps the earliest example of channel simulation. We first review the original
non-dithered quantization, where X ∈ R is mapped to the closest reconstruction level in
. . . ,−2∆,−∆, 0,∆, . . ., which is given by

Y = ∆
⌊
X

∆ + 1
2

⌋
.

For the encoding operation, the encoder maps X to bX/∆ + 1/2c ∈ Z, which is then
encoded into a sequence of bits using either a fixed-length code (if X has a known bound, so
bX/∆ + 1/2c has finitely many possible values), or a variable-length code (e.g. the Huffman
code (Huffman, 1952) or the signed Elias delta code over the integers (Elias, 1975)). The
decoder decodes bX/∆ + 1/2c and outputs Y = ∆ bX/∆ + 1/2c.

Since quantization maps a continuous value to a discrete value that can be communicated
using finitely many bits, one straightforward “channel simulation” scheme for a channel
PY |X with Y ∈ R is to have the encoder generate Y following PY |X locally, quantize Y into
Ỹ = ∆bY/∆ + 1/2c, and transmit M = bY/∆ + 1/2c ∈ Z so the decoder can recover Ỹ .
We call this simple quantization. This approach is popular for the compression of privacy
mechanisms (e.g., Andrés et al. (2013)), since the privacy properties of PY |X are preserved
by PỸ |X as Ỹ is merely a function of Y . Nevertheless, this scheme is not exact since PỸ |X
deviates from the original PY |X , and does not utilize the noise in the channel PY |X to
reduce the description length.

In order to allow exact simulation, the quantization will be carried out in a random
manner. The idea of subtractive dithering (Roberts, 1962; Schuchman, 1964; Ziv, 1985; Gray
and Stockham, 1993) is to introduce a random shift to the reconstruction levels by an amount
−W∆, where W ∼ Unif(−1/2, 1/2) is the common randomness. Now the reconstruction
levels are . . . , (−2−W )∆, (−1−W )∆, −W∆, (1−W )∆, . . ., and the reconstruction level
closest to X is

Y = ∆
(⌊

X

∆ +W + 1
2

⌋
−W

)
. (3.24)
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The encoder maps X to K := bX/∆ +W + 1/2c ∈ Z, which is then encoded into a sequence
of bits. The decoder decodes K and outputs Y = ∆(K −W ). Refer to Figure 1.2 for an
illustration.

The quantization noise Y − X ∼ Unif(−∆/2,∆/2) is independent of X, and hence
this is a channel simulation scheme for the additive noise channel with noise distribution
Unif(−∆/2,∆/2). We now show this claim. Condition on X = x. Note that changing W
into W + a for any a ∈ Z will not affect the value of Y in 3.24, and hence the value of Y
depends only on X andW −bW c (the fractional part ofW ). We haveW −bW c ∼ Unif(0, 1)
since W ∼ Unif(−1/2, 1/2) is uniformly distributed over an interval of length 1. We still
have W − bW c ∼ Unif(0, 1) if W ∼ Unif(−x/∆− 1/2, −x/∆ + 1/2) instead. In this case,
we have bx/∆ +W + 1/2c = 0, and Y ∼ Unif(x−∆/2, x+ ∆/2). The result follows.

If X = (X1, . . . , Xn) ∈ Rn is a (not necessarily i.i.d.) random vector, and we want to
simulate an additive noise channel Y = X + Z where Zi

iid∼ Unif(−∆/2,∆/2), i.e., Z is
uniformly distributed over the hypercube [−∆/2,∆/2]n, we can simply apply dithered
quantization on each entryXi separately, using the common randomness W = (W1, . . . ,Wn),
W1, . . . ,Wn

iid∼ Unif(−1/2, 1/2). This is the optimal way to simulate the additive noise
channel with uniform noise over the hypercube, in the sense that its conditional entropy
(defined in Section 3.1) attains the mutual information lower bound in Proposition 5. This
has been observed in (Zamir and Feder, 1992), and follows directly from Proposition 5 since
Wi ≡ −Yi/∆ (mod 1) is a function of Yi.

Proposition 18 (Optimality of dithered quantization (nDAC/1/E/VL/KS/UCR) (Zamir
and Feder, 1992)). Fix ∆ > 0. Consider any joint distribution PX over Rn. Let W,Y be
the common randomness and output of the dithered quantization scheme (3.24) applied on
each entry Xi separately. Then the conditional entropy of this scheme is

H(Y|W) = I(X; Y) = h(Y)− n log2 ∆.

Hence, the dithered quantization scheme attains the minimum conditional entropy (3.1) for
simulating the additive noise channel channel PY|X with noise Zi iid∼ Unif(−∆/2,∆/2). If
we encode Y using the Huffman code conditional on W, then the expected length is at most
1 bit away from the minimal expected length L∗.

Universal quantization. Moreover, this scheme is universally almost optimal, not only
among channel simulation schemes, but also among lossy compression schemes under mean
squared error, in the sense that its conditional entropy is within a constant bit per dimension
n from the rate-distortion function, regardless of the distribution of X. This is established
in the work on universal quantization by Ziv (1985) and Zamir and Feder (1992). Also refer
to the work by Gish and Pierce (1968).
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Theorem 19 (Universal quantization (Ziv, 1985; Zamir and Feder, 1992)). Fix D > 0.
Consider any joint distribution PX. Let W,Y be the common randomness and output of
the dithered quantization scheme (3.24) applied on each Xi separately, with ∆ = 2

√
3D (so

n−1E[‖X−Y‖2] = D). Then the conditional entropy of this scheme satisfies

H(Y|W) ≤ R(D) + n

2 log2
πe

3
≤ R(D) + 0.755n bits,

where
R(D) := inf

PX̂|X:n−1E[‖X−X̂‖2]≤D
I(X; X̂)

is the rate-distortion function. If we encode Y using the Huffman code conditional on W,
then the expected length is at most 0.755n+ 1 bits away from R(D).26

Proof. We present the arguments in (Zamir and Feder, 1992) here. Let Z ∼ Unif([−∆/2,∆/2]n)
be independent of X, and Y = X + Z. Consider any PX̂|X with n−1E[

∑n
i=1(Xi− X̂i)2] ≤ D.

Let X̂|X ∼ PX̂|X, with (X, X̂) being independent of Z. By Proposition 18,

H(Y|W) = I(X; Y)
≤ I(X; Y, X̂)
= I(X; X̂) + I(X; Y|X̂)
= I(X; X̂) + h(Y|X̂)− h(Y|X, X̂)
= I(X; X̂) + h(Y− X̂|X̂)− h(Z)
≤ I(X; X̂) + h(Y− X̂)− n log2 ∆

= I(X; X̂) + h(Y− X̂)− n

2 log2(12D),

where

h(Y− X̂) ≤
n∑
i=1

h(Yi − X̂i)

(a)
≤

n∑
i=1

1
2 log2

(
2πeVar

[
Yi − X̂i

])
=

n∑
i=1

1
2 log2

(
2πe

(
Var

[
Xi − X̂i

]
+ Var [Zi]

))

26It was shown by Gish and Pierce (1968) and Ziv (1985) that if X contains i.i.d. entries with a smooth
probability density function, in the “high resolution limit” where D → 0, we have lim supD→0(H(Y|W)−
R(D)) ≤ (n/2) log2(2πe/12) ≤ 0.255n bits.
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=
n∑
i=1

1
2 log2

(
2πe

(
Var

[
Xi − X̂i

]
+ ∆2

12

))
(b)
≤ n

2 log2

(
2πe

(
1
n

n∑
i=1

Var
[
Xi − X̂i

]
+ ∆2

12

))

≤ n

2 log2 (2πe (D +D))

= n

2 log2 (4πeD) ,

where (a) is because the Gaussian distribution maximizes differential entropy for a fixed
variance, and (b) is by Jensen’s inequality. Hence,

H(Y|W) ≤ I(X; X̂) + n

2 log2
4πe
12

= I(X; X̂) + n

2 log2
πe

3 .

Theorem 19 provides a method for designing lossy compression schemes, which has an
expected length per sample at most a constant away from the optimum. To compress X,
we simply apply dithered quantization to each entry, and encode Y conditional on W using
Huffman code or another entropy encoding. We do not have to tailor the quantizer for the
distribution of X. Nevertheless, the Huffman code still needs to take the distribution of X
into account.

3.6.2 Layered Randomized Quantizers for Additive Noise Channel Simulation

Subtractive dithering produces an additive noise with distribution Unif(−∆/2,∆/2). If the
decoder adds a shift B ∈ R to the output Y , the noise distribution would be Unif(B −
∆/2, B + ∆/2), which can be uniform over any given interval. Using this, we can construct
a channel simulation scheme for any unimodal noise distribution over R.27 The idea, which
appeared (in a different form) in the layered multishift coupler in (Wilson, 2000), noted
in (Agustsson and Theis, 2020) for the Gaussian case, and investigated in (Hegazy and
Li, 2022) for the general case, is to express the noise distribution with probability density
function f as a mixture of uniform distributions over intervals. Let

L+
s (f) := {x ∈ R : f(x) ≥ s}

27A probability density function f : R→ R is unimodal if there exists c ∈ R such that f(x) is nondecreasing
over x ∈ (−∞, c], and nonincreasing over x ∈ [c,∞).
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be the superlevel set of f . For a unimodal f , the superlevel set is an interval (or empty).
Moreover, f can be expressed as a mixture over uniform distributions over L+

s (f), as

f(x) =
∫ ∞

0
1{x ∈ L+

s (f)}ds

=
∫ ∞

0
Vol(L+

s (f)) ·Unif(x;L+
s (f))ds,

where Unif(x;L+
s (f)) := 1{x ∈ L+

s (f)}/Vol(L+
s (f)) is the probability density function of

Unif(L+
s (f)). Therefore, we can simulate the noise distribution f , by randomly selecting S

and applying subtractive dithering to produce a noise distribution Unif(L+
s (f)).

The channel simulation scheme for an additive noise channel with a unimodal noise
distribution f in (Hegazy and Li, 2022), called (direct) layered randomized quantizer, is
constructed as follows. First, generate a common randomness (S,W ), where S ∈ [0,∞)
has a probability density function fS(s) := Vol(L+

s (f)) = supL+
s (f) − inf L+

s (f) and
W ∼ Unif(−1/2, 1/2). The encoder observes S,W,X, computes ∆ = fS(S),

K :=
⌊
X

∆ +W + 1
2

⌋
∈ Z,

and encodes and transmit K. The decoder observes S,W , decodes K, and computes
∆ = fS(S),

B := supL+
S (f) + inf L+

S (f)
2 ,

Y = ∆ · (K −W ) +B. (3.25)

Conditional on S = s, the layered randomized quantizer would become a subtractive
dithering scheme with a noise distribution

Unif
(

inf L+
s (f), supL+

s (f)
)

= Unif(L+
s (f)). (3.26)

Therefore, randomizing over S, the noise distribution becomes f . The algorithm, based on
(Hegazy and Li, 2022; Hegazy et al., 2024), is given in Algorithm 4. In particular, if the desired
noise distribution isN(0, σ2), then ∆ can equivalently be generated asG ∼ Gamma(3/2, 1/2)
and ∆ = 2σ

√
G (Walker, 1999; Agustsson and Theis, 2020; Hasırcıoğlu and Gündüz, 2024).

Refer to Figure 3.9 for an illustration.

Asymptotic optimality. Although the layered randomized quantizer does not enjoy the
universal optimality property in Proposition 18, it is asymptotically optimal in the high
signal-to-noise-ratio (SNR) limit, where we consider the input distribution X ∼ Unif(0, t),
and take t→∞. In this case, the mutual information I(X;X+Z) (where Z ∼ f) grows like
log2 t+O(1), and hence we expect the optimal conditional entropy for channel simulation to
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grow like this as well. It remains to characterize the “O(1)” term. Theorem 4 can only give
a scheme with conditional entropy log2 t+ log2 log2 t+O(1), which is not strong enough
to give us a “log2 t + O(1)” result, and hence a different analysis is needed. Note that
this is different from the large blocklength limit (to be discussed in Section 5), which is
what “asymptotic” usually mean in this monograph, where we simulate a memoryless
channel with input sequence X1, . . . , Xn and take n→∞. In the large blocklength limit,
the communication needed for channel simulation grows like Θ(n).

The following result in (Hegazy and Li, 2022) characterizes the precise high SNR limit
of additive noise channel simulation with a unimodal noise, and showed that the layered
randomized quantizer is optimal in the high SNR limit. Readers are referred to (Hegazy
and Li, 2022) for the proof.

Theorem 20 (High SNR limit of additive noise channel simulation (1DAC/1/E/VL/KS/
UCR) (Hegazy and Li, 2022)). Fix a unimodal probability density function f : R→ R with
a finite mean. Let H∗f,t be the minimum conditional entropy (3.1) among channel simulation
schemes for the additive noise channel X → X +Z, where X ∼ Unif(0, t), Z ∼ f . Then we
have

H∗f,t = log2 t− hL(f) +O
(1
t

)
(3.27)

as t→∞, where
hL(f) :=

∫ ∞
0

Vol(L+
s (f)) log2 Vol(L+

s (f)) ds (3.28)

is called the layered entropy of f (Hegazy and Li, 2022). More precisely, we have the
following for any t > 0:

0 ≤ H∗f,t − (log2 t− hL(f)) ≤ 8δZ log2 e

t
, (3.29)

where δZ := E[|Z −median(Z)|] is the mean absolute deviation of Z around the median
(which is not greater than the standard deviation). The conditional entropy of the direct
layered randomized quantizer satisfies (3.27) and the bounds in (3.29).

Nonasymptotic bound. Moreover, we have the following nonasymptotic bound on the
conditional entropy of layered randomized quantizer, which is a slight generalization of the
result by Kobus et al. (2024a) on the layered randomized quantizer for Gaussian channel
simulation.

Theorem 21 (1DAC/1/E/VL/KS/UCR (Kobus et al., 2024a)). Fix a unimodal probability
density function f : R→ R with a finite mean, and any known source distribution PX . The
conditional entropy of the direct layered randomized quantizer satisfies

H(Y |S,W ) ≤ I(X;Y ) + h(f)− hL(f),

96



where h(f) is the differential entropy, and hL(f) is the layered entropy (3.28).28 Hence, the
expected description length can be upper-bounded by I(X;Y ) + h(f)− hL(f) + 1.

Proof. We have

H(Y |S,W )− I(X;Y ) (a)= I(X;S,W |Y )
= I(X;S|Y ) + I(X;W |S, Y )
(b)= I(X;S|Y )
≤ I(X,Y ;S)
(c)= I(Y ;S|X)
= h(Y |X)− h(Y |X,S)
(d)= h(f)− E [log2 fS(S)]
= h(f)− hL(f),

where (a) was shown in the proof of Proposition 5, (b) is because W ≡ −Y/fS(S) (mod 1)
is a function of (S, Y ), (c) is due to I(X;S) = 0, and (d) is because for a fixed S, the
channel from X to Y is an additive noise channel with noise distribution Unif(L+

s (f)), with
Vol(L+

s (f)) = fS(s) (3.26).

The bound in Theorem 21 was evaluated for scalar additive Gaussian noise channels by
Kobus et al. (2024a), which gives H(Y |S,W ) ≤ I(X;Y ) + 0.521 bits.

Shifted layered randomized quantizer. One modification of the direct layered random-
ized quantizer is to flip the left half of the graph of f upside down. This is the construction
in the layered multishift coupler in (Wilson, 2000), and is referred to as the shifted layered
randomized quantizer in (Hegazy et al., 2024). The scheme for an additive noise channel with
a unimodal noise distribution f works as follows (Hegazy et al., 2024). Let f∗ := maxx f(x).
First, generate a common randomness (S,W ), where S ∈ [0, f∗] has a probability density
function

fS(s) := supL+
s (f)− inf L+

f∗−s(f),

and W ∼ Unif(−1/2, 1/2). The encoder observes S,W,X, computes ∆ = fS(S),

K :=
⌊
X

∆ +W + 1
2

⌋
∈ Z

28Note that hL(f) ≤ h(f). Refer to (Hegazy and Li, 2022; Ling and Li, 2024) for the proof.
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and encodes and transmit K. The decoder observes S,W , decodes K, and computes
∆ = fS(S),

B :=
supL+

S (f) + inf L+
f∗−S(f)

2
Y = ∆ · (K −W ) +B.

Refer to Figure 3.9 for an illustration. Although the shifted layered randomized quantizer
has a larger conditional entropy compared to the direct construction (3.25), and cannot
achieve the high SNR limit in Theorem 20, the advantage is that the quantization step ∆ can
be lower-bounded, and hence K can be bounded if X is bounded. If |X| ≤ γ, then we have
|K| ≤ γ/ infs fS(s) + 1/2, and hence K can be encoded into a fixed-length codeword. This
is desirable if a fixed-length code is needed, for example, if we have a strict communication
budget for every component in the protocol. Readers are referred to (Hegazy et al., 2024)
for bounds on the performance of the shifted layered randomized quantizer. The algorithm,
based on (Wilson, 2000; Hegazy et al., 2024), is given in Algorithm 4.

Layered randomized quantizers has been applied to simulate additive noise mechanisms
for differential privacy settings in (Hasırcıoğlu and Gündüz, 2024; Shahmiri et al., 2024;
Hegazy et al., 2024; Yan et al., 2023) (see Section 1.6).

3.6.3 Subtractively Dithered Lattice Quantization

Recall that the conditional entropy of the direct layered randomized quantizer applied to a
scalar additive Gaussian noise channel is upper-bounded as H(Y |S,W ) ≤ I(X;Y ) + 0.521
in Theorem 21 (Kobus et al., 2024a). If our goal is to simulate n copies of this scalar
channel, we require a description length ≈ nI(X;Y ) + 0.521n, significantly longer than the
nI(X;Y ) + log2(nI(X;Y ) + 1) +O(1) description length given by greedy rejection sampling
and Poisson functional representation. In order to reduce the description length, we should
treat these n copies of scalar channel as a single vector channel with input and output in
Rn, and perform quantization over these n dimensions together.

We first review some basic concepts in lattice quantization (Conway and Sloane, 2013;
Zamir, 2014). A lattice in Rn with a generator matrix G ∈ Rn×n (a full-rank matrix) is the
set GZn = {Gi : i ∈ Zn}. A fundamental cell of the lattice is a bounded subset P0 ⊆ Rn

such that {P0 + y : y ∈ GZn} (the set of translations P0 + y = {x + y : x ∈ P0} of P0 by
lattice points) forms a partition of Rn. Given a fundamental cell, we can define a lattice
quantization function Q : Rn → Rn, where Q(x) is taken to be the vector y ∈ GZn such that
x ∈ P0 + y. In particular, if Q(x) = argminy∈GZn‖x− y‖ is the closest lattice point to x,
then the corresponding fundamental cell Q−1({0}) = {x ∈ Rn : argminy∈GZn‖x− y‖ = 0}
is the Voronoi cell of the lattice.

Subtractive dithering can also be applied on lattice quantization (Kirac and Vaidyanathan,
1996; Zamir, 2014). Consider a generator matrix G and a fundamental cell P0 with a corre-
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Direct layered randomized quantizer

Shifted layered randomized quantizer

S

S

∆(k −W ) + B

∆(k −W ) + B

Y

Y

Figure 3.9: Top: an illustration of the direct layered randomized quantizer applied to simulate a Gaussian
additive noise, where we first select the vertical coordinate S at random (as a part of the common randomness),
and then apply subtractive dithering to create a noise uniform over superlevel set L+

S (f) (which is the blue
interval with vertical coordinate S). Among the reconstruction levels (∆(k −W ) + B)k∈Z shown as the
green points in the figure (refer to (3.25)), we select the point that lies in the superlevel set L+

S (f) (blue
interval) as the reconstruction Y (red point). There is exactly one reconstruction level in L+

S (f) since ∆ is
the length of L+

S (f).
Bottom: an illustration of the shifted layered randomized quantizer applied to simulate a Gaussian additive
noise. Compared to the direct layered randomized quantizer, the left half of the graph of the Gaussian
density function is flipped upside down. This guarantees that the lengths of the blue intervals are bounded
away from 0.
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Algorithm 4 Direct/shifted layered randomized quantizer (Hegazy and Li, 2022; Wilson,
2000; Hegazy et al., 2024)
Procedure Encode(f, x,mode,G) :
Input: density function f , input x ∈ R,

mode ∈ {direct, shifted}, PRNG G

Output: k ∈ Z

1: f∗ ← maxx f(x)
2: if mode = direct then
3: Generate s ∈ [0, f∗] with density fS(s) = supL+

s (f)− inf L+
s (f) using G

4: ∆← supL+
s (f)− inf L+

s (f)
5: else if mode = shifted then
6: Generate s ∈ [0, f∗] with density fS(s) = supL+

s (f)− inf L+
f∗−s(f) using G

7: ∆← supL+
s (f)− inf L+

f∗−s(f)
8: end if
9: Generate w ∼ Unif(−1/2, 1/2) using G

10: return bx/∆ + w + 1/2c

Procedure Decode(f, k,mode,G) :
Input: f , k, mode, G
Output: sample Y

1: f∗ ← maxx f(x)
2: if mode = direct then
3: Generate s ∈ [0, f∗], fS(s) = supL+

s (f)− inf L+
s (f) using G

4: ∆← supL+
s (f)− inf L+

s (f)
5: b← supL+

s (f)+inf L+
s (f)

2
6: else if mode = shifted then
7: Generate s ∈ [0, f∗], fS(s) = supL+

s (f)− inf L+
f∗−s(f) using G

8: ∆← supL+
s (f)− inf L+

f∗−s(f)

9: b←
supL+

s (f)+inf L+
f∗−s(f)

2
10: end if
11: Generate w ∼ Unif(−1/2, 1/2) using G

12: return ∆ · (k − w) + b

100



sponding quantization function Q. The common randomness is W ∼ Unif(P0). The encoder
maps X ∈ Rn to

K := G−1Q(X + W) ∈ Zn, (3.30)

which is then encoded into a sequence of bits. The decoder decodes K and outputs
Y = GK−W.

The quantization noise has a distribution

Y−X = Q(X + W)−W−X ∼ Unif(−P0),

independent of the input X. Refer to (Kirac and Vaidyanathan, 1996) for the proof. Note
that −P0 = {−v : v ∈ P0} is a fundamental cell as well. Hence, using subtractive
quantization, we can perform channel simulation on the additive noise channel X→ X + Z
where Z is uniform over an arbitrary fundamental cell. This includes the entrywise dithered
quantization in Section 3.6.1 as a special case, by taking G = ∆I and P0 = [−∆/2,∆/2)n.

Similar to Proposition 18, the subtractively dithered lattice quantization scheme is also
optimal for simulating the corresponding additive noise channel. This has been observed in
(Zamir and Feder, 1992), and follows directly from Proposition 5 since W is the unique
point in P0 such that there exists t ∈ GZn with W = t−Y, and hence W is a function of
Y.

Proposition 22 (Optimality of dithered lattice quantization (nDAC/1/E/VL/KS/UCR)
(Zamir and Feder, 1992)). Consider a generator matrix G and a fundamental cell P0
with a corresponding quantization function Q. Consider any distribution PX over Rn. Let
W ∼ Unif(P0) and Y = Q(X + W)−W be the common randomness and output of the
dithered lattice quantization scheme (3.30). Then the conditional entropy of this scheme is

H(Y|W) = I(X; Y) = h(Y)− log2 Vol(P0).

Hence, the dithered vector quantization scheme attains the minimum conditional entropy
(3.1) for simulating the additive noise channel X → X + Z where Z ∼ Unif(−P0). If we
encode Y using the Huffman code conditional on W, then the expected length is at most 1
bit away from the minimal expected length L∗.

A universal quantization result similar to Theorem 19 for vector quantization is also
proved in (Zamir and Feder, 1992). Readers are referred to (Zamir and Feder, 1992) for the
result and the proof.

Rejection-sampled universal quantizer. We have seen how dithered lattice quantiza-
tion can simulate an additive noise channel with noise uniform over a fundamental cell. For
example, in R2, dithered lattice quantization can create a noise uniform over a parallelogram
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or a regular hexagon. However, it cannot create a noise uniform over a circular disk, which
is not a fundamental cell. In order to shape the error distribution into a uniform distribution
over an arbitrary set A ⊆ Rn, we may combine dithered lattice quantization with rejection
sampling (Section 3.2), which is the approach considered by Ling and Li (2024), called
rejection-sampled universal quantizer (RSUQ) (also refer to (Theis and Yosri, 2022) for a
closely related construction called hybrid coding, which combines dithered quantization
with ordered random coding discussed in Section 3.5.3). Suppose P0 ⊇ −A is a fundamental
cell. We repeatedly apply subtractive dithering (3.30) with the fundamental cell P0 using
different dither signals, until the quantization noise Y − X falls in A. More precisely,
letting the common randomness be a sequence of dither signals W1,W2, . . .

iid∼ Unif(P0),
the encoder maps X ∈ Rn to (J,K) where J := min{i : Q(X + Wi) −Wi − X ∈ A}
is the index of the first dither signal WJ that makes the quantization noise fall in A,
and K := G−1Q(X + WJ). The decoder maps (J,K) to Y = GK −WJ . This way, we
can ensure that Y−X ∼ Unif(A). It has been shown by Ling and Li (2024) that RSUQ
can outperform conventional lattice quantizers in certain aspects, e.g., attaining a smaller
maximum error and/or mean squared error for certain dimensions in the high resolution
limit.

If the desired noise distribution is nonuniform with a probability density function
f : Rn → R, the method by Ling and Li (2024), called layered RSUQ (LRSUQ), is to
adopt the same strategy as the layered randomized quantizer in Section 3.6.2, where f
is decomposed into a mixture of uniform distributions over the superlevel sets L+

S (f) :=
{x ∈ Rn : f(x) ≥ S} for a randomly chosen S ≥ 0 with probability density function
fS(s) := Vol(L+

s (f)), and then RSUQ is applied on L+
S (f) for a random S shared as a

part of the common randomness. LRSUQ can be used to show a high SNR result for
simulating a vector additive noise channel with general continuous noise (Ling and Li, 2024).
Nevertheless, unlike the 1D layered randomized quantizer that is asymptotically optimal in
the high SNR limit (Theorem 3.6.2), LRSUQ is only asymptotically within log2 e bits from
the optimum.

Theorem 23 (High SNR limit of vector additive noise channel simulation (nDAC/1/E/VL/
KS/UCR) (Ling and Li, 2024)). Fix a probability density function f : Rn → R satisfying
the regularity condition∫ ∞

0

(
sup

z:‖z‖2≥γ
f(z)

)
γn−1 log2(1 + γ)dγ <∞.

Let H∗f,t be the minimum conditional entropy (3.1) among channel simulation schemes for
the additive noise channel X→ X + Z, where X ∼ Unif(tBn) is uniform over the n-ball
tBn = {x ∈ Rn : ‖x‖2 ≤ t}, and Z ∼ f . Then we have

−hL(f) ≤ H∗f,t − log2 Vol(tBn) ≤ −hL(f) + log2 e+ o(1) (3.31)
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as t → ∞, where hL(f) is the layered entropy (3.28). The bounds (3.31) are satisfied by
LRSUQ.

Another construction that achieves an error uniform over an arbitrary set A ⊆ Rn is
shift-periodic quantization (Ling and Li, 2023), which aims at dissecting A into (possibly
infinitely many) pieces that can be reconstructed to form a fundamental cell −P0. Readers
are referred to (Ling and Li, 2023) for details.

3.6.4 Dithering-based Schemes for Specific Noise Distributions

We discuss several other channel simulation schemes based on dithered quantization.

Rotated dithered quantization (nDAC/1/A/(FL or VL)/KAS/UCR). Consider
the simulation of a vector additive noise channel with Gaussian noise Z ∼ N(0, σ2I), which
is a rotationally invariant distribution, i.e., RZ has the same distribution as Z for any
orthogonal matrix R ∈ Rn×n. Dithered lattice quantization produces an error uniform over
a fundamental cell, which cannot be rotationally invariant. To ensure a rotationally invariant
error, the idea by Kobus et al. (2024a) is to apply a rotation by a uniformly randomly
generated orthogonal matrix R (included in the common randomness). The encoding and
decoding are given by

K = G−1Q(RTX + W) ∈ Zn,

Y = R(GK−W + Z̃)
= R(Q(RTX + W)−W + Z̃),

where Q is the lattice quantization function (Section 3.6.2) for some fundamental cell P0 of a
lattice GZn, and Z̃ is an additional noise added to make the overall noise distribution closer
to Gaussian. The case where GZn is a scaled integer lattice (G is a scalar multiple of I), and
Z̃ contains i.i.d. Weibull-distributed entries, was analyzed by Kobus et al. (2024a). While
this scheme does not achieve an exact Gaussian noise distribution, the KL divergence of
the overall noise distribution from the Gaussian distribution is bounded by O(n−1) (Kobus
et al., 2024a).

Dyadic quantized Laplace mechanism (1DAC/1/E/VL/KAS/UCR). The layered
randomized quantizers (Section 3.6.2) does not satisfy differential privacy or metric privacy
even when Z is a privacy-perserving noise. The decoder, observing W , ∆ and K =
bX/∆ +W + 1/2c, would know precisely which quantization cell X lies in, and a slight
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change to X can result in a deterministic change to K (when W is fixed) if X is close to
the boundary of the quantization cell. An observation by Shahmiri et al. (2024) is that, if
the encoder adds a local noise with a piecewise constant probability density function to the
input before applying dithered quantization, then differential privacy can be achieved. To
ensure that the error follows the Laplace distribution, the construction in (Shahmiri et al.,
2024) decomposes the Laplace distribution into a mixture of piecewise linear probability
density functions. This allows the Laplace mechanism (Dwork et al., 2006) to be simulated
exactly with a finite amount of communication, while retaining a (weaker) differential
privacy guarantee.

Interested readers are also referred to (Shlezinger et al., 2020; Amiri et al., 2021; Lang
et al., 2023) for the use of dithered vector quantization in various learning and privacy tasks.

3.7 Exact Fixed-Length Channel Simulation

In this section, we briefly discuss exact channel simulation with a strict constraint on
the description length. We require that the description M has a fixed length. For the
fixed-length setting, we would modify Definition 2 to have M ∈ [N] instead of M ∈ CW ,
where N ∈ N+ is the description size. The problem becomes minimizing N such that there
exists a scheme with Y |X ∼ PY |X exactly. Note that among the schemes for one-shot
exact channel simulation with unlimited common randomness discussed in this section, only
subtractive dithering and the shifted layered randomized quantizer in Section 3.6 can be
made into a fixed-length scheme (for a bounded input signal). Although minimal random
coding (Section 3.4) is a fixed-length scheme, it only simulates the channel approximately.

Consider the conditional probability matrix PY |X ∈ R|X |×|Y| with entries (PY |X)x,y =
PY |X(y|x) (here we assume X ∈ X = [|X |], and Y ∈ Y = [|Y|] are integers). Fix a
channel simulation scheme. For each value w of the common randomness W , consider the
conditional probability matrix PY |X,W=w ∈ R|X |×|Y| induced by the scheme, with entries
(PY |X,W=w)x,y = PY |X,W (y|x,w). Since M ∈ [N] and Y = g(W,M), there are at most N
possible values of Y for each fixed value w of the common randomnessW . Therefore, there are
at most N columns in PY |X,W=w that are not all zeros, or equivalently, ‖1TPY |X,W=w‖0 ≤ N,
where ‖a‖0 = |{i : ai 6= 0}| is the sparsity of a. Therefore, PY |X =

∑
w PW (w)PY |X,W=w is

a convex combination of conditional probability matrices with at most N nonzero columns.
Therefore, we obtain the following formula, which has been first observed by Cubitt et al.
(2011).

Theorem 24 (D/1/E/FL/KAS/UCR (Cubitt et al., 2011)). For the one-shot exact fixed-
length channel simulation setting for finite discrete X , PY |X , with unlimited common
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randomness, and known29 or arbitrary source distribution, the optimal description size N∗
is given by

N∗ = min
{
k : PY |X ∈ conv

(
{QY |X : ‖1TQY |X‖0 ≤ k}

)}
, (3.32)

where QY |X ranges over conditional probability matrices from X to Y, where ‖1TQY |X‖0 =
|{y :

∑
x(QY |X)x,y > 0}| ≤ k, and conv(M) denotes the convex hull of a set of conditional

probability matricesM.

Unfortunately, the expression (3.32) is difficult to evaluate, and does not relate to
simpler quantities like mutual information as in Theorem 4. Furthermore, the penalty for
requiring fixed length description can be significant. For example, consider the channel
Y ∈ [a], X ∈

([a]
b

)
(where 1 ≤ b ≤ a, and

([a]
b

)
denotes the set of subsets of [a] with size b),

with Y |X ∼ Unif(X), i.e., the channel takes a size-b subset of [a] as input, and outputs a
random element in the subset. Variable-length channel simulation would require an expected
length within a logarithmic gap from maxPX I(X;Y ) = log2(a/b). On the other hand,
for fixed-length channel simulation, we can show that it is impossible to have a scheme
with N ≤ a − b. This is because for a scheme with N = a − b, for each fixed value w of
the common randomness W , there are at most a− b possible values of Y , and hence the
scheme will fail when the input X is a set that does not contain any of those possible
values. We can construct a scheme with N = a− b+ 1 by having W ∼ Unif(

( [a]
a−b+1

)
), the

encoder chooses a an element in X ∩W randomly and transmit its index in W , and the
decoder recovers and outputs that element. This means that log2 N∗ = log2(a − b + 1),
which can be significantly larger than the L∗ ≤ log2(a/b) + log2(log2(a/b) + 2) + 3 for
variable-length channel simulation in Theorem 4 (e.g., when a = 2b, log2 N∗ = log2(b+ 1),
whereas L∗ ≤ log2 3 + 4).

The approximate setting where the output is only required to follow PY |X approximately
is deferred to Section 8.

29For known source distribution, we assume PX(x) > 0 for all x ∈ X .
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Enc DecX Y |X ∼ PY |X

M

Figure 4.1: One-shot channel simulation without common randomness.

4 One-shot Channel Simulation without Common Ran-
domness

In this section, we study the one-shot channel simulation without common randomness
between the encoder and the decoder. It is applicable to scenarios where true common
randomness is too expensive, the initial step for establishing synchronized pseudorandom
number generators in Section 2.3 is unavailable, or if pseudorandomness is considered
unacceptable. Although the setting is similar to Definition 2 where unlimited common
randomness is available, the techniques for the case without common randomness are vastly
different, and the results are often not stated in terms of the mutual information I(X;Y )
(except in Theorem 31 where additional constraints are needed). We state the definition of
the setting (including the fixed and variable-length cases, and the known source distribution
and arbitrary source cases) here.

Definition 25 (One-shot variable-length exact channel simulation without common ran-
domness). Consider a general (discrete/continuous) channel PY |X from X to Y , and a source
(discrete/continuous) distribution PX (for the known source distribution case). A one-shot
variable-length channel simulation scheme without common randomness is characterized by
a tuple (C, PM |X , PY |M ) described below:

• Codebook.

– For the variable-length setting, the set of possible descriptions C ⊆ {0, 1}∗ is a
prefix-free codebook, which we can design as a part of the coding scheme.

– For the fixed-length setting, the set of possible descriptions must be C = [N],
where N is the description size.

• Encoder. The encoder observes a source symbol X (with X ∼ PX for the known
source distribution case), and sends a description M ∈ C, M |X ∼ PM |X produced by
passing X through a conditional distribution PM |X from X to C (called the encoding
Markov kernel).

• Decoder. The decoder then outputs Y |M ∼ PY |M produced by passing M through
a conditional distribution PY |M from C to Y (called the decoding Markov kernel).
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• Requirement. We require Y |X ∼ PY |X exactly.

• Performance metric.

– For the variable-length setting, we are interested in the smallest expected length
E[|M |] of the prefix-free description M . Let

L∗ :=

inf E[|M |] (known source dist.)
inf supx∈X E

[
|M |

∣∣X = x
]

(arbitrary source)

be the minimum expected length (known source distribution) or minimum worst-
case expected length (arbitrary source), where the infimum is over schemes
(C, PM |X , PY |X) satisfying the requirement.

– For the fixed-length setting, we are interested in the smallest description size
N. Let N∗ be the minimum of the set of achievable description sizes among all
schemes.

In the following two subsections, we will investigate this setting for discrete channels
and continuous channels, respectively.

4.1 Discrete Channels
4.1.1 Fixed-Length Setting

We have
(X,M, Y ) ∼ PXPM |XPY |M ,

i.e., the distribution of (X,M, Y ) is obtained by first generating X ∼ PX , and passing it
through the encoding Markov kernel to obtain M |X ∼ PM |X , and then passing it through
the decoding Markov kernel to obtain Y |M ∼ PY |M . The only condition this setting imposes
on (X,M, Y ) is that X,Y are conditionally independent given M , i.e., X ↔M ↔ Y forms
a Markov chain. Therefore, for the fixed-length setting, to find the minimum N given PX,Y is
equivalent to find the conditional distribution PM |X,Y where X ↔M ↔ Y forms a Markov
chain, and M has the smallest cardinality.

Considering that X ↔M ↔ Y forms a Markov chain, the data processing inequality
implies that log2 N ≥ H(M) ≥ I(X;Y ) must hold. One channel simulation scheme is to
have the encoder generate Y |X ∼ PY |X and encode Y into M (stochastic encoder), and
to have the decoder decode M into Y (deterministic decoder). Another scheme is to have
the encoder encode X into M (deterministic encoder), and to have the decoder decode M
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into X and generate Y |X ∼ PY |X (stochastic decoder). Choosing the better one of the two
scheme, we know that N = min{|X |, |Y|} is achievable. Hence, we have the bound

2I(X;Y ) ≤ N∗ ≤ min{|X |, |Y|}.

Consider the conditional probability matrix PY |X ∈ R|X |×|Y| with entries (PY |X)x,y =
PY |X(y|x) (here we assume X ∈ X = [|X |], and Y ∈ Y = [|Y|] are integers). Define PM |X
and PY |M similarly. We then have

PY |X = PM |XPY |M .

As shown in (Cubitt et al., 2011; Zhang, 2012; Jain et al., 2013), the minimum cardinality
N of the description M is given by the nonnegative rank (Berman and Plemmons, 1994;
Lee and Seung, 1999) rank+(PY |X), defined as

rank+(A) := min
{
k ∈ N0 : ∃B ∈ Rm×k≥0 , C ∈ Rk×n≥0 : A = BC

}
for A ∈ Rm×n≥0 , where Rm×n≥0 is the set of m × n matrices of nonnegative entries. The
factorization A = BC is called nonnegative matrix factorization (Berman and Plemmons,
1994; Lee and Seung, 1999). The nonnegative rank is lower-bounded by the rank, i.e.,
rank+(A) ≥ rank(A). Unlike the rank which can be computed efficiently, the computation
of rank+(A) is NP-hard (Vavasis, 2010). We also refer interested readers to (Cohen and
Rothblum, 1993) which discusses properties of the nonnegative rank. The following result
holds regardless of whether the source distribution PX is known, or arbitrary (i.e., the
scheme must guarantee Y |{X = x} ∼ PY |X(·|x) for every value of x ∈ X ).

Proposition 26 (D/1/E/FL/KAS/NCR (Cubitt et al., 2011; Zhang, 2012)). For the
discrete one-shot exact fixed-length channel simulation setting with no common randomness
and known1 or arbitrary source distribution (Definition 25), the minimum cardinality of the
description is given by the nonnegative rank:

N∗ = rank+(PY |X).

4.1.2 Variable-Length Setting

We now study the variable-length setting where M is no longer an integer in [N], but a
codeword in a prefix-free codebook C ⊆ {0, 1}∗. The encoding Markov kernel would be
PM |X from X to C, and the decoding Markov kernel would be PY |M from C to Y. Our
goal is to minimize the expected description length E[|M |]. Utilizing the Huffman code

1For known source distribution, we assume PX(x) > 0 for all x ∈ X .
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(Huffman, 1952), we know that the minimum expected length E[|M |] is bounded between
H(M) and H(M) + 1, and hence the minimum of H(M) would provide a good approximate
of the minimum of E[|M |]. This gives the following approximate characterization shown in
(Kumar et al., 2014).

Proposition 27 (D/1/E/VL/KS/NCR (Kumar et al., 2014)). For the discrete one-shot
exact variable-length channel simulation setting with no common randomness and known
source distribution (Definition 25), the minimum entropy H(M) of the description is given
by the common entropy

G(X;Y ) := min
PU|X,Y :X↔U↔Y

H(U). (4.1)

Hence, the minimum expected length is bounded by G(X;Y ) ≤ L∗ ≤ G(X;Y ) + 1.

The optimization problem in G(X;Y ) is non-convex (Kumar et al., 2014), and it is
unclear whether there is an efficient algorithm for computing G(X;Y ). For the values of
G(X;Y ) for specific distributions, refer to (6.5) for the case where PY |X is a binary erasure
channel, and to Theorem 31 for a bound when (X,Y ) ∈ R2 is Gaussian.

The asymptotic version of this setting will be discussed in Section 6. This setting is
closely related to the one-shot distributed source simulation problem (Wyner, 1975a; Kumar
et al., 2014), where two terminals want to simulate a pair of correlated random variables
(X,Y ) using common randomness. This will be discussed in Section 9.2.

Yu and Tan (Yu and Tan, 2020) studied a quantity which generalizes both log2 rank+(PY |X)
and G(X;Y ), called common Rényi entropy of order α ∈ [0,∞], defined as

Gα(X;Y ) := min
PU|X,Y :X↔U↔Y

Hα(U),

where

Hα(U) :=



1
1−α log2

(∑
u(PU (u))α

)
if α /∈ {0, 1,∞}

log2 |{u : PU (u) > 0}| if α = 0
H(U) if α = 1
− log2 maxu PU (u) if α =∞

is the Rényi entropy (Rényi, 1961). We have G0(X;Y ) = log2 rank+(PY |X) and G1(X;Y ) =
G(X;Y ).

4.2 Continuous Channels

At first glance, the one-shot channel simulation setting without common randomness appears
to be reasonable only for discrete X and Y . For continuous X,Y , it seems that the entropy
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of the description must be infinite, for the same reason that the discrete Shannon entropy
of a continuous random variable is infinite. This is not true in general, and we can often
find a discrete random variable M such that X and Y are conditionally independent given
M , making G(X;Y ) (4.1) finite.

In fact, we can have an even stronger universal remote generation setting (Li and
El Gamal, 2018a), where the stochastic encoder observes an arbitrary probability density
function f : Rn → R that is continuous almost everywhere,2 and sends a codewordM ∈ C in
a prefix-free codebook C, so that the stochastic decoder can output a sample Y following the
distribution f using M . To apply this to the channel simulation setting in Definition 25, we
can take f(y) = fY|X(y|x). The existence of a universal remote generation scheme is perhaps
counter-intuitive, considering that there are significantly more continuous distributions
over Rn than codewords in a prefix-free codebook, so such “transmission of continuous
distributions” should not be possible.

We now describe the constructions by Li and El Gamal (2017) and Li and El Gamal
(2018a). In the channel simulation setting without common randomness, if the encoder
sends a description m, the decoder will output Y ∼ PY |M (·|m). Therefore, the task is to
design the countable collection of distributions (PY |M (·|m))m such that any continuous
distribution f (that is continuous almost everywhere) can be expressed as a mixture of
distributions in that collection. For the one-dimensional case n = 1, we take (PY |M (·|m))m
to be the collection of uniform distributions over dyadic intervals, which are intervals in the
form [2−kv, 2−k(v + 1)) for k, v ∈ Z. Any interval can be expressed as a disjoint union of
dyadic intervals (possibly differing at the boundary points), by repeatedly including the
longest dyadic interval that can fit within the uncovered part. For example, [2/5, 7/3] can
be expressed as [1, 2) ∪ [1/2, 1) ∪ [2, 9/4) ∪ [7/16, 1/2) ∪ [9/4, 37/16) ∪ · · · . Any continuous
distribution can then be expressed as a mixture of uniform distributions over dyadic intervals,
by first expressing it as a mixture of uniform distributions over arbitrary intervals (see
Section 3.6.2). This is referred to as dyadic decomposition by Li and El Gamal (2017) and
Li and El Gamal (2018a).

For the general n-dimensional case, the dyadic decomposition (Li and El Gamal, 2017;
Li and El Gamal, 2018a) is the decomposition of a distribution into mixture of uniform
distributions in the form Unif(Ck,v), where v = (v1, . . . , vn) ∈ Zn is an integer vector, k ∈ Z,
and

Ck,v := 2−k([0, 1)n + v)
= [2−kv1, 2−k(v1 + 1))× · · · × [2−kvn, 2−k(vn + 1))

is a hypercube, which is referred to as a dyadic hypercube. The dyadic hypercubes with side
length 2−k partitions Rn, and the partition by dyadic hypercubes with side length 2−(k+1)

2This means that f has a set of discontinuities with measure 0 with respect to the Lebesgue measure
over Rn.
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is a refinement of the partition by dyadic hypercubes with side length 2−k. The idea is to
“discretize” the probability density function f : Rn → R so that the discretized function is
constant over each dyadic hypercube with side length 2−k. Let

f̃k(y) := inf f(Ck, b2kyc)

=
∑

v∈Zn

(
inf f(Ck,v)

)
1Ck,v(y),

where bzc := (bz1c, . . . , bznc) for z ∈ Rn, and inf f(S) = inf{f(y) : y ∈ S}. We can see that
f̃k is the largest function upper-bounded by f , that is constant over each dyadic hypercube
with side length 2−k, or equivalently, can be decomposed into a weighted sum of indicator
functions 1Ck,v(y) of such dyadic hypercubes.

Let f̃∞(y) := limk→∞ f̃k(y). We have
∫
f̃∞(y)dy = 1 if f is continuous almost every-

where,3 and hence f̃∞ is the probability density function of the same distribution as f .
Hence, we can decompose this distribution as

f̃∞(y) =
∞∑

k=−∞

(
f̃k(y)− f̃k−1(y)

)
,

where f̃k(y)− f̃k−1(y) is constant over each dyadic hypercube with side length 2−k. This
way, f̃∞ can be decomposed into a weighted sum of indicator functions of dyadic hypercubes.
More explicitly, the distribution f can be expressed as the following mixture of uniform
distributions over dyadic hypercubes:∑

k∈Z,v∈Zn
2−nk

(
inf f(Ck,v)− inf f(Ck−1, bv/2c)

)
Unif(Ck,v).

Given such a decomposition of the distribution f into a mixture of uniform distributions
over dyadic hypercubes, the universal remote generation scheme (Li and El Gamal, 2018a)
operates as follows:

• The encoder observes f , and generate a dyadic hypercube Ck,v, k ∈ Z, v ∈ Zn by
sampling from the probability mass function

p(k,v) = 2−nk
(

inf f(Ck,v)− inf f(Ck−1, bv/2c)
)
. (4.2)

The encoder encodes k,v1, . . . ,vn into M using any code over integers, for example,
by concatenating their signed Elias delta encodings (Elias, 1975) of k,v1, . . . ,vn.

3f̃∞(y) < f(y) only when y is a point of discontinuity, since for any k, we can find a dyadic hypercube
with side length 2−k containing both y and a point y′ with f(y′) < (f(y) + f̃∞(y))/2, and hence we can
find points y′ arbitrarily close to y with f(y′) bounded away from f(y). Therefore,

∫
(f(y)− f̃∞(y))dy = 0

since the set of points of discontinuity has measure 0.
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Ỹ

Figure 4.2: The dyadic decomposition scheme, applied on PY |X(·|x) being a Gaussian distribution f . The
purple rectangles are the largest rectangles with width 4 and horizontal coordinates of corners being multiples
of 4 (i.e., the horizontal range is a dyadic interval with length 4) that fit below f . The blue rectangles are
the largest rectangles staking on top of the purple rectangles with horizontal ranges being dyadic intervals
of length 2 that fit below f , and so on.
According to (4.3), the encoder generate Ỹ ∼ f , U |Ỹ ∼ Unif(0, f(Ỹ )), and take K = min{k ∈ Z :
inf f(2−k([0, 1) + b2kỸ c)) ≥ U} and V = b2K Ỹ c. This is equivalent to first generating a point (Ỹ , Uf(Ỹ ))
uniformly over the region between the graph of f and the horizontal axis (the blue cross in the figure),
selecting the rectangle containing that point, and transmitting the K,V ∈ Z corresponding to the horizontal
range 2−K([0, 1) + V ) of that rectangle ((K,V ) = (0, 8) in the figure). The decoder recovers the horizontal
range 2−K([0, 1) +V ), and outputs a point uniformly distributed over this range (the red point in the figure),
which may not be the same as the point generated by the encoder (the blue cross).

• The decoder decodes k,v from M , and generates Y uniformly over Ck,v.

One method to sample from the distribution (4.2) is to generate Ỹ ∼ f , U |Ỹ ∼ Unif(0, f(Ỹ)),
and take

K = min
{
k ∈ Z : f̃k(Ỹ) ≥ U

}
, V = b2KỸc. (4.3)

Refer to Figure 4.2 for an illustration. The algorithm in (Li and El Gamal, 2018a) is given
in Algorithm 5.

4.2.1 The Communication Costs of Dyadic Decomposition Schemes

If Y = [−b/2, b/2]n is bounded, then for a fixed k, the coordinates v1, . . . ,vn in the universal
remote generation scheme are bounded, and hence we can use a fixed-length code to encode
them. Applying the universal remote generation scheme on f = fY|X(·|x) gives the following
result on channel simulation with arbitrary source (Li and El Gamal, 2018a), which applies
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Algorithm 5 Dyadic decomposition (Li and El Gamal, 2017; Li and El Gamal, 2018a)
Procedure Encode(f) :
Input: almost everywhere continuous density f : Rn → R
Output: k ∈ Z, v ∈ Zn

1: Generate ỹ ∼ f
2: Generate u ∼ Unif(0, f(ỹ))
3: k ← min

{
k ∈ Z : inf f(Ck, b2kỹc) ≥ u

}
. Ck,v := 2−k([0, 1)n + v)

4: v← b2kỹc
5: return k,v

Procedure Decode(k,v) :
Input: k ∈ Z, v ∈ Zn

Output: sample Y

1: return y ∼ Unif(Ck,v)

to bounded orthogonally concave distributions.4 Readers are referred to (Li and El Gamal,
2018a) for the proof.

Theorem 28 (C/1/E/VL/AS/NCR (Li and El Gamal, 2018a)). For the one-shot exact
variable-length channel simulation setting with no common randomness and arbitrary source
(Definition 25), where Y = [−b/2, b/2]n and X is arbitrary, if PY|X(·|x) is continuous
and always has an orthogonally concave probability density function fY|X(·|x) satisfying
supx,y fY|X(y|x) ≤ c, then the minimum worst-case expected length is bounded by

L∗ ≤ n log2(4enbnc) + 2 log2 log2(8enbnc) + 1.

The bound on the communication cost when f is orthogonally concave but not necessarily
bounded, which is considerably more complicated, is given below (Li and El Gamal, 2018a).

Theorem 29 (Universal remote generation (Li and El Gamal, 2018a)). There is a universal
remote generation scheme for generating arbitrary continuous distributions f over Rn that
is continuous almost everywhere, satisfying that when f is orthogonally concave, we have

4A set S ⊆ Rn is orthogonally convex if for any line L parallel to one of the n axes, L∩A is a connected
set, i.e., empty, a point or an interval. A functional f : Rn → R is orthogonally concave if the hypograph
hyp(f) := {(y, z) : y ∈ Rn, z ≤ f(y)} ⊆ Rn+1 is orthogonally convex. A distribution is orthogonally concave
if its probability density function is orthogonally concave. Any log-concave or quasiconcave function is
orthogonally concave.
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an expected description length E[|M |] ≤ UR(f), where

UR(f) := inf
ŷ∈Rn

{
n`δ
(
(n−1) log2 rŷ + log2(‖ŷ‖∞+ rŷ) + log2 c+ 4n+ 8

)
+ `δ

(
log2

(
(n−1) log2 rŷ+ 2 max{log2 rŷ, 0}+ log2 c+ 4n+ 10

)
+ 2

)}
,

where c := supy f(y), rŷ := EY∼P [‖Y− ŷ‖∞], and `δ(t) := t+ 2 log2 t.

Applying the universal remote generation scheme on the distribution PY|X(·|x), we have
the following result for the channel simulation setting in Definition 25.

Corollary 30 (C/1/E/VL/AS/NCR (Li and El Gamal, 2018a)). For the one-shot exact
variable-length channel simulation setting with no common randomness and arbitrary source
(Definition 25), if PY|X(·|x) always has an orthogonally concave probability density function
fY|X(·|x) over Rn, then the minimum worst-case expected length is bounded by

L∗ ≤ sup
x∈X

UR
(
fY|X(·|x)

)
,

where UR is defined in Theorem 29.

We now study the known source distribution setting. For the special case whereX,Y ∈ R,
and the joint probability density function fX,Y is log-concave, i.e., log2 fX,Y (x, y) is a concave
function (which holds when X,Y are jointly Gaussian, or when (X,Y ) is uniform over
a convex subset of R2), then it was shown by Li and El Gamal (2017) that the entropy
and the expected length of the description M can be upper-bounded by I(X;Y ) plus a
constant.5 The construction in (Li and El Gamal, 2017) is to apply dyadic decomposition
not on fY |X or fX,Y , but on the uniform distribution (X,Y, Z) ∼ Unif(S) over the positive
part of the hypograph S := {(x, y, z) : 0 ≤ z ≤ fX,Y (x, y)} ⊆ R3. After decomposing S
into dyadic cubes, the encoder can generate (Y,Z)|X ∼ PY,Z|X based on the observed X,
and send the size and location of the dyadic cube containing (X,Y, Z) to the decoder. The
decoder can generate (X̃, Ỹ , Z̃) uniformly over the dyadic cube, and output Ỹ . We also
need to apply scaling on S in order to obtain the desired bound. Readers are referred to
(Li and El Gamal, 2017) for details.

Theorem 31 (C/1/E/VL/KS/NCR (Li and El Gamal, 2017)). For jointly continuous
random variables X,Y ∈ R, if the joint probability density function fX,Y is log-concave,
then

G(X;Y ) ≤ I(X;Y ) + 24 bits.
5Note that here we allow M to be any discrete (finite or countably infinite) random variable, as long

as H(M) is finite. It is uncertain whether the minimum minPW |X,Y :X↔W↔Y H(W ) exists for continuous
(X,Y ), so we instead take the infimum G(X;Y ) = infPW |X,Y :X↔W↔Y H(W ) here.
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Therefore, for the one-shot exact variable-length channel simulation setting with no common
randomness and known source distribution (Definition 25), the minimum expected length
satisfies L∗ ≤ I(X;Y ) + 25.
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5 Asymptotic Channel Simulation with Unlimited Com-
mon Randomness

5.1 Exact Variable-Length Channel Simulation

In this section, we discuss the asymptotic exact channel simulation setting with variable-
length description and unlimited common randomness. Consider the variable-length setting
in Definition 2, where the source is an i.i.d. sequence Xn = (X1, . . . , Xn) ∼ PnX (where PnX
denotes the i.i.d. distribution of length n where each entry follows PX ; the n here is called
the blocklength), the output Y n = (Y1, . . . , Yn) is a sequence as well, and the channel to be
simulated is a memoryless channel PY n|Xn = PnY |X with PY n|Xn(yn|xn) =

∏n
i=1 PY |X(yi|xi).

Let L∗n be the infimum of the set of achievable expected lengths among all codes with
blocklength n. The goal is to characterize the optimal asymptotic rate

R∗ = limsup
n→∞

L∗n
n
, (5.1)

i.e., the optimal asymptotic number of bits used per symbol simulated. For the arbitrary
source case, we require the code to work for every sequence xn ∈ X n, L∗n is defined as (2.1),
and R∗ is defined in the same way as (5.1).

One can always simply substitute a one-shot result into (5.1) to give a characterization or
a bound for R∗. For example, using Theorem 4, and observing that log2(I(Xn;Y n)+2)+3 =
o(n) as n→∞, we have

R∗ = limsup
n→∞

I(Xn;Y n)
n

. (5.2)

This is called an n-letter characterization since it involves a sequence of random variables
with length n that tends to infinity. In asymptotic settings, we are more interested in
single-letter characterizations, i.e., expressions where the number of variables is fixed.
Fortunately, we have I(Xn;Y n) = nI(X;Y ) since (Xi, Yi)

iid∼ PXPY |X , and hence (5.2) is
simply R∗ = I(X;Y ), which is a single-letter characterization.

The following result, called the reverse Shannon theorem, was first proved in (Bennett
et al., 2002) for the discrete case using the method of types. Here we prove it as a direct
corollary of Theorem 4. We will also briefly discuss the proof by the method of types in
Section 5.2.

Theorem 32 (G/∞/E/VL/KAS/UCR (Bennett et al., 2002)). For the asymptotic exact
variable-length channel simulation setting for a general (discrete/continuous) channel PY |X
with unlimited common randomness:

• For known source distribution, the optimal rate is R∗ = I(X;Y ).
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• For arbitrary source, the optimal rate is the channel capacity R∗ = C := supPX I(X;Y ).

Proof. For known source distribution, applying Theorem 4 on (Xn, Y n), we have

nI(X;Y ) = I(Xn;Y n) ≤ L∗n ≤ nI(X;Y ) + log2(nI(X;Y ) + 2) + 3.

Dividing by n and taking n→∞ give the desired result. The same holds for the arbitrary
source case.

Let R∗n := L∗n/n be the optimal rate when the blocklength is n. The proof of Theorem
32 shows that

I(X;Y ) ≤ R∗n ≤ I(X;Y ) + log2 n

n
+O

( 1
n

)
as n→∞. It is natural to ask whether R∗n is closer to the upper bound or the lower bound.
It turns out that R∗n is usually in the middle. In the remainder of this subsection, assume X
and Y are discrete with finite supports. It was shown by Sriramu and Wagner (2024) that

R∗n ≤ I(X;Y ) + log2 n

2n + o

( log2 n

n

)
if the channel PY |X is non-singular, i.e., dPY |X(·|X)

dPY (Y ) is not a deterministic function of Y .1
Moreover,

R∗n = I(X;Y ) + log2 n

2n + o

( log2 n

n

)
if PY |X is non-singular and PX,Y (x, y) > 0 for all x ∈ X , y ∈ Y. In case if PY |X is singular,

R∗n = I(X;Y ) + o

( log2 n

n

)
.

Interested readers are referred to (Sriramu and Wagner, 2024) for the proofs of the above
results, where a rejection sampling technique is employed.

The fixed-length approximate version of Theorem 32 will be discussed in Section 5.3
onward.

5.2 Method of Types

We briefly discuss the proof in (Bennett et al., 2002) for Theorem 32 for discrete X,Y based
on the method of types. Given a sequence xn = (x1, . . . , xn) ∈ X n, its type (Csiszár, 1998;
Cover, 1999) refers the empirical distribution induced by xn, denoted as

Pxn : X → [0, 1], Pxn(x) := |{i ∈ [n] : xi = x}|
n

.

1This means there is a positive probability that dPY |X (·|X)
dPY

(Y ) 6= E
[

dPY |X (·|X)
dPY

(Y )
∣∣∣Y ] when (X,Y ) ∼

PX,Y .
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Let
Pn(X ) := {Pxn : xn ∈ X n}

be the set of types with denominator n (Csiszár, 1998; Cover, 1999), which contains
probability mass functions over X where each probability is a multiple of 1/n. We can
divide the set of sequences X n into type classes according to their types, where sequences
in each type class have the same type. While there are |X |n sequences in X n, which is
exponential in n, there are only |Pn(X )| =

(n+|X |−1
|X |−1

)
type classes by the standard stars and

bars argument, which is polynomial in n. Similarly, for xn ∈ X n, yn ∈ Yn, their joint type is

Pxn,yn : X × Y → [0, 1], Pxn,yn(x, y) := |{i ∈ [n] : (xi, yi) = (x, y)}}
n

,

which is simply the type of the sequence of pairs (xi, yi)i∈[n].
To generate Y n|Xn ∼ PnY |X given Xn, we can first generate the joint type PXn,Y n

conditional on Xn, and then generate Y n conditional on (Xn,PXn,Y n). The idea is to
offload the randomness needed in the second step to the common randomness. Fix ε > 0.
The scheme in (Bennett et al., 2002) operates as follows:

• Generate the common randomness W := (Ȳ n
p,i)p,i as a collection of sequences Ȳ n

p,i ∈
Yn, where p ∈ Pn(X ) ranges over the set of types over X , i ∈ [2n(I(p,PY |X)+ε)]
(where I(p, PY |X) denotes I(X̃; Ỹ ) when (X̃, Ỹ ) ∼ pPY |X), and the entries of Ȳ n

p,i are
generated from the Y -marginal distribution of pPY |X , independently across p, i.

• Given Xn, the encoder generates the joint type Q ∈ Pn(X ,Y) following the conditional
distribution of PXn,Y n given Xn. To do so, the encoder can simply generate Ỹ n|Xn ∼
PnY |X , and then take Q = PXn,Ỹ n .

• The encoder then takes p = PXn , and finds i such that the joint type PXn,Ȳ np,i
= Q,

and encodes (0, p, i) into the description M , which takes ≈ n(I(p, PY |X) + ε) bits
since p ∈ Pn(X ) only has a polynomial number of choices. If there are multiple i’s
satisfying this requirement, select the smallest i. If there is no such i, the encoder
encodes (1, Ỹ n) into the description M , which takes ≈ n log2 |Y| bits.

• The decoder decodes M into either (0, p, i) or (1, Ỹ n), and outputs either Y n = Ȳ n
p,i

or Y n = Ỹ n respectively.

To check the correctness of the scheme, note that the conditional distribution of Y n given
(Xn,PXn,Y n) is uniform over the set {yn ∈ Yn : PXn,yn = PXn,Y n}. Since PY n|Xn(yn|xn)
depends only on the joint type Pxn,yn , if we fix the joint type, then every yn with that joint
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type with Xn has the same probability. By symmetry, we can see that Y n output by the
scheme follows the correct conditional distribution given (Xn,PXn,Y n), and hence follows
the correct conditional distribution given Xn.

If we can show that the encoder can find i such that PXn,Ȳ np,i
= Q with proba-

bility approaching 1 as n → ∞, and ε is small, then the expected length would be
≈ nE[I(PXn , PY |X)] ≈ nI(X;Y ) for known source distribution PX (since PXn ≈ PX by
law of large numbers), or upper-bounded by ≈ nmaxp∈Pn(X ) I(p, PY |X) ≤ nC for arbitrary
source, giving the desired result in Theorem 32.

Therefore, it is left to show that there exists i ∈ [2n(I(p,PY |X)+ε)] with PXn,Ȳ np,i
= Q with

probability approaching 1. The proof requires several standard techniques in the method of
types, which will not be included in this monograph since we will not be using the method
of types in any other part of this monograph. Interested readers are referred to (Bennett
et al., 2002) for the proof, and (Csiszár, 1998; Cover, 1999) for techniques in the method of
types. Very loosely speaking, we have to choose 2n(I(p,PY |X)+ε) sequences in Yn to “cover”
the type class p, so that for most sequences xn ∈ X n with Pxn = p, we can find a chosen
sequence that looks like it cound be coming from the conditional distribution PnY |X(·|xn).
The general theme “we need ≈ 2nI(X;Y ) sequences in Yn to cover the sequence Xn ∼ PnX
with high probability” is the same as that of the covering lemma for lossy compression
(El Gamal and Kim, 2011), and also for the soft covering lemma, a powerful technique for
proving channel simulation results that will be discussed in Section 5.5.

5.3 Total Variation Distance

Most schemes discussed in this monograph so far are variable-length schemes. Nevertheless,
for asymptotic settings, we are often more interested in fixed-length schemes, i.e., we require
the description M ∈ {0, 1}bnRc (or M ∈ [b2nRc]) to fit within ≈ nR bits, where R is the
rate. The reason is that taking n→∞ allows us to utilize the law of large numbers to argue
that the length of M should concentrate around its mean, and hence there is no longer a
strong reason to allow the flexibility of variable-length schemes. Indeed, one way to prove an
asymptotic fixed-length result is to simply concatenate many copies of the variable-length
code given by Theorem 4, and then either truncate M if it is too long, or pad M with zeros
if it is too short, in order to fix its length.

One caveat of fixed-length settings is that it may no longer be possible to simulate the
desired channel exactly, i.e., having Y n follow the conditional distribution PY n|Xn exactly.
If we only allow bnRc bits for the description, it may be possible that some particular
sequences Xn’s require more than bnRc bits, resulting in a distortion in the distribution of
Y n. In the aforementioned truncation approach, if M is too long and has to be truncated,
it will affect the distribution of Y n. In channel coding, this corresponds to an error event
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where the decoder outputs the wrong message. In channel simulation, there is no “wrong”
output Y n. Instead of the error probability, we will control the distance between the ideal
joint distribution of Xn, Y n and the actual distribution.

The total variation distance (Csiszár and Körner, 2011) (also called variational distance,
statistical distance and statistical difference) is a distance between probability distributions
defined as follows.

Definition 33 (Total variation distance (Csiszár and Körner, 2011)). For two probability
distributions P,Q over the same measurable space (Ω,F), the total variation (TV) distance
is given as the largest difference between the probabilities they can assign to the same event,
i.e.,

δTV(P,Q) := sup
E∈F
|P (E)−Q(E)|. (5.3)

Note that δTV(P,Q) = 0 if and only if P = Q. We have the triangle inequality

δTV(P1, P3) ≤ δTV(P1, P2) + δTV(P2, P3),

which follows directly from definition, and hence δTV is a metric.
A small δTV(P,Q) implies that P and Q assign similar probabilities to the same event,

and hence they are difficult to be distinguished. Suppose we perform an action on X (which
may follow P or Q) with an outcome f(X) (e.g., f can be a statistical test), then having a
small TV distance δTV(P,Q) ≤ ε guarantees that |PX∼P (f(X) = y)−PX∼Q(f(X) = y)| ≤ ε
for every y, meaning that it is difficult to distinguish P and Q by looking at the outcome.
This makes the TV distance a popular metric in security and cryptography applications
(Oded, 2004), for example, to guarantee that the ciphertext cannot be distinguished from
pure noise unless one has the key.

In the context of channel simulation, having a small TV distance δTV(PX,Y , PX,Ỹ ) ≤ ε,
where X is the input, Y is the ideal output following PY |X , and Ỹ is the actual output
of the approximate scheme, guarantees that the probability of any event that depends
on (X,Y ) will not be greatly affected by the inexactness of the scheme. For example, the
probability of excess distortion P(d(X,Y ) > D) (Section 1.5) will be increased by at most ε
if we use Ỹ instead of Y . If (X,Y ) are further processed (e.g., through the neural networks
discussed in Section 1.4), the probability of any failure event in the downstream will also
be increased by at most ε if we use Ỹ instead of Y .2 Readers are referred to the discussions
in (Flamich and Wells, 2024) for the use of TV distance in channel simulation.

2This argument holds if the channel simulation scheme is used once. However, if we apply a scheme
with δTV(PX,Y , PX,Ỹ ) ≤ ε on each entry in a sequence X1, . . . , Xn to give Ỹ1, . . . , Ỹn, then we only have the
bound δTV(PXn,Y n , PXn,Ỹ n ) ≤ nε, and the TV distance is increased by at most n fold. This highlights the
advantage of exact schemes, where the TV distance is 0 and will not accumulate when the scheme is used
more than once.
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x

∫
max{f(x)− g(x), 0}µ(dx) ∫

max{g(x)− f(x), 0}µ(dx)

f(x)

g(x)

Figure 5.1: For two probability density functions f(x), g(x), the region under f(x) but not under
g(x) has area

∫
max{f(x) − g(x), 0}µ(dx), whereas the region under g(x) but not under f(x) has area∫

max{g(x)− f(x), 0}µ(dx). Both areas are equal to the total variation distance δTV(f, g).

There are several equivalent characterizations of the total variation distance given below
(e.g., see (Han and Verdú, 1993; Cuff, 2013)). Refer to Figure 5.1 for an illustration.

Proposition 34 (Equivalent characterizations of total variation distance). We have

•
δTV(P,Q) = sup

E∈F

(
P (E)−Q(E)

)
. (5.4)

•
δTV(P,Q) = sup

ψ:Ω→[0,1]
|EX∼P [ψ(X)]− EX∼Q[ψ(X)]| , (5.5)

where the supremum is over measurable functions ψ : Ω→ [0, 1].

• If P � µ and Q� µ for a sigma-finite measure µ over (Ω,F),3 with density functions
f(x) := dP

dµ (x), g(x) := dQ
dµ (x), then

δTV(P,Q) = 1
2

∫
|f(x)− g(x)|µ(dx) (5.6)

=
∫

max{f(x)− g(x), 0}µ(dx) (5.7)

=
∫

max{g(x)− f(x), 0}µ(dx). (5.8)

In particular, if P,Q are discrete distributions, then

δTV(P,Q) = 1
2
∑
x

|P (x)−Q(x)|

3We can always find such a µ, for example, µ = (P +Q)/2.
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=
∑
x

max{P (x)−Q(x), 0}

=
∑
x

max{Q(x)− P (x), 0},

where x takes values over the union of the supports of P and Q, i.e., the TV distance
is simply half of the `1 distance between the probability vectors.

• Write Γ(P,Q) for the set of couplings of P and Q, where a probability measure γ
over the product measurable space (Ω2,F ⊗ F) 4 is called a coupling of P and Q if
(X,Y ) ∼ γ implies X ∼ P and Y ∼ Q. Then

δTV(P,Q) = min
γ∈Γ(P,Q)

P(X,Y )∼γ(X 6= Y ). (5.9)

This is known as the coupling lemma (see (Lindvall, 2002) and Mitzenmacher and
Upfal, 2017, Lemma 51).

Proof. These equalities can be considered folklore, though we briefly prove them for the
sake of completeness.

• (5.3)=(5.4): For every E ∈ F , we can find E′ ∈ F such that |P (E) − Q(E)| =
P (E′)−Q(E′) by taking E′ = E or E′ = Ec.

• (5.3)≤(5.5): For every E ∈ F , take ψ(x) = 1E(x) to be the indicator function of E.
We have |EX∼P [ψ(X)]− EX∼Q[ψ(X)]| = |P (E)−Q(E)|.

• (5.3)≥(5.5): Let L+
t (ψ) := {x ∈ X : ψ(x) ≥ t} be the superlevel set of ψ. We have

EX∼P [ψ(X)] = EX∼P
[∫ 1

0
1{t ∈ L+

t (ψ)}dt
]

=
∫ 1

0
P (L+

t (ψ))dt.

Hence,

|EX∼P [ψ(X)]− EX∼Q[ψ(X)]|

=
∣∣∣∣∫ 1

0

(
P (L+

t (ψ))−Q(L+
t (ψ))

)
dt
∣∣∣∣

≤
∣∣∣∣∫ 1

0
δTV(P,Q)dt

∣∣∣∣
= δTV(P,Q).

4F ⊗ F is the smallest sigma-algebra containing F × F .
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• (5.7)=(5.8): ∫
(max{f(x)− g(x), 0} −max{g(x)− f(x), 0})µ(dx)

=
∫

(f(x)− g(x))µ(dx)

= 0.

• (5.7)=(5.6): ∫
max{f(x)− g(x), 0}µ(dx)

= 1
2

∫
(max{f(x)− g(x), 0}+ max{g(x)− f(x), 0})µ(dx)

= 1
2

∫
|f(x)− g(x)|µ(dx).

• (5.9)≤(5.7): Write δ := δTV(P,Q). Define the probability density functions (with
respect to µ)

h(x) := min{f(x), g(x)}
1− δ ,

f̃(x) := max{f(x)− g(x), 0}
δ

,

g̃(x) := max{g(x)− f(x), 0}
δ

.

If δ = 1, take an arbitrary h. If δ = 0, take arbitrary f̃ , g̃. We can see that f(x) =
(1 − δ)h(x) + δf̃(x) and g(x) = (1 − δ)h(x) + δg̃(x) are mixtures of h, f̃ , g̃. Define
random variables Z ∼ h, X̃ ∼ f̃ , Ỹ ∼ g̃ all independent, and let γ be the distribution
of (X,Y ) where

(X,Y ) =

(Z,Z) with prob. 1− δ,
(X̃, Ỹ ) with prob. δ.

We have γ ∈ Γ(P,Q) and P(X,Y )∼γ(X 6= Y ) ≤ δ.

• (5.7)≤(5.3): Let E = {x ∈ X : f(x) ≥ g(x)}. We have

P (E)−Q(E) =
∫
E

(f(x)− g(x))µ(dx)

=
∫

max{f(x)− g(x), 0}µ(dx).

• (5.3)≤(5.9): For every event E and coupling γ ∈ Γ(P,Q),

P (E)−Q(E) = P(X,Y )∼γ(X ∈ E)− P(X,Y )∼γ(Y ∈ E)
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≤ P(X,Y )∼γ(X ∈ E and Y /∈ E)
≤ P(X,Y )∼γ(X 6= Y ).

Another property of TV distance is that passing two random variables through the same
Markov kernel will not increase their TV distance.

Lemma 35 (Data processing inequality). For X ∼ PX , Y |X ∼ PY |X , X̃ ∼ PX̃ , Ỹ |X̃ ∼
PY |X ,

δTV (PY , PỸ ) ≤ δTV (PX , PX̃).

Proof. This is a direct consequence of the data processing inequality for f -divergence (e.g.,
see (Polyanskiy and Wu, 2024)). We include a proof for the sake of completeness. Consider
any measurable set E ⊆ Y. We have∣∣P(Y ∈ E)− P(Ỹ ∈ E)

∣∣
=
∣∣∣E [P(Y ∈ E |X)]− E

[
P(Ỹ ∈ E | X̃)

]∣∣∣
=
∣∣∣EX∼PX [P(Y ∈ E |X)]− EX∼PX̃ [P(Y ∈ E |X)]

∣∣∣
≤ δTV (PX , PX̃),

where the last inequality is by applying (5.5) on the function x 7→ P(Y ∈ E |X = x).

A consequence is that for two joint distributions PX,Y , QX,Y with X-marginals PX , QX ,
we have δTV (PX , QX) ≤ δTV (PX,Y , QX,Y ). This follows from applying Lemma 35 on the
Markov kernel that maps (X,Y ) to X.

We then prove a useful result for bounding the TV distance. This result can be considered
folklore, though we include the proof for the sake of completeness.

Lemma 36 (Chain rule bound for TV distance). For two distributions PX , QX over the
same space X , and two conditional distributions PY |X , QY |X from X to Y, we have

δTV (PXPY |X , QXQY |X)

≤ δTV (PX , QX) + EX∼PX
[
δTV (PY |X(·|X), QY |X(·|X))

]
.

Equality holds if PX = QX or PY |X = QY |X .
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Proof. Consider any measurable set E ⊆ X ×Y . Write Ex = {y : (x, y) ∈ E} for the section
of E. We have ∣∣PXPY |X(E)−QXQY |X(E)

∣∣
=
∣∣∣EX∼PX [PY |X(EX |X)

]
− EX∼QX

[
QY |X(EX |X)

]∣∣∣
≤
∣∣∣EX∼PX [QY |X(EX |X)

]
− EX∼QX

[
QY |X(EX |X)

]∣∣∣
+
∣∣∣EX∼PX [PY |X(EX |X)

]
− EX∼PX

[
QY |X(EX |X)

]∣∣∣
(a)
≤ δTV (PX , QX) + EX∼PX

[
|PY |X(EX |X)−QY |X(EX |X)|

]
≤ δTV (PX , QX) + EX∼PX

[
δTV (PY |X(·|X), QY |X(·|X))

]
,

where (a) is by applying (5.5) on the function x 7→ QY |X(Ex|x).
For the equality case PX = QX , assume PX = QX . Let X ∼ PX and RY |X :=

(PY |X +QY |X)/2. By (5.7),

E
[
δTV (PY |X(·|X), QY |X(·|X))

]
= E

[∫
max

{
dPY |X(·|X)
dRY |X(·|X)(y)−

dQY |X(·|X)
dRY |X(·|X) (y), 0

}
RY |X(dy|X)

]

= E
[∫

max
{

dPXPY |X
dPXRY |X

(X, y)−
dPXQY |X
dPXRY |X

(X, y), 0
}
RY |X(dy|X)

]
= δTV (PXPY |X , QXQY |X).

For the other equality case, we assume PY |X = QY |X . We have

δTV (PXPY |X , QXPY |X) ≥ δTV (PX , QX)

by applying Lemma 35 on the Markov kernel that maps (X,Y ) to X, and hence

δTV (PXPY |X , QXPY |X) = δTV (PX , QX).

For a random variable X ∼ PX , we often write δTV(X,Q) = δTV(PX , Q) for brevity.
Similar to the conditional expectation notation E[X|Z], for a conditional distribution QX|Z ,
we write

δTV(X,QX|Z |Z) = δTV(PX|Z(·|Z), QX|Z(·|Z)), (5.10)
where PX|Z is the conditional distribution of X given Z. Note that δTV(X,QX|Z |Z) is a
random variable and is a function of Z. Similarly, for random variables X,Y, Z, we write

δTV(X,Y |Z) = δTV(PX|Z(·|Z), PY |Z(·|Z)).
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Enc DecX1, . . . , Xn Y1, . . . , Yn

Mn ∈ [b2nRc]

Wn ∼ PWn

Figure 5.2: Asymptotic approximate fixed-length channel simulation with common randomness.

5.4 Approximate Fixed-Length Channel Simulation

The asymptotic approximate fixed-length channel simulation setting is defined as follows.

Definition 37 (Asymptotic approximate fixed-length channel simulation). Consider a
general channel PY |X and a source distribution PX . An asymptotic approximate fixed-length
channel simulation scheme with rate R ≥ 0 and common randomness rate R0 ∈ [0, ∞] is
characterized by a sequence of tuples (PWn , PMn|Wn,Xn , PỸ n|Wn,Mn

)n∈N+ described below:

• Common randomness. There is a common random source Wn ∈ Wn, Wn ∼ PWn

available to the encoder and the decoder. If R0 =∞ (unlimited common randomness)
we can choose an arbitrary distribution PWn as a part of the coding scheme. If R0 6=∞,
PWn is fixed to be Unif([b2nR0c]). Note that R0 = 0 is the no common randomness
case.5

• Encoder. The encoder observesWn and a source sequence Xn ∼ PnX (for the arbitrary
source case, we can have any Xn ∈ X n), and sends Mn|(Wn, X

n) ∼ PMn|Wn,Xn

produced by passing Wn, X
n through an encoding Markov kernel PMn|Wn,Xn from

Wn ×X n to [b2nRc].

• Decoder. The decoder then outputs Ỹ n|(Wn,Mn) ∼ PỸ n|Wn,Mn
produced by passing

Wn,Mn through a decoding Markov kernel PỸ n|Wn,Mn
from Wn × [b2nRc] to Yn.

• Requirement.

5Loosely speaking, one can think of the common randomness as a sequence of ≈ nR0 i.i.d. coin flips.
If R0 =∞, this means an infinite sequence of coin flips is available. One can convert the sequence into a
uniform real number over [0, 1], which can be used to simulate any distribution over a Polish space (see Itô,
1984, Theorem 2.4.1). Therefore, when R0 =∞, we can select an arbitrary common randomness distribution.
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– For the known source distribution case, we require that Ỹ n follows the conditional
distribution PnY |X approximately, in the sense that

δTV
(
(Xn, Ỹ n), PnXPnY |X

)
→ 0

as n → ∞. Or equivalently, δTV(Ỹ n, PnY |X |X
n) → 0 in probability as n → ∞

by Lemma 36.

– For the arbitrary source case, we require

sup
xn∈Xn

δTV
(
Ỹ n, PnY |X

∣∣Xn = xn
)
→ 0

as n→∞.

• Performance metrics. We say that the rate pair (R,R0) is achievable if there
exists a scheme with rate R and common randomness rate R0 satisfying the above
requirement. The optimal rate region is the closure of the set of achievable pairs. For
R0 ∈ [0, ∞], write R∗(R0) for the infimum of R such that (R,R0) is achievable.

Although Definition 37 covers the no common randomness, limited common randomness
and unlimited common randomness cases, this section focuses on the unlimited common
randomness case. Refer to Section 6 for the no common randomness case, and to Section 7
for the limited common randomness case.

Unlike Definitions 2 and 25 where the output is written as Y , here we write Ỹ n to
emphasize that Ỹ n does not necessarily follow the conditional distribution PnY |X given Xn.
The output Ỹ n is only an “approximate” version of the ideal output Y n.

The following result was proved in (Bennett et al., 2002) and (Winter, 2002), showing
that the “approximate fixed-length” setting and the “exact variable-length” setting in
Theorem 32 share the same optimal rate when unlimited common randomness is available.

Theorem 38 (D/∞/A/FL/KAS/UCR (Bennett et al., 2002; Winter, 2002)). Assume
X,Y are discrete and finite. For the asymptotic approximate fixed-length channel simulation
setting (Definition 37) with unlimited common randomness (R0 =∞):

• For known source distribution, the optimal rate is R∗(∞) = I(X;Y ).

• For arbitrary source, the optimal rate is the channel capacity R∗(∞) = C = maxPX I(X;Y ).

We will present two proofs of Theorem 38: as a corollary of Theorem 4 given below; and
via the soft covering lemma and the likelihood encoder in Section 5.6.
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Proof. Consider the known source distribution case. Write I = I(X;Y ). We first show that
there exists a fixed-length scheme with rate at most R̃ := I + log2(I + 2) + 4. By Theorem
4, we have a variable-length scheme with expected description length E[|M |] ≤ R̃ − 1 <
R̃. We now construct a fixed-length scheme. For a blocklength n, we apply the above
variable-length scheme n times, and concatenate these n descriptions. Let M̄n ∈ {0, 1}∗ be
this concatenation, and Y n be the output of the variable-length scheme (which satisfies
Y n|Xn ∼ PnY |X exactly). By law of large numbers,

P
(
|M̄n| > bnR̃c

)
→ 0

as n → ∞. We produce the description Mn ∈ {0, 1}bnR̃c by taking the first bnR̃c bits of
M̄n, and padding with zeros if necessary. The decoder is the same as the variable-length
scheme. Let its output be Ỹ n. The decoder uses a prefix-free code so padding with zeros
does not affect the output. The only situation where Ỹ n 6= Y n is when M̄n is truncated,
i.e., |M̄n| > bnR̃c, which happens with vanishing probability. Therefore, by the coupling
lemma (Proposition (34)),

δTV
(
(Xn, Ỹ n), PnXPnY |X

)
≤ P

(
(Xn, Ỹ n) 6= (Xn, Y n)

)
= P(Ỹ n 6= Y n)
≤ P(|M̄n| > bnR̃c)
→ 0

as n→∞.
We then show that there exists a fixed-length scheme with rate R whenever R > I.

Apply the above result on Xk (i.i.d. sequence with length k) and Y k|Xk ∼ P kY |X for some
k ∈ N+, we have a fixed-length scheme for simulating Y k with rate at most

I(Xk;Y k) + log2(I(Xk;Y k) + 2) + 4
= kI + log2(kI + 2) + 4

bits per Y k simulated. Since each Y k consists of k symbols, the above scheme can be
regarded as a scheme for simulating Y with rate at most6

1
k

(kI + log2(kI + 2) + 5) = I + log2(kI + 2) + 5
k

.

Therefore, taking k large enough, the rate is upper-bounded by R.

6To convert a scheme for simulating Y k with rate R̃ to a scheme for simulating Y with rate (R̃+ 1)/k,
for a blocklength n, we apply the scheme dn/ke times, which requires ddn/keR̃e ≤ n(R̃+ 1)/k bits for large
enough n.
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Consider the arbitrary source case. We first show that there exists a fixed-length scheme
with rate at most R̃ := C + log2(C + 2) + 5. By Theorem 4, we have a variable-length
scheme with

max
x∈X

E
[
|M̃(x)|

]
< R̃− 1,

where M̃(x) ∈ {0, 1}∗ denotes the description given by the scheme when the input is x.
Fix ε > 0. Applying the law of large numbers on each of the finitely many x ∈ X , we have
P(|M̃ `(x)| > `(R̃− 1))→ 0 as `→ 0 for every x ∈ X , where M̃ `(x) ∈ {0, 1}∗ denotes the
concatenation of ` i.i.d. copies of M̃(x). Hence, there exists Lε ∈ N+ such that

P
(
|M̃ `(x)| > `(R̃− 1)

)
≤ ε

for every x ∈ X as long as ` ≥ Lε. For a blocklength n, we apply the above variable-
length scheme n times, and concatenate these n descriptions. Let M̄(xn) ∈ {0, 1}∗ be this
concatenation when the input is xn = (x1, . . . , xn). Let nx := |{i : xi = x}|. We have, for n
large enough such that bnR̃c/(n+ |X |Lε) ≥ R̃− 1,

P
(
|M̄(xn)| > bnR̃c

)
= P

( ∑
x∈X

∣∣M̃nx(x)
∣∣ > bnR̃c)

≤ P
( ∑
x∈X

∣∣M̃nx+Lε(x)
∣∣ > bnR̃c)

≤
∑
x∈X

P
(∣∣M̃nx+Lε(x)

∣∣ > (nx + Lε)bnR̃c
n+ |X |Lε

)

≤
∑
x∈X

P
(∣∣M̃nx+Lε(x)

∣∣ > (nx + Lε)(R̃− 1)
)

≤ |X |ε.

Taking ε → 0, we have maxxn∈Xn P(|M̄(xn)| > bnR̃c) → 0 as n → ∞. We produce the
description Mn ∈ {0, 1}bnR̃c by taking the first bnR̃c bits of M̄n, and padding with zeros
if necessary. Let its output of the decoder be Ỹ n. By the same arguments as the known
source distribution case,

max
xn∈Xn

δTV
(
Ỹ n, PnY |X

∣∣Xn = xn
)
≤ max

xn∈Xn
P(|M̄(xn)| > bnR̃c)

→ 0

as n→∞. The rest of the proof for the arbitrary source case is the same as the proof for
the known source distribution case.

Refer to the proof of Theorem 45 for the converse R∗(∞) ≥ I(X;Y ) for the known
source distribution case. For the converse R∗(∞) ≥ maxPX I(X;Y ) for the arbitrary source
case, it follows from the converse for the known source distribution case by considering the
PX that maximizes I(X;Y ).
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Enc PY |X
X̃n = xn(M)

Ỹ nM ∼ Unif([b2nRc])

Figure 5.3: Asymptotic soft covering lemma or channel resolvability.

5.5 Soft Covering Lemma

We discuss an important tool for deriving asymptotic channel simulation results, called the
soft covering lemma (Wyner, 1975a; Cuff, 2013) or channel resolvability (Han and Verdú,
1993).7 If we are allowed unlimited description length and common randomness, then we
can perform channel simulation perfectly. However, if we limit the description length and
common randomness, we may distort the distribution of the output. Intuitively, the purpose
of the soft covering lemma is to characterize how many different values of the description
and common randomness we need in order to “cover” the distribution, so limiting to those
values will not distort the distribution too much.

Consider the channel coding setting with a memoryless channel PY |X and an input
distribution PX . If an encoder generates an input sequence X̃n following the i.i.d. distribution
PnX (the distribution of an i.i.d. sequence of length n following PX), then the output Ỹ n will
also follow an i.i.d. distribution PnY , where PY is the Y -marginal of the joint distribution
PXPY |X induced by the input distribution PX and the channel PY |X .

The question is: how much randomness does the encoder need in order to ensure that
Ỹ n (approximately) follows PnY ? We assume the encoder encodes a uniform random message
M ∼ Unif([b2nRc]) into X̃n = xn(M) using a codebook X := (xn(1), . . . , xn(b2nRc)) ∈
(X n)b2nRc, and passes it through the memoryless channel PY |X . How large does the rate
R need to be so that Ỹ n approximately follows PnY ? Would an i.i.d. random codebook
construction, where xi(m) ∼ PX i.i.d. for i = 1, . . . , n, m = 1, . . . , b2nRc, suffice?8

For the special case where the channel is completely noisy, with an output that is
independent of the input, no randomness is needed at the encoder since we always have
Ỹ n ∼ PnY regardless of the input, and the smallest R is 0. For the other extreme where
the channel is completely noiseless and Y = X, we will require R ≥ H(X) since the only
randomness in X = Y comes from M . We can see that the minimum R is larger when Y is
more dependent on X.

The soft covering lemma (Wyner, 1975a; Han and Verdú, 1993) states that Ỹ n approxi-
mately follows PnY with a vanishing total variation distance as long as R > I(X;Y ).

7The soft covering lemma is also useful for proving results in information-theoretic secrecy (Wyner,
1975b), though this is out of the scope of this monograph.

8The channel resolvability setting (Han and Verdú, 1993) allows the encoder to choose any codebook,
though we do not consider it here for the sake of simplicity.
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Lemma 39 (Soft covering lemma (Wyner, 1975a; Han and Verdú, 1993)). Consider a
finite discrete memoryless channel PY |X and a finite discrete input distribution PX . Fix
R > I(X;Y ). Let X = (xn(m))m∈[b2nRc] be a random codebook with i.i.d. entries following
PX , M ∼ Unif([b2nRc]) independent of X, X̃n := xn(M), and Ỹ n|X̃n ∼ PnY |X . Then

δTV
(
Ỹ n, PnY

∣∣X)→ 0

in probability (and in expectation) as n→∞.

The proof of the soft covering lemma is deferred to Section 8.1. Recall that δTV(Ỹ n, PnY |X) =
δTV(PỸ n|X(·|X), PnY ) is a random variable as defined in (5.10). We now explain the (succinct
yet slightly confusing) statement of Lemma 39. There are three sources of randomness in
this setting: the random codebook X, the random message M , and the noisy channel. The
only sources of randomness that contribute to the goal (making Ỹ n approximately follows
PnY ) are M and the channel. The randomness in X is just a fictitious construction in our
scheme. In reality, we always have to fix a codebook, just like the standard random coding
arguments for source and channel coding. It would be cheating if we include the randomness
of X and only argue that the unconditional distribution PỸ n is close to PnY (which is trivially
true for any R). Since X will eventually be fixed, for a fixed codebook X = x to be considered
satisfactory, we require the conditional distribution PỸ n|X(·|x) to be close to PnY . A fixed
codebook x is ε-good (ε > 0) if PỸ n|X(·|x) is ε-close to PnY in total variation distance, i.e.,
δTV(PỸ n|X(·|x), PnY ) ≤ ε. The soft covering lemma says that as long as R > I(X;Y ), for
every ε > 0, if we generate the codebook at random, then the probability of getting an
ε-good codebook approaches 1 as n→∞. Refer to Figure 5.4 for an illustration.

5.6 Likelihood Encoder for Asymptotic Coding

In Section 3.4, we had briefly discussed the likelihood encoder (Cuff, 2013; Watanabe et al.,
2015; Song et al., 2016) and minimal random coding (Havasi et al., 2019; Flamich et al.,
2020). In this section, we will describe the likelihood encoder applied to the asymptotic
fixed-length channel simulation setting with unlimited common randomness.

Take the common randomness to be W = (Ȳ n(i))i∈b2nRc, where Ȳ n(i) iid∼ PnY for
i ∈ [b2nRc]. Here PY is the Y - marginal of the joint distribution PXPY |X . The encoder
observes Xn, computes the likelihood

αi(Xn) :=
dPnY |X(·|Xn)

dPnY
(Ȳ n(i)),

and generates the description M ∈ [b2nRc] with

P(M = m |W,Xn) = αm(Xn)∑b2nRc
i=1 αi(Xn)

.
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x
(x(m))m

PY

PY |X(·|x(m))

PX

Figure 5.4: An illustration of the soft covering lemma, where we take n = 1 for simplicity. We draw an
i.i.d. codebook (x(m))m∈[N] following PX , and note the mixture distribution N−1∑

m
PY |X(·|x(m)), which

is the distribution of Ỹ if M ∼ Unif([N]), X̃ = x(M), and Ỹ |X̃ ∼ PY |X . If the number of samples N is
large enough, then the mixture distribution should be close to PY (the Y -marginal of PXPY |X) with high
probability.

The decoder simply outputs Ỹ n = Ȳ n(M).
We now prove the achievability part of the known source distribution case of Theorem

38 using the soft covering lemma and the techniques in (Cuff, 2013).

Proof of Theorem 38 using likelihood encoder. Assume X,Y are finite and discrete. Fix
R > I(X;Y ). Consider the “reverse channel” PX|Y computed using the joint distribution
PXPY |X . Let M̂ ∼ Unif([b2nRc]), Ŷ n = Ȳ n(M̂), and X̂n|Ŷ n ∼ PnX|Y . Note that (X̂n, Ŷ n) ∼
PnXP

n
Y |X , and the conditional distribution of M̂ given W, X̂n is

PM̂ |W,X̂n(m | (Ȳ n(i))i, X̂n) =
PnX|Y (X̂n|Ȳ n(m))∑b2nRc
i=1 PnX|Y (X̂n|Ȳ n(i))

= αm(X̂n)∑b2nRc
i=1 αi(X̂n)

,

which is the same as the likelihood encoder. Therefore, the proof would be completed if we
can simply swap X̂n with Xn. Nevertheless, the obstacle is that X̂n is not independent of
W , but Xn (the input given to the encoder) must be independent of W (the pre-shared
common randomness generated before Xn is observed).

This is where we utilize the soft covering lemma. Since R > I(X;Y ), applying the soft
covering lemma on PX|Y , we know that

δTV
(
X̂n, PnX

∣∣W )
→ 0 (5.11)
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in probability as n→∞. Therefore, although PX̂n|W is not PnX , they are quite close.
We now swap X̂n with Xn and redefine the other random variables accordingly. Let

M |(W,Xn) ∼ PM̂ |W,X̂n(·|W,Xn) be the description given by the likelihood encoder when the
input is Xn instead of X̂n, and Ỹ n = Ȳ n(M). Since PỸ n|W,Xn = PŶ n|W,X̂n by construction,
applying Lemma 36, we have

δTV
(
(Xn, Ỹ n), PnXPnY |X

)
= δTV

(
(Xn, Ỹ n), (X̂n, Ŷ n)

)
(a)
≤ δTV

(
(W,Xn), (W, X̂n)

)
(b)= E

[
δTV

(
Xn, X̂n

∣∣W )]
(c)→ 0 (5.12)

as n → ∞, where (a) is due to Lemma 36 since PỸ n|W,Xn = PŶ n|W,X̂n , (b) is also due to
Lemma 36, and (c) is due to (5.11).

The analysis of the likelihood encoder for the one-shot setting is deferred to Section 8.2.
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Enc DecX1, . . . , Xn Y1, . . . , Yn

Mn ∈ [b2nRc]

Figure 6.1: Asymptotic channel simulation without common randomness.

6 Asymptotic Channel Simulation without Common Ran-
domness

In this section, we study the asymptotic channel simulation setting without common
randomness, which is the asymptotic version of the one-shot setting in Section 4. We will
study two cases: the approximate fixed-length case, and the exact fixed-length/variable-
length case.

6.1 Approximate Case—Wyner’s Common Information

In this section, we study the asymptotic fixed-length channel simulation setting without
common randomness in Figure 6.1, i.e., Definition 37 with R0 = 0. We present a result
due to (Cuff, 2008; Cuff, 2013), showing that the optimal rate is given by the following
single-letter expression called Wyner’s common information (Wyner, 1975a).

Theorem 40 (D/∞/A/FL/KS/NCR (Wyner, 1975a; Cuff, 2008; Cuff, 2013)). For the
asymptotic approximate fixed-length channel simulation setting (Definition 37) with no
common randomness, known source distribution, and finite discrete X,Y , the optimal rate
R∗(0) is given by Wyner’s common information

J(X;Y ) := min
PU|X,Y :X↔U↔Y

I(X,Y ;U).

Note that I(X;Y ) ≤ J(X;Y ) ≤ G(X;Y ) (where G(X;Y ) = minX↔U↔Y H(U) is the
common entropy (4.1)) since I(X;Y ) ≤ I(X,Y ;U) ≤ H(U) whenever X ↔ U ↔ Y forms
a Markov chain.

Proof. We adopt the proof strategy in (Cuff, 2008; Cuff, 2013). First prove the achievability
part. We omit the subscript in Mn and simply write M . Fix PU |X,Y satisfying X ↔ U ↔ Y .
FixR > I(X,Y ;U). Generate a random codebook U := (un(m))m∈[b2nRc], where ui(m) ∼ PU
i.i.d. across i ∈ [n], m ∈ [b2nRc]. Let M̄ ∼ Unif([b2nRc]) and Ūn := un(M̄). Define random
variables (X̄n, Ȳ n) with conditional distribution (X̄n, Ȳ n)|(Ūn, M̄ ,U) ∼ PnX,Y |U . Since
X ↔ U ↔ Y forms a Markov chain, PX,Y |U = PX|UPY |U , and hence X̄n ↔ Ūn ↔ Ȳ n

forms a Markov chain. Since Ūn = un(M̄) is a function of (M̄,U), X̄n ↔ M̄ ↔ Ȳ n forms a
Markov chain conditional on U.
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We take the encoding Markov kernel to be PM̄ |X̄n,U(·|·,U), and the decoding Markov
kernel to be PȲ n|M̄,U(·|·,U) (these kernels are “random” and depend on U, though we will
later argue that there exists a fixed value of U that gives good kernels). This ensures that, if
the input to the encoder is X̄n, then the joint distribution of X̄n and the decoder’s output
will be the same as the joint distribution of (X̄n, Ȳ n). Applying the soft covering lemma on
PX,Y |U , we know that

δTV
(
(X̄n, Ȳ n), PnX,Y

∣∣U)→ 0 (6.1)
in probability as n→∞.

This means the joint distribution of the input and output will be close to PnX,Y , which
would be the desired result, except that the input is actually not X̄n, but Xn ∼ PnX .
We have to swap X̄n with Xn and redefine the other random variables accordingly. Let
M |(Xn,U) ∼ PM̄ |X̄n,U(·|Xn,U) be the description given by the encoding Markov kernel
when the input is Xn instead of X̄n, and Ỹ n|(M,Xn,U) ∼ PȲ n|M̄,U(·|M,U) be the output
given by the decoding Markov kernel when the description is M . Since PỸ n|Xn,U = PȲ n|X̄n,U

by construction, applying Lemma 36, we have

δTV
(
(Xn, Ỹ n), (X̄n, Ȳ n)

∣∣U)
= δTV

(
Xn, X̄n

∣∣U)
→ 0 (6.2)

in probability as n→∞ due to (6.1). Combining (6.1) and (6.2) using the triangle inequality,

δTV
(
(Xn, Ỹ n), PnX,Y

∣∣U)→ 0

in probability as n→∞. This means there is a fixed choice u of U (which depends on n)
that gives δTV((Xn, Ỹ n), PnX,Y |U = u)→ 0, which is the desired result. Refer to the proof
of Theorem 45 for the converse.

Wyner’s common information was originally studied in the asymptotic distributed
source simulation problem (Wyner, 1975a) where two terminals want to simulate a pair of
correlated random sequences X̃n, Ỹ n approximately following the i.i.d. distribution PnX,Y ,
using the smallest amount of common randomness. This setting will be discussed in Section
9.2.

For the case with arbitrary source, similar to how the optimal rate maxPX I(X;Y ) for
arbitrary source and unlimited common randomness can be obtained by considering the
worst-case source distribution PX in the optimal rate I(X;Y ) for known source distribution
and unlimited common randomness, the optimal rate for arbitrary source and no common
randomness can also be obtained by considering the worst-case source distribution of the
corresponding known source distribution setting. The following result is proved in (Bennett
et al., 2014) using the method of types. Refer to (Bennett et al., 2014) for the proof.

135



Theorem 41 (D/∞/A/FL/AS/NCR (Bennett et al., 2014)). For the asymptotic approxi-
mate fixed-length channel simulation setting (Definition 37) with no common randomness,
arbitrary source, and finite discrete X,Y , the optimal rate of the description is given by

max
PX

J(X;Y ).

6.2 Exact Case—Exact Common Information Rate

In the previous section, we have studied channel simulation with vanishing TV distance.
In this section, we strengthen the constraint and require the output (Xn, Ỹ n) to follow
(PXPY |X)n exactly. One might expect that, since (Xn, Ỹ n) “approaches” (PXPY |X)n in
TV distance as n→∞, by continuity, (Xn, Ỹ n) should exactly follow (PXPY |X)n at the
“limit”. This argument does not work since (PXPY |X)n changes as n increases, so there
is never a fixed target that (Xn, Ỹ n) can approach. It turns out that the exact case is
more complicated than the approximate case, and a simple single-letter expression for the
solution (as in Theorem 40) has not been found.

For the sake of clarity, we give the definition of the setting below (which is basically
an asymptotic version of Definition 25). As in Section 4, there are two ways to impose
the communication constraint. First, we can restrict M ∈ [b2nRc] to be a fixed-length
description with ≈ nR bits. Second, we can allow M ∈ {0, 1}∗ to be a variable-length
codeword, and restrict the average length E[|M |] instead.

Definition 42 (Asymptotic exact channel simulation without common randomness). Con-
sider a general channel PY |X from X to Y, and a general source distribution PX . An
asymptotic variable-length channel simulation scheme without common randomness is
characterized by a tuple (Cn, PMn|Xn , PY n|Mn

)n∈N+ described below:

• Codebook.

– For the variable-length setting, the set of possible descriptions Cn ⊆ {0, 1}∗ is a
prefix-free codebook, which we can design as a part of the coding scheme.

– For the fixed-length setting, the set of possible descriptions must be Cn = [b2nRc],
where R ≥ 0 is the description rate.

• Encoder. The encoder observes an i.i.d. source sequence Xn ∼ PnX , and sends a
description Mn ∈ Cn, Mn|Xn ∼ PMn|Xn .
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• Decoder. The decoder then outputs Y n|Mn ∼ PY n|Mn
.

• Requirement. We require Y n|Xn ∼ PnY |X exactly.

• Performance metric.

– For the variable-length setting, we are interested in the smallest rate of increase
of the expected length E[|Mn|]. Let

R∗ := inf limsup
n→∞

1
n
E[|Mn|]

be the optimal rate, where the infimum is over schemes (Cn, PMn|Xn , PY n|Mn
)n∈N+

satisfying the requirement.
– For the fixed-length setting, we are interested in the smallest description rate R.

Let R∗ be the infimum of R over schemes (Cn, PMn|Xn , PY n|Mn
)n∈N+ satisfying

the requirement.

From the operational meaning of Wyner’s common information in Theorem 40, we can
see that Wyner’s common information J(X2;Y 2) between X2 = (X1, X2) and Y 2 = (Y1, Y2),
where (X1, Y1), (X2, Y2) iid∼ PX,Y , is simply given by 2J(X1;Y1), since we can use a channel
simulation scheme for the channel (X1, X2)→ (Y1, Y2) to simulate the channel X1 → Y1 at
twice the rate. More generally, as long as (X1, Y1) is independent of (X2, Y2), we have

J(X2;Y 2) = J(X1;Y1) + J(X2;Y2). (6.3)

This is known as the tensorization property of Wyner’s common information. Note that the
mutual information also satisfies the tensorization property.

This argument fails for one-shot channel simulation in Propositions 26 and 27, since
there is no such thing as “simulate at twice the rate” in a one-shot setting. While we
generally have

log2 rank+(PY 2|X2) ≤ log2 rank+(PY1|X1) + log2 rank+(PY2|X2),

and
G(X2;Y 2) ≤ G(X1;Y1) +G(X2;Y2), (6.4)

as long as (X1, Y1) is independent of (X2, Y2),1 the other direction does not hold in general.
Refer to (Vandaele et al., 2016) for an example of matrix A satisfying that log2 rank+(A⊗

1If X1 ↔ U1 ↔ Y1 and X2 ↔ U2 ↔ Y2, then (X1, X2) ↔ (U1, U2) ↔ (Y1, Y2) and H(U1, U2) ≤
H(U1) +H(U2).
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A) < 2 log2 rank+(A) (where A⊗A denotes the Kronecker product), and (Kumar et al.,
2014) for an example of PX,Y where G(X2;Y 2) < 2G(X1;Y1).

This creates an obstacle for the characterization of the optimal rate for the exact setting.
Currently, there is no known single-letter expression for the asymptotic exact fixed-length
or variable-length channel simulation settings with no common randomness. The result for
the fixed-length setting can merely be stated as a limit of the nonnegative rank, as given in
(Yu and Tan, 2020; Yu and Tan, 2022).

Proposition 43 (D/∞/E/FL/KAS/NCR (Yu and Tan, 2020; Yu and Tan, 2022)). For
the asymptotic exact fixed-length channel simulation setting with no common randomness,
known2 or arbitrary source distribution, and finite discrete X,Y , the optimal rate is given
by

R∗ = lim
n→∞

1
n

log2 rank+(P⊗nY |X),

where P⊗nY |X is the n-fold Kronecker power of PY |X , which is the same as the conditional
probability matrix PY n|Xn.

Readers are also referred to (Braun et al., 2017) for the relation between the nonnegative
rank and Wyner’s common information.

For the variable-length setting, the limit is called the exact common information rate
(Kumar et al., 2014), as given below.

Proposition 44 (D/∞/E/VL/KS/NCR (Kumar et al., 2014)). For the asymptotic exact
variable-length channel simulation setting with no common randomness, known source
distribution, and finite discrete X,Y , the optimal rate is given by the exact common
information rate

R∗ = G(X;Y ) = lim
n→∞

1
n
G(Xn;Y n),

where (Xi, Yi)
iid∼ PXPY |X , and G(A;B) := minPU|A,B :A↔U↔BH(U) is the common entropy

(4.1).

We have the following relations:

I(X;Y ) ≤ J(X;Y ) ≤ G(X;Y ) ≤ G(X;Y ) ≤ log2 rank+(PY |X).

For each of the above inequalities, there are examples where the inequality is strict. For
example, consider X ∼ Bern(1/2) and PY |X is a binary erasure channel with erasure

2For known source distribution, we assume PX(x) > 0 for all x ∈ X .
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probability 0 < p < 1, i.e., Y = {0, 1, e}, PY |X(0|0) = PY |X(1|1) = 1 − p, PY |X(e|0) =
PY |X(e|1) = p. We have

I(X;Y ) = 1− p,
J(X;Y ) = Hb(max{p, 1/2}),
G(X;Y ) = Hb(max{p, 1/2}),
G(X;Y ) = min{Hb(p) + 1− p, 1},

log2 rank+(PY |X) = 1, (6.5)

where Hb(a) is the binary entropy function (the entropy of Bern(a)). The formula for
J(X;Y ) was proved in (Cuff, 2013),3 whereas the formulae for G(X;Y ) and G(X;Y ) were
proved in (Kumar et al., 2014).4

The problem whether there exists an example where J(X;Y ) < G(X;Y ), which is
not yet resolved by the binary erasure channel example, was stated as a conjecture in
(Kumar et al., 2014). There are several cases where the equality J(X;Y ) = G(X;Y ) holds.
Generalizing the binary erasure channel example, it was shown in (Vellambi and Kliewer,
2018; Yu and Tan, 2020) that the equality holds if PX,Y is a pseudo-product distribution,
i.e., there exists distributions QX , QY over X ,Y respectively and a set A ⊆ X × Y such
that PX,Y is the conditional distribution of QXQY condititional on A, that is, PX,Y (x, y) ∝
1{(x, y) ∈ A}QX(x)QY (y). This is generalized to the case where PX,Y is a Wyner-product
distribution in (Yu and Tan, 2020) (refer to (Yu and Tan, 2020) for the definition).

The conjecture on whether it is possible to have J(X;Y ) < G(X;Y ) was resolved in
(Yu and Tan, 2020), which showed that J(X;Y ) < G(X;Y ) when X ∼ Bern(1/2) and
Y |X is a binary symmetric channel (i.e., Y = {0, 1}, PY |X(0|1) = PY |X(1|0) = p), or
equivalently, (X,Y ) is a doubly symmetric binary source. Despite being one of the simpliest
joint distribution, the computation of G(X;Y ) for the doubly symmetric binary source is
highly nontrivial. Interested readers are referred to (Yu and Tan, 2020; Yu and Tan, 2022).

3The minimum in J(X;Y ) = minPU|X,Y :X↔U↔Y I(X,Y ;U) is attained by U = X when p ≤ 1/2, giving
I(X,Y ;U) = H(X) = 1. When p > 1/2, it is attained by taking PU|X to be a binary erasure channel with
erasure probability 2p− 1, and PY |U to be a binary erasure channel with erasure probability 1/2, giving
I(X,Y ;U) = H(X,Y )−H(X,Y |U) = 1 +Hb(p)− 1 = Hb(p) (Cuff, 2013).

4The minimum in G(X;Y ) = minPU|X,Y :X↔U↔Y H(U) is attained by either U = X (giving H(U) = 1),
or U = Y (giving H(U) = Hb(p) + 1− p) (Kumar et al., 2014).
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Enc DecX1, . . . , Xn Y1, . . . , Yn

Mn ∈ [b2nRc]

Wn ∼ Unif([b2nR0c])

Figure 7.1: Asymptotic approximate fixed-length channel simulation with limited common randomness.

7 Asymptotic Channel Simulation with Limited Common
Randomness

7.1 Approximate Channel Simulation

In the previous sections, we have studied asymptotic approximate fixed-length channel
simulation without common randomness and with unlimited common randomness. Here we
study the setting for a general common randomness rate R0 in Figure 7.1 (see Definition
37). The precise single-letter characterization of the optimal rate region has been given by
(Cuff, 2008; Cuff, 2013) as follows.

Theorem 45 (D/∞/A/FL/KS/LCR (Cuff, 2008; Cuff, 2013)). For the asymptotic approx-
imate fixed-length channel simulation setting (Definition 37) with known source distribution,
limited common randomness and finite discrete X,Y , the optimal rate region is given by

⋃
PU|X,Y :X↔U↔Y

{
(R,R0) ∈ R2 : R ≥ I(X;U),

R0 +R ≥ I(X,Y ;U)

}
. (7.1)

Moreover, it suffices to consider U with cardinality |U| ≤ |X ||Y|+ 1.

Refer to Figure 7.2 for an illustration of the optimal rate region in (7.1).

Proof. We adopt the strategy in (Cuff, 2008). First prove the achievability part. Assume
PU |X,Y satisfies that X ↔ U ↔ Y forms a Markov chain. Assume R > I(X;U) and
R0 + R > I(X,Y ;U). Let U = (un(m,w))m∈[b2nRc],w∈[b2nR0c] be a random codebook with
i.i.d. entries following PU . Let M̄ ∼ Unif([b2nRc]) be independent of W ∼ Unif([b2nR0c]).
Let Ūn := un(M̄,W ), and (X̄n, Ȳ n)|Ūn ∼ PnX|UP

n
Y |U . Applying the soft covering lemma on

the channel PX,Y |U , since R+R0 > I(X,Y ;U), we have

E
[
δTV

(
(X̄n, Ȳ n), PnX,Y

∣∣U)]→ 0 (7.2)

as n→∞.
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R0

RJ(X ;Y )I(X ;Y )

Figure 7.2: An illustration of the optimal rate region in (7.1), similar to the figure in (Cuff, 2013). It is the
union of regions in the form {(R,R0) : R ≥ I(X;U), R0 +R ≥ I(X,Y ;U)} for different PU|X,Y ’s satisfying
X ↔ U ↔ Y (the blue polygons in the figure). As noted in (Cuff, 2013), there are two interesting extreme
points. If R0 is unlimited, the smallest possible R is I(X;Y ), reducing to the unlimited common randomness
case in Theorem 38. If R0 = 0, the smallest possible R is J(X;Y ) := minPU|X,Y :X↔U↔Y I(X,Y ;U), reducing
to the no common randomness case in Theorem 40.

Now we study the distribution of X̄n conditional on (W,U). For a fixed W , Ūn is
randomly picked from the codebook (un(m,W ))m∈[b2nRc]. Hence, the soft covering lemma
gives us

E
[
δTV

(
X̄n, PnX

∣∣W,U)]→ 0 (7.3)

as n→∞, since R > I(X;U). We take the encoding Markov kernel to be PM̄ |X̄n,W,U(·|·, ·,U),
and the decoding Markov kernel to be PȲ n|M̄,W,U(·|·, ·,U) (these kernels are “random” and
depend on U, though we will later argue that there exists a fixed value of U that gives good
kernels).

Similar to the proof of Theorem 40, since the actual input isXn ∼ PnX (independent of the
common randomness W ∼ Unif([b2nR0c])) instead of X̄n, we have to swap X̄n with Xn and
redefine the other random variables accordingly. LetM |(Xn,W,U) ∼ PM̄ |X̄n,W,U(·|Xn,W,U)
be the description given by the encoding Markov kernel when the input is Xn instead
of X̄n, and Ỹ n|(M,W,U) ∼ PȲ n|M̄,W,U(·|M,W,U) be the output given by the decoding
Markov kernel when the description is M . Since PỸ n|X,W,U = PȲ n|X,W,U by construction,
using Lemma 36, we have

δTV
(
(Xn, Ỹ n,W ), (X̄n, Ȳ n,W )

∣∣U)
= δTV

(
(Xn,W ), (X̄n,W )

∣∣U)
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= E
[
δTV

(
Xn, X̄n

∣∣W,U) ∣∣∣U]
→ 0 (7.4)

in expectation (and hence in probability) as n→∞ due to (7.3), where both equalities are
due to Lemma 36. Combining (7.2) and (7.4) using the triangle inequality,

δTV
(
(Xn, Ỹ n), PnX,Y

∣∣U)→ 0

in probability as n→∞. This means there is a fixed choice u of U (which depends on n)
that gives δTV((Xn, Ỹ n), PnX,Y |U = u)→ 0, which is the desired result.

We now prove the converse using a modified version of the arguments in (Cuff, 2013).
Assume (R,R0) is achievable. Consider any scheme with

ε := δTV((Xn, Ỹ n), PnX,Y ) = E
[
δTV(Ỹ n, PnY |X |X

n)
]
.

Our goal is to show that there exist random variables X,Y, U satisfying (X,Y ) ∼ PXPY |X ,
X ↔ U ↔ Y , and approximately satisfying (7.1), with a gap that tends to 0 as ε→ 0. Let
Q ∼ Unif([n]). While we can take X = XQ (which has the correct distribution XQ ∼ PX
since Xi

iid∼ PX), we cannot find Y with (X,Y ) ∼ PXPY |X among existing random variables,
since Ỹ n does not actually follow the ideal conditional distribution PnY |X . Hence, we have
to artificially construct the ideal Y n. Applying the coupling lemma (Proposition 34) on
PỸ n|Xn(·|Xn) and PnY |X(·|Xn), we can have a random sequence Y n with Y n|Xn ∼ PnY |X
and P(Ỹ n 6= Y n) ≤ ε. We have

nR
(a)
≥ I(Xn;M |W )
(b)= I(Xn;M,W )

=
n∑
i=1

I(Xi;M,W |Xi−1)

(c)=
n∑
i=1

I(Xi;M,W,Xi−1)

≥
n∑
i=1

I(Xi;M,W )

= nI(XQ;M,W |Q)
(d)= nI(XQ;M,W,Q), (7.5)

where (a) is becauseM ∈ [b2nRc], (b) is because I(W ;Xn) = 0, (c) is because I(Xi;Xi−1) =
0 since Xi’s are i.i.d., and (d) is because I(XQ;Q) = 0. By the exact same arguments
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applied on (Xn, Y n) instead of Xn,

n(R0 +R) ≥ I(Xn, Y n;M,W )
≥ nI(XQ, YQ;M,W,Q).

If we take U := (M,W,Q), we would have R ≥ I(XQ;U) and R0 + R ≥ I(XQ, YQ;U),
though we unfortunately have XQ ↔ U ↔ ỸQ (since the decoder outputs ỸQ based
on M,W,Q) instead of XQ ↔ U ↔ YQ. Since P(Ỹ n 6= Y n) ≤ ε is small, the Markov
chain “XQ ↔ U ↔ YQ” approximately holds, and we can indeed make it exactly holds
by introducing a random variable V with a small entropy. By Lemma 76 (proved in
Appendix B), there exists V such that XQ ↔ (U, V ) ↔ YQ holds and H(V ) ≤ δ|X |,|Y|(ε),
where δ|X |,|Y|(ε) is a function that tends to 0 as ε → 0 for any fixed |X |, |Y|. We have
R ≥ I(XQ;U) ≥ I(XQ;U, V )−H(V ) and R0+R ≥ I(XQ, YQ;U) ≥ I(XQ, YQ;U, V )−H(V ).
Letting ε→ 0, we have H(V )→ 0, and (R,R0) lies in the region in (7.1). Therefore, (7.1)
is the capacity region. Readers are referred to (Cuff, 2013) for the cardinality bound
|U| ≤ |X ||Y|+ 1.

Similar to Theorem 38 and Theorem 41, the optimal rate region for arbitrary source
can be obtained by considering the worst-case source distribution PX . The following result
is proved in (Bennett et al., 2014) using the method of types. Refer to (Bennett et al., 2014)
for the proof.

Theorem 46 (D/∞/A/FL/AS/LCR (Bennett et al., 2014)). For the asymptotic ap-
proximate fixed-length channel simulation setting (Definition 37) with limited common
randomness, arbitrary source, and finite discrete X,Y , the optimal rate region is given by

⋂
PX

⋃
PU|X,Y :X↔U↔Y


(R,R0) ∈ R2 :
R ≥ I(X;U),
R0 +R ≥ I(X,Y ;U)

 .
It is also possible to study the local randomness needed in this setting. Refer to Section

9.4.

7.2 Exact Channel Simulation

Although this section is focused on the asymptotic approximate fixed-length setting with
limited common randomness, the asymptotic exact variable-length setting with limited
common randomness, i.e., the scenario where the distribution requirement on Ỹ n is exact,
and the description M is variable-length (i.e., the G/∞/E/VL/KS/LCR setting), has also
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been studied in (Yu and Tan, 2019). More precisely, we make two modifications to Definition
37. First, we require Ỹ n|Xn ∼ PnY |X exactly. Second, instead of Mn ∈ [b2nRc], we have
Mn ∈ {0, 1}n, with the requirement thatMn ∈ Cn,Wn almost surely, where (Cn,w)n∈N+, w∈Wn

is a collection of prefix-free codebooks that we can design as a part of the coding scheme
(similar to Definition 2), and the requirement that lim supn→∞ n−1E[|Mn|] ≤ R. Note that
when the common randomness rate R0 is finite, the common randomness Wn still follows
the uniform distribution Unif([b2nR0c]).

It was proved in (Yu and Tan, 2019) that the rate pair (R,R0) = (I(X;Y ), H(Y |X)) is
achievable for the exact variable-length setting. More generally, (Yu and Tan, 2019) showed
the following inner bound of the optimal rate region. Interested readers are referred to (Yu
and Tan, 2019; Yu and Tan, 2022) for the proof, and for more inner and outer bounds.

Theorem 47 (G/∞/E/VL/KS/LCR (Yu and Tan, 2019)). For the asymptotic exact
variable-length channel simulation setting with known source distribution, limited common
randomness and finite discrete X,Y , the optimal rate region is a superset of the following
set: ⋃

PU|X,Y :X↔U↔Y

{
(R,R0) ∈ R2 : R ≥ I(X;U),

R0 +R ≥ H(U)

}
.
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8 One-shot Bounds for Fixed-Length Channel Simulation
In previous sections, we have studied one-shot settings with variable-length descriptions,
where results are stated in terms of simple quantities like the mutual information (e.g.
Theorem 4). The simplicity of these results is because we only care about the expected
length of the description, which naturally corresponds to first-order quantities like mutual
information which is the “expected amount of shared information”. We have also studied
asymptotic fixed-length settings, where results are again stated in terms of first-order
quantities, due to the law of large numbers.

In this section, we study one-shot settings with fixed-length descriptions. The result
will no longer be in terms of the familiar first-order quantities. Instead of the entropy

H(X) = E
[
log2

1
PX(X)

]
,

we will use the self-information

ιX(x) := log2
1

PX(x) ,

which captures the amount of information in the particular value x of the random variable
X. Note that H(X) = E[ιX(X)], i.e., the entropy is the average amount of information in
X. For the lossless compression of the source X, unlike the one-shot variable-length setting
(where Huffman coding (Huffman, 1952) gives us an expected length between H(X) and
H(X) + 1) and the asymptotic fixed-length setting (where the source coding theorem gives
us the optimal compression rate of H(X) bits per sample Xi), the optimal error probability
of compressing one sample of X into a fixed-size description M ∈ [N] is upper-bounded by

P (ιX(X) ≥ log2 N) . (8.1)

Refer to Theorem 11.4 in (Polyanskiy and Wu, 2024) for a proof. Intuitively, the amount of
information in X is ιX(X) which is random, and we have an error if ιX(X) cannot fit within
the log2 N number of bits in M . This highlights the limitation of one-shot fixed-length
results. Since the amount of information is random, but the number of bits log2 N is fixed,
we have to make log2 N large enough to accomodate most values of ιX(X). The number of
bits needed is no longer given by the expectation of ιX(X), but the tail of ιX(X).

By the same logic, for channel simulation results, instead of Theorems 40, 4 and 38
which are in terms of the mutual information, the results will be in terms of the information
density

ιX;Y (x; y) := log2
dPX,Y
dPXPY

(x, y),

where dPX,Y /dPXPY is the Radon-Nikodym derivative between the joint distribution PX,Y
and the product distribution PXPY of the marginals. We often write ι(x; y) = ιX;Y (x; y) if
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the random variables are clear from the context. For discrete X,Y , we have

ιX;Y (x; y) = log2
PX,Y (x, y)
PX(x)PY (y) .

Note that I(X;Y ) = E[ιX;Y (X;Y )]. For example, one would expect that, for one-shot
fixed-length channel simulation with unlimited common randomness, instead of having
a result in terms of I(X;Y ) as in Theorems 4 and 38, the result will be in terms of the
distribution of ιX;Y (X;Y ).

What makes a good one-shot fixed-length result? Since there is only one X, we can
simply write the operational setting as an optimization problem, and “characterize” the
optimal scheme. For example, the optimal error probability for the one-shot lossless source
coding setting is simply

min
f :X→[k], g:[N]→X

P
(
X 6= g(f(X))

)
(8.2)

This is not that different from asymptotic results like Theorem 40 which also involves an
optimization problem. The reason why we prefer (8.1) over (8.2) is that (8.1) implies the
asymptotic result as a corollary. If we compress an i.i.d. source Xn = (X1, . . . , Xn) intoM ∈
[b2nRc], we have ιXn(xn) = − log2

∏n
i=1 PX(xi) =

∑n
i=1 ιX(xi), and hence ιXn(Xn)/n →

E[ιX(X)] = H(X) by law of large numbers, and P(ιXn(Xn) ≥ log2b2nRc)→ 0 as long as
R > H(X). The basic expectation of a one-shot result is that it should imply the asymptotic
result directly. Sometimes one-shot results can give us more refined estimates on the rate
and the error probability, for example, in second-order results where we use the central
limit theorem instead of the law of large numbers (Hayashi, 2008; Hayashi, 2009; Polyanskiy
et al., 2010; Watanabe et al., 2015).

8.1 One-shot Soft Covering Lemma

Recall that in Section 5.5, we discussed the soft covering lemma where the input sequence
X̃n is picked randomly from a codebook, and sent through a memoryless channel PY |X
to give Ỹ n. In this section, we will study the case n = 1. There are various one-shot and
nonasymptotic versions of the soft covering lemma, e.g., (Han and Verdú, 1993; Hayashi,
2006; Cuff, 2013; Watanabe and Hayashi, 2014; Watanabe et al., 2015; Cuff, 2016; Yagli
and Cuff, 2019; Liu et al., 2019; Li and Anantharam, 2021). Here we present the version by
Yassaee (Yassaee, 2015), which admits a relatively simple statement and proof.

Lemma 48 (One-shot soft covering lemma (Yassaee, 2015)). Consider a discrete channel
PY |X and a discrete input distribution PX . Fix a positive integer N. Let X = (x(m))m∈[N]
be a random codebook with i.i.d. entries following PX , M ∼ Unif([N]), X̃ := x(M), and
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Ỹ |X̃ ∼ PY |X . Then

E
[
δTV

(
Ỹ , PY

∣∣X)] ≤ √1− E2
[(

1 + N−12ι(X;Y ))−1/2]
. (8.3)

The asymptotic soft covering lemma (Lemma 39) follows as a corollary of Lemma 48.
To see this, consider the channel PnY |X , input distribution P

n
X , and N = b2nRc. Note that

ι(Xn;Y n) = log2
PnX,Y (Xn, Y n)
PnX(Xn)PnY (Y n)

= log2

n∏
i=1

PX,Y (Xi, Yi)
PX(Xi)PY (Yi)

=
n∑
i=1

log2
PX,Y (Xi, Yi)
PX(Xi)PY (Yi)

=
n∑
i=1

ι(Xi;Yi). (8.4)

Hence, n−1ι(Xn;Y n)→ E[ι(X1;Y1)] = I(X;Y ) in probability by law of large numbers. If
R > I(X;Y ), then b2nRc−12ι(Xn;Y n) → 0 in probability, and hence the right hand side of
(8.3) tends to 0, and δTV(Ỹ , PY |X)→ 0 in mean.

We now present the proof of Lemma 48 using the arguments in (Yassaee, 2015).

Proof. The strategy in (Yassaee, 2015) is that, instead of directly bounding the TV distance,
we bound it via the fidelity (also known as the Bhattacharyya coefficient) (Kailath, 1967)
defined as

F (P,Q) := EX∼Q

[√
dP
dQ(X)

]
for two distributions P,Q, where dP/dQ(x) is the Radon-Nikodym derivative. For discrete
P,Q, we have

F (P,Q) =
∑
x

√
P (x)Q(x).

We have 0 ≤ F (P,Q) ≤ 1, and F (P,Q) = 1 if and only if P = Q. The TV distance can be
bounded in terms of the fidelity as (Yassaee et al., 2013)

δTV(P,Q) ≤
√

1− F 2(P,Q). (8.5)

This can be shown for the discrete case by√
δ2

TV(P,Q) + F 2(P,Q)
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=
√(∑

x

1
2 |P (x)−Q(x)|

)2
+
(∑

x

√
P (x)Q(x)

)2

(a)
≤
∑
x

√(1
2 |P (x)−Q(x)|

)2
+
(√

P (x)Q(x)
)2

=
∑
x

√(1
2(P (x) +Q(x))

)2

= 1,

where (a) is by the triangle inequality on the vectors(1
2 |P (x)−Q(x)|,

√
P (x)Q(x)

)
∈ R2

for x ∈ X .
To prove the lemma, for a fixed X = (x(m))m∈[N],

F (PY , PỸ |X) =
∑
y

√√√√PY (y)
( 1

N

N∑
m=1

PY |X(y|x(m))
)

= 1√
N
∑
y,m

PY |X(y|x(m))
√

PY (y)∑
m′ PY |X(y|x(m′))

= 1√
N
∑
y,m

PY |X(y|x(m))
(∑
m′

2ιX;Y (x(m′);y)
)−1/2

= 1√
N
∑
y,m

PY |X(y|x(m))
(
2ιX;Y (x(m);y) +

∑
m′ 6=m

2ιX;Y (x(m′);y)
)−1/2

=
√

NE

(2ιX;Y (X̃;Ỹ ) +
∑

m′ 6=M
2ιX;Y (x(m′);Ỹ )

)−1/2 ∣∣∣∣X
 ,

where for the last equality, recall that M ∼ Unif([N]), X̃ := x(M), and Ỹ |X̃ ∼ PY |X .
Taking expectation over X,

E[F (PY , PỸ |X)]

=
√

NE

(2ιX;Y (X̃;Ỹ ) +
∑

m′ 6=M
2ιX;Y (x(m′);Ỹ )

)−1/2


=
√

NE

E
(2ιX;Y (X̃;Ỹ ) +

∑
m′ 6=M

2ιX;Y (x(m′);Ỹ )
)−1/2

∣∣∣∣∣ X̃, Ỹ


(b)
≥
√

NE

E−1/2

2ιX;Y (X̃;Ỹ ) +
∑

m′ 6=M
2ιX;Y (x(m′);Ỹ )

∣∣∣∣ X̃, Ỹ

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(c)=
√

NE
[(

2ιX;Y (X̃;Ỹ ) + N− 1
)−1/2

]
≥ E

[(
1 + N−12ιX;Y (X̃;Ỹ )

)−1/2
]
,

where (b) is by Jensen’s inequality, and (c) is because E[2ιX;Y (X′;Y ′)] = E[PX,Y (X ′, Y ′)/(PX(X ′)PY (Y ′))] =
1 when X ′ ∼ PX is independent of Y ′ ∼ PY . The result follows from (8.5).

8.2 One-shot Fixed-length Channel Simulation

A one-shot fixed-length channel simulation setting is defined in a similar manner as Definition
37, with the blocklength set to n = 1. We include the definition of the one-shot fixed-length
setting here for the sake of clarity.

Definition 49 (One-shot approximate fixed-length channel simulation). Consider a general
channel PY |X and a general input distribution PX . A one-shot approximate fixed-length
channel simulation scheme with description size N ∈ N+ and common randomness size
N0 ∈ N+ ∪ {∞} is characterized by a tuple (PW , PM |W,X , PỸ |W,M ) described below:

• Common randomness. There is a common random source W ∈ W, W ∼ PW
available to the encoder and the decoder. If N0 =∞ (unlimited common randomness),
we are allowed to choose an arbitrary PW . If N0 6=∞, PW is fixed to be Unif([N0]).
Note that N0 = 1 is the no common randomness case.

• Encoder. The encoder observes W and a source symbol X ∼ PX , and sends
M |(W,X) ∼ PM |W,X produced by passing W,X through an encoding Markov kernel
PM |W,X from W ×X to [N].

• Decoder. The decoder then outputs Ỹ |(W,M) ∼ PỸ |W,M produced by passing W,M
through a decoding Markov kernel PỸ |W,M from W × [N] to Y.

• Performance metric. We say that the code achieves a TV distance ε if

E
[
δTV

(
Ỹ , PY |X

∣∣X)] ≤ ε.
The goal is to study the trade-off between N, N0 and ε.

Now that we have a one-shot version of the soft covering lemma, we can simply use the
same arguments as in Section 5.6, with the asymptotic soft covering lemma replaced by
the one-shot one, to prove a one-shot bound for the likelihood encoder for the setting with
unlimited common randomness. Let us first restate the likelihood encoder in Sections 3.4
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and 5.6 applied to the one-shot setting. Take the common randomness to beW = (Ȳ (i))i∈[N],
where Ȳ (i) iid∼ PY for i ∈ [N]. The encoder observes X, computes the likelihood

αi(X) :=
dPY |X(·|X)

dPY
(Ȳ (i)),

and generates the description M ∈ [N] with

P(M = m |W,X) = αm(X)∑N
i=1 αi(X)

.

The decoder simply outputs Ỹ = Ȳ (M). We have the following bound.

Theorem 50 (D/1/A/FL/KS/UCR). For the one-shot approximate fixed-length channel
simulation setting with known source distribution, unlimited common randomness and finite
discrete X,Y , the likelihood encoder achieves a TV distance

δTV
(
(X, Ỹ ), PX,Y

)
≤
√

1− E2
[(

1 + N−12ι(X;Y ))−1/2]
.

Proof. The proof is the same as that of Theorem 38 in Section 5.6 with n = 1, except that
we have

E
[
δTV

(
Ỹ , PY |X

∣∣X)]
≤ E

[
δTV

(
X, X̂

∣∣W )]
≤
√

1− E2
[(

1 + N−12ι(X;Y ))−1/2]
by Lemma 48.

Note that this implies Theorem 38 (known source distribution, achievability part)
by substituting X = Xn and Y = Y n to be i.i.d. sequences and N = b2nRc, since
n−1ι(Xn;Y n)→ I(X;Y ) in probability due to law of large numbers (see (8.4)).

Next, we use the same arguments as the proof of Theorem 40, with the asymptotic soft
covering lemma replaced by the one-shot version, to prove the following one-shot bound for
the setting with no common randomness.

Theorem 51 (D/1/A/FL/KS/NCR). For the one-shot approximate fixed-length channel
simulation setting with known source distribution, no common randomness and finite discrete
X,Y , there exists a scheme with a TV distance

δTV
(
(X, Ỹ ), PX,Y

)
≤ 2

√
1− E2

[(
1 + N−12ι(X,Y ;U))−1/2]

for any PU |X,Y satisfying that X ↔ U ↔ Y forms a Markov chain.
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Proof. The proof is the same as that of Theorem 40 with n = 1, except that instead of
(6.1), we have the following bound by Lemma 48:

E
[
δTV

(
(X̄, Ȳ ), PX,Y

∣∣U)]
≤
√

1− E2
[(

1 + N−12ι(X,Y ;U))−1/2]
.

The coefficient 2 is because the above bound is use twice in (6.1) and (6.2), and combined
using triangle inequality.

We then use the same arguments as the proof of Theorem 45, with the asymptotic soft
covering lemma replaced by the one-shot one, to prove the following one-shot bound for the
setting with limited common randomness.

Theorem 52 (D/1/A/FL/KS/LCR). For the one-shot approximate fixed-length channel
simulation setting with known source distribution, limited common randomness and finite
discrete X,Y , there exists a scheme with a TV distance

δTV
(
(X, Ỹ ), PX,Y

)
≤
√

1− E2
[(

1 + (NN0)−12ι(X,Y ;U))−1/2]
+
√

1− E2
[(

1 + N−12ι(X;U))−1/2]
for any PU |X,Y satisfying that X ↔ U ↔ Y forms a Markov chain.

Proof. The proof is the same as that of Theorem 45 with n = 1, except that instead of
(7.2), we have the following bound by Lemma 48:

E
[
δTV

(
(X̄, Ȳ ), PX,Y

∣∣U)]
≤
√

1− E2
[(

1 + (NN0)−12ι(X,Y ;U))−1/2]
,

and instead of (7.3), we have the following bound by Lemma 48:

E
[
δTV

(
X̄, PX

∣∣W,U)]
≤
√

1− E2
[(

1 + N−12ι(X;U))−1/2]
.

There are tighter one-shot bounds than Theorem 52. For example, the following bound
was proved in (Yassaee, 2015).
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Theorem 53 (D/1/A/FL/KS/LCR (Yassaee, 2015)). For the one-shot approximate fixed-
length channel simulation setting with known source distribution, limited common random-
ness and finite discrete X,Y , there exists a scheme with a TV distance

δTV
(
(X, Ỹ ), PX,Y

)
≤
√

1− E2
[(

1 + (NN0)−12ι(X,Y ;U))−1/2 (1 + N−12ι(X;U))−1/2]
.

for any PU |X,Y satisfying that X ↔ U ↔ Y forms a Markov chain.

The aforementioned results are for the case where the source distribution PX is known.
For the case with arbitrary source, interested readers are referred to (Cao et al., 2022b; Cao
et al., 2022a) which give upper and lower bounds on the optimal description size in terms
of the smooth max-divergence.

One-shot fixed-length results are useful for deriving finite-blocklength results, where
we substitute X = Xn and Y = Y n to be sequences. They are also useful when the input
distribution PXn is not i.i.d., and when the channel PY n|Xn is not memoryless. Nevertheless,
one-shot fixed-length results still require the information density terms (such as ι(X;Y ),
or ι(Xn;Y n) if applied on sequences) to concentrate around its mean in order to give any
meaningful bound. Take Theorem 50 as an example. If ι(X;Y ) has a large variance, the fixed
description size N has to be large enough so that ι(X;Y ) ≤ log2 N with high probability,
and hence log2 N may have to be significantly larger than the mean I(X;Y ). Therefore,
despite being “one-shot”, these results are still better suited for the situation where X,Y
are “uniform enough”, or “large enough” for concentration to occur. In contrast, one-shot
variable-length results (such as Theorem 4) are suitable for general X,Y , including the
situation where X,Y are small, and the information density ι(X;Y ) is spread out. Therefore,
if one has to perform channel simulation on the sequences Xn, Y n, one can either treat Xn

as a whole block (or divide Xn into large groups) and apply a one-shot/finite-blocklength
fixed-length or variable-length scheme, or encode each symbol Xi (or each small group of
symbols) separately using a one-shot variable-length scheme. Although technically one can
apply a one-shot fixed-length scheme on each symbol Xi separately, this would not be a
good idea.

There are other lines of research on finite-blocklength results and refined asymptotics
for soft covering and channel simulation that are not covered in this monograph. Interested
readers are referred to (Watanabe and Hayashi, 2014; Cuff, 2016; Cao et al., 2022a) for
second-order asymptotics of soft covering and channel simulation, which describe how the
optimal rate for a finite blocklength n approaches the optimal asymptotic rate as n→∞ for
a fixed total variation distance. Readers are also referred to (Yagli and Cuff, 2019; Yassaee,
2019) for the exponential rate of decay of the total variation distance in the soft covering
lemma for a fixed rate R as the blocklength n → ∞, called the soft covering exponent.
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Another popular technique for proving channel simulation results is output statistics of
random binning (Yassaee et al., 2014), which can also apply to finite blocklength settings
(Yassaee et al., 2013).
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9 Source and Channel Simulation with Limited Local Ran-
domness

In the channel simulation settings studied in this monograph, the quantities of interest
are usually the amount of communication and the amount of common randomness. We
usually do not consider the amount of local randomness since local randomness, especially
pseudo-randomness, is often considered inexpensive. Nevertheless, the resources required to
generate true random numbers may still be nontrivial. In this section, we will consider the
local randomness needed in various source and channel simulation tasks, namely source
simulation, distributed source simulation,1 local channel simulation, and channel simulation
with limited common and local randomness.

9.1 Source Simulation
9.1.1 One-shot Source Simulation

Consider the following fundamental problem: how many fair coin flips are needed to generate
a random variate X ∼ PX? This is commonly referred to as random number generation
or source simulation (Knuth and Yao, 1976; Han and Verdú, 1993; Altuğ and Wagner,
2012). Similar to source coding and channel simulation, there are two main flavors of this
setting: the one-shot variable-length setting where we simulate one variate X ∼ PX using a
variable number of coin flips, and the asymptotic fixed-length setting where we simulate
an approximately i.i.d. sequence X̃n using a fixed number of coin flips. We start with the
one-shot variable-length setting (Knuth and Yao, 1976).

Definition 54 (One-shot variable-length source simulation). Consider a discrete distribution
PX over X . A one-shot variable-length source simulation scheme is characterized by a pair
(C, f) described below:

• Codebook. C ⊆ {0, 1}∗ is a full prefix-free codebook (which may be infinite), i.e., C
is a prefix-free codebook where the equality in Kraft’s inequality (Kraft, 1949) holds:∑
c∈C 2−|c| = 1.

• Simulator. Given a sequence of coin flips W1,W2, . . .
iid∼ Bern(1/2), the simulator

reads the coin flips one by one, until the sequence of observed coin flips is found in
1Technically, the quantity of interest in distributed source simulation is the amount of common randomness

instead of the amount of local randomness, though it is included in this section since it is a natural
generalization of the source simulation setting.
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the codebook, i.e., the simulator stops at

N := min{n ∈ N0 : Wn ∈ C}.

The simulator then outputs X := f(WN ), where f : C → X is the sampling function.2

• Requirement. We require X ∼ PX exactly.

• Performance metric. We are interested in the smallest expected number of coin
flips needed E[N ]. Let L∗ := inf E[N ] be the optimal expected number of coin flips,
where the infimum is over all schemes satisfying the requirement.

This is a variable-length scheme since the number of coin flips N is not fixed. There
are several different ways one can understand C and the sampling process. First, one may
regard N as a stopping time of W1,W2, . . ., where the encoder’s decision on whether to stop
at time N = n can only depend on the currently observed coin flips Wn. Alternatively, one
can also imagine the simulator to be traversing a complete binary tree, where each non-leaf
node has two children: left (connected by an edge labeled 0) and right (connected by an
edge labeled 1). The simulator starts at the root. When the simulator reads a coin flip that
is 0, the simulator moves to the left child of the current node. When the simulator reads a 1,
the simulator moves to the right child. The process stops when the simulator reaches a leaf
node, which is a node where the path c ∈ {0, 1}∗ from the root to that node corresponds to
a codeword in C. Finally, the simulator outputs the label of the leaf node, which is given by
f(c). This is called a discrete distribution-generating (DDG) tree in (Knuth and Yao, 1976),
which is depicted in Figure 9.1.

Operationally, the simulator either possesses a long sequence of i.i.d. fair random bits
(e.g., from some true random source, or from a random number book (RAND Corporation,
2001) in an old-fashioned manner), or has access to a (true or pseudo) random number
generator (RNG). The simulator reads the bits one by one (or invokes the RNG interactively)
until it decides to stop at time N . Since N is a stopping time that does not depend on
future bits, the remaining unread bits in the long sequence are not “tainted”, and are still
i.i.d. fair random bits that can be reused for other tasks. Refer to Figure 9.2.

The optimal expected number of coin flips is within 2 bits from the entropy H(X), as
proved in (Knuth and Yao, 1976).

2This process is guaranteed to terminate almost surely. Let N =∞ if there is no n such that Wn ∈ C.
Then we have P(N <∞) =

∑
c∈C P(WN = c) =

∑
c∈C 2−|c| = 1.
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Figure 9.1: A discrete distribution-generating tree for the distribution Bern(1/3). Note that this tree has
infinitely many nodes. The probability of reaching a leaf node with depth ` is 2−`. The probabilities of the
leaf nodes labelled 0 (the blue nodes) sum up to 2/3, whereas the probabilities of the leaf nodes labelled 1
(the red nodes) sum up to 1/3. This tree corresponds to C = {0, 11, 100, 1011, . . .} , f(0) = f(100) = · · · = 0,
f(11) = f(1011) = · · · = 1.
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Figure 9.2: One-shot variable-length source simulation. The simulator interactively invokes the random
number generator (i.e., calls the generator, obtains a bit W1, calls the generator again, obtains a bit W2,
etc.) until the stopping time N , and then outputs X using W1, . . . ,WN .
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Theorem 55 (Knuth and Yao 1976). For the one-shot variable-length source simulation
setting, the optimal expected number of coin flips is bounded by

H(X) ≤ L∗ ≤ H(X) + 2.

Proof. The proof of the upper bound requires an infinite version of Kraft’s inequality (Kraft,
1949): for any finite or countably infinite collection of nonnegative integers (`i)i∈I with∑
i∈I 2−`i ≤ 1, there exists a prefix-free codebook C ⊆ {0, 1}∗ and a bijective function

g : C → I such that |c| = `g(c) for all c ∈ C. We briefly describe a standard construction.
Without loss of generality, assume I = [|I|] or N+, and `1 ≤ `2 ≤ · · · are ordered in
ascending order (this is possible since |{i ∈ I : `i = `}| is always finite for every ` ∈ N0
due to

∑
i 2−`i ≤ 1). Let ci ∈ {0, 1}∗ be the first `i binary digits of

∑i−1
j=1 2−`j after the

decimal point. For i′ > i, the first `i binary digits of
∑i′−1
j=1 2−`j ≥

∑i−1
j=1 2−`j + 2−`i must

be different from the first `i binary digits of
∑i−1
j=1 2−`j , and hence ci cannot be a prefix of

ci′ . Hence, we can take C = {ci : i ∈ I} and g(ci) = i.
We prove the upper bound L∗ ≤ H(X) + 2. For x ∈ X , let PX(x) =

∑∞
i=1 bx,i2−i,

bx,i ∈ {0, 1} be the binary representation of PX(x). Since
∑
x

∑∞
i=1 bx,i2−i = 1, we invoke

Kraft’s inequality to construct a prefix-free codebook C ⊆ {0, 1}∗ and a bijective function
g : C → {(x, i) : bx,i = 1} (write g(c) = (g1(c), g2(c))) such that |c| = g2(c). Take
f(c) := g1(c). For W1,W2, . . .

iid∼ Bern(1/2), N = min{n : Wn ∈ C}, we have

P(f(WN ) = x) =
∑

c∈C: f(c)=x
P(WN = c)

=
∑

c∈C: f(c)=x
2−g2(c)

=
∞∑
i=1

bx,i2−i

= PX(x).

Also,

E[N ] =
∑
c∈C

P(WN = c) · |c|

=
∑
x

∞∑
i=1

bx,i · 2−i · i

=
∑
x

∞∑
j=0

∞∑
i=j+1

bx,i2−i

=
∑
x

∞∑
j=0

(
PX(x)− 2−j

⌊
2jPX(x)

⌋)
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≤
∑
x

∞∑
j=0

min
{
PX(x), 2−j

}

=
∑
x

(
(b− log2 PX(x)c+ 1)PX(x) +

∞∑
j=b− log2 PX(x)c+1

2−j
)

=
∑
x

(
(b− log2 PX(x)c+ 1)PX(x) + 2−b− log2 PX(x)c

)
(a)
≤
∑
x

max
{

(− log2 PX(x))PX(x) + 2log2 PX(x)+1,

(− log2 PX(x) + 1)PX(x) + 2log2 PX(x)
}

=
∑
x

(−PX(x) log2 PX(x) + 2PX(x))

= H(X) + 2,

where (a) is because t 7→ (t+ 1)PX(x) + 2−t is convex, and hence its maximum is attained
at the lower or upper bound of t.

For the lower bound, for any scheme, we have

H(X) ≤ H(WN )
= E[− log2 PWN (WN )]
= E[− log2(2−N )]
= E[N ].

For a computationally more efficient construction, Han and Hoshi (Han and Hoshi, 1997)
proposed the interval algorithm, which can achieve an expected length of E[L] ≤ H(X) + 3.
Refer to (Oohama, 2011; Watanabe and Han, 2020) for more detailed analyses on the
interval algorithm. There are also works on the generation of random variates using biased
coins instead of fair coins. Interested readers are referred to (Von Neumann, 1963; Hoeffding
and Simons, 1970; Elias, 1972; Roche, 1991; Peres, 1992).

9.1.2 Asymptotic Source Simulation

We can also study an asymptotic source simulation setting where we want to generate
an i.i.d. sequence Xn ∼ PnX . If we are allowed to read a variable number of coin flips, we
can simply apply Theorem 55 on Xn to obtain a scheme with expected number of coin
flips ≤ nH(X) + 2. Nevertheless, the asymptotic setting allows us to invoke the law of
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large numbers to argue that the number of coin flips is concentrated, and hence we can
use a fixed number of coin flips to generate Xn. Since there is a small probability that the
amount of randomness needed is more than the number of coin flips available (if we are
allowed ` coin flips, and − log2 PXn(xn) > `, i.e., PXn(xn) < 2−`, then it is impossible to
obtain a probability PXn(xn) using ` coin flips), we are only able to generate X̃n that is
approximately i.i.d. following PX . The setting is defined below.

Definition 56 (Asymptotic fixed-length source simulation). Consider a discrete distribution
PX over X . An asymptotic fixed-length source simulation scheme is characterized by a
sequence (fn)n∈N+ described below:

• Simulator. Given Wn ∼ Unif([b2nRc]) (where R ≥ 0 is the randomness rate), the
simulator outputs X̃n := fn(Wn), where fn : [b2nRc]→ X n is the sampling function.

• Requirement. We require

δTV(X̃n, PnX)→ 0 as n→∞.

• Performance metric. We are interested in the smallest randomness rate. Let R∗ be
the infimum of R over all schemes satisfying the requirement.

As one would naturally expect, the optimal randomness rate is given by the entropy
H(X). This follows from Theorem 55 (Knuth and Yao, 1976) as a direct corollary, and has
been studied in (Han and Verdú, 1993; Steinberg and Verdú, 1996) for the more general
case where the desired distribution of X̃n is a general stochastic process.

Theorem 57 (Knuth and Yao 1976; Han and Verdú 1993). For the asymptotic fixed-length
source simulation setting, the optimal randomness rate is

R∗ = H(X).

Proof. We present two proofs of the achievability. For the first proof, we invoke the one-shot
variable-length scheme in Theorem 55 n times to obtain a variable-length scheme that uses∑n
i=1Ni coin flips, where Ni is the number of coin flips needed to simulate Xi, satisfying

E[Ni] ≤ H(X)+2. By law of large numbers, P(
∑n
i=1Ni > n(H(X)+3))→ 0 as n→∞. We

then construct a fixed-length scheme by capping the number of coin flips to n(H(X) + 3),
where the simulator experiences a failure and outputs any X̃n if the number of coin flips
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is insufficient.3 The probability of failure approaches 0. Hence, we can achieve a rate
R = H(X) + 3. To remove the constant 3, instead of applying the one-shot variable-length
scheme on every symbol Xi, we apply the one-shot scheme on every group of k symbols,
i.e., Xk, X2k

k+1, . . .. Now we can achieve a rate

R = 1
k

(
H(Xk) + 3

)
= H(X) + 3

k
.

The proof can be completed by taking k →∞.
For the second proof, fixR > H(X) and generate a random codebook X := (xn(w))w∈[b2nRc],

where xi(w) ∼ PX i.i.d. across i ∈ [n], w ∈ [b2nRc]. Let W ∼ Unif([b2nRc]) and X̃n :=
xn(W ). Since R > H(X), applying the soft covering lemma on the noiseless channel PX|X ,
we have δTV(X̃n, PnX |X)→ 0 in probability as n→∞. Hence, there exists a fixed choice
x of X (that depends on n) such that δTV(X̃n, PnX |X = x) → 0. The result follows from
taking fn(w) = xn(w), where xn(w) is given by x.

For the converse result, consider a scheme with δTV(X̃n, PnX) ≤ ε. Since X̃n is a function
of Wn, we have H(X̃n) ≤ H(Wn) ≤ nR. Invoking the coupling lemma (Proposition 34) on
PX̃n and PnX , we can have a random sequence Xn with Xn ∼ PnX and P(Xn 6= X̃n) ≤ ε. By
Fano’s inequality (Fano, 1961), H(Xn|X̃n) ≤ εn log2 |X |+1. Therefore, nH(X) = H(Xn) ≤
H(X̃n) +H(Xn|X̃n) ≤ nR+ εn log2 |X |+ 1. Taking ε→ 0, we have R ≥ H(X).

9.2 Distributed Source Simulation
9.2.1 One-shot Distributed Source Simulation

We then consider a multi-terminal generalization of the one-shot source simulation setting
in Definition 54, called one-shot distributed source simulation (Wyner, 1975a; Kumar et al.,
2014; Li and El Gamal, 2017), where two terminals want to simulate a pair of correlated
random variables X and Y respectively, such that (X,Y ) ∼ PX,Y . They are allowed to
access a common sequence of coin flips. The setting is depicted in Figure 9.3. We now state
the setting in (Li and El Gamal, 2017).

Definition 58 (One-shot variable-length distributed source simulation). Consider a joint
distribution PX,Y over X × Y. A one-shot variable-length distributed source simulation
scheme is characterized by a pair (C, PX|WN , PY |WN ) described below:

3Technically, since Definition 56 has Wn ∼ Unif([b2nRc]) instead of Wn ∼ Unif({0, 1}bnRc), the common
randomness cannot be treated as a fixed-length sequence of bits. Nevertheless, we can extract a fixed-length
sequence of bits by taking W̃n = ((Wn − 1) mod 2bn(R−ε)c) + 1 ∈ [2bn(R−ε)c] (where ε > 0), which can be
treated as a sequence of 2bn(R−ε)c bits. It is straightforward to show that δTV(W̃n,Unif([2bn(R−ε)c]))→ 0.
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Terminal 1

X

W1, . . . ,WN

Terminal 2

Y

Figure 9.3: One-shot distributed source simulation.

• Codebook. C ⊆ {0, 1}∗ is a full prefix-free codebook (see Definition 54).

• Terminals. Given the common randomness as a sequence of coin flips W1,W2, . . .
iid∼

Bern(1/2), the two terminals read the coin flips one by one, and stop at N := min{n ∈
N0 : Wn ∈ C}.Terminal 1 then uses a stochastic decoder to output X|WN ∼ PX|WN ,
where PX|WN is a Markov kernel from C to X . Terminal 2 uses a stochastic decoder
to output Y |WN ∼ PY |WN , where PY |WN is a Markov kernel from C to Y.

• Requirement. We require (X,Y ) ∼ PX,Y exactly.

• Performance metric. We are interested in the smallest expected number of common
coin flips needed E[N ]. Let L∗ := inf E[N ] be the optimal expected number of coin
flips, where the infimum is over all schemes satisfying the requirement.

Note that here we allow unlimited local randomness at the terminals, and only limit
the amount of common randomness. When X = Y , this setting reduces to the single-
terminal source simulation setting in Definition 54, since the terminals cannot use any local
randomness (i.e., PX|WN and PY |WN are deterministic mappings) as an X that depends on
the local randomness at Terminal 1 cannot agree with Y with probability 1, and hence the
terminals can only use the common randomness to simulate X = Y .

Operationally, the two terminals would have a pre-shared stream of coin flips, either by
actually sharing a long sequence of random bits, reading from the same publicly available
randomness source (see Section 2.3), or by initializing their pseudorandom number generators
(PRNGs) using the same seed. Then they would read a number of coin flips from the stream
and output the correlated random variables X and Y . To allow the stream of coin flips to
be reused for other tasks, the two terminals must be at the same position of the stream (or
the PRNGs must be at the same state) after the scheme finishes, and hence the number
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of coin flips used must be the same for the two terminals, and they must use the same
prefix-free codebook C.

Since (WN , X, Y ) ∼ PWNPX|WNPY |WN , we have X ↔ WN ↔ Y . We also have
H(WN ) = E[− log2 PWN (WN )] = E[N ], and hence the problem becomes finding a random
variable U that can be expressed in the form WN for some codebook C and satisfies
X ↔ U ↔ Y , such that H(U) is minimized. If we remove the constraint that U that can be
expressed in the form WN and allow U to follow any distribution, we can still simulate U
using approximately H(U) number of coin flips by invoking Theorem 55. Therefore, similar
to one-shot channel simulation without common randomness (Proposition 27), the answer
is also given approximately by the common entropy (4.1)

G(X;Y ) := min
PU|X,Y :X↔U↔Y

H(U).

The following result has been given in (Kumar et al., 2014; Li and El Gamal, 2017).

Proposition 59 (Kumar et al. 2014; Li and El Gamal 2017). For the one-shot variable-
length distributed source simulation setting, the optimal expected number of coin flips is
bounded by

G(X;Y ) ≤ L∗ ≤ G(X;Y ) + 2.

Proof. For the upper bound, given any U satisfying X ↔ U ↔ Y , we can generate U
using an expected ≤ H(U) + 2 number of coin flips by Theorem 55, and have Terminal
1 generate X conditional on U , and Terminal 2 generate Y conditional on U . For the
lower bound, since (WN , X, Y ) ∼ PWNPX|WNPY |WN , we have X ↔ WN ↔ Y , and
E[N ] = E[− log2 PWN (WN )] = H(WN ) ≥ G(X;Y ).

Alternatively, we may assume that the terminals share a common random variable
W ∼ PW instead of the sequence of coin flips. This is the original setting in (Kumar et al.,
2014). In this setting, the common randomness is a random variable W with a distribution
PW specially designed for this scheme (so we must design the scheme before the generation
and sharing ofW ), instead of a general-purpose sequence of coin flips (where the scheme can
be applied to any existing shared sequence of coin flips). If we study the smallest entropy
H(W ), the answer is given by G(X;Y ) exactly. If we study the shortest expected length
of a prefix-free encoding of W , the answer is between G(X;Y ) and G(X;Y ) + 1 (Kumar
et al., 2014). If we instead study the smallest cardinality |W|, the answer is given by the
nonnegative rank rank+(PX,Y ) of the joint probability matrix PX,Y (Zhang, 2012; Cubitt
et al., 2011), similar to Proposition 26.
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Terminal 1

X̃1, . . . , X̃n

Wn ∼ Unif([b2nRc])

Terminal 2

Ỹ1, . . . , Ỹn

Figure 9.4: Asymptotic distributed source simulation.

9.2.2 Asymptotic Distributed Source Simulation

Distributed source simulation was originally considered in the asymptotic fixed-length
approximate setting in (Wyner, 1975a), depicted in Figure 9.4. Unlike Definition 58, the
terminals want to simulate two sequences X̃n, Ỹ n that approximately follow the i.i.d.
distribution PnX,Y , using a fixed-length common randomness Wn ∼ Unif([b2nRc]). The
setting is defined below.

Definition 60 (Asymptotic fixed-length distributed source simulation). Consider a joint
distribution PX,Y over X × Y. An asymptotic fixed-length distributed source simulation
scheme is characterized by a sequence of pairs (PX̃n|Wn

, PX̃n|Wn
)n∈N+ described below:

• Terminals. Given the common randomness Wn ∼ Unif([b2nRc]) (where R ≥ 0
is the common randomness rate), Terminal 1 uses a stochastic decoder to output
X̃n|Wn ∼ PX̃n|Wn

, where PX̃n|Wn
is a Markov kernel from [b2nRc] to X n. Terminal

2 uses a stochastic decoder to output Ỹ n|Wn ∼ PỸ n|Wn
, where PỸ n|Wn

is a Markov
kernel from [b2nRc] to Yn.

• Requirement. We require

δTV
(
(X̃n, Ỹ n), PnX,Y

)
→ 0 as n→∞.

• Performance metric. We are interested in the smallest common randomness rate.
Let R∗ be the infimum of R over all schemes satisfying the requirement.

Similar to asymptotic channel simulation without common randomness (Theorem 40),
the answer is given by Wyner’s common information (Wyner, 1975a).
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Theorem 61 (Wyner 1975a). For the asymptotic fixed-length distributed source simulation
setting, where X,Y are finite discrete, the optimal common randomness rate is given by
Wyner’s common information

J(X;Y ) := min
PU|X,Y :X↔U↔Y

I(X,Y ;U).

Proof. We omit the subscript in Wn and simply write W . First prove the achievability
part. Fix PU |X,Y satisfying X ↔ U ↔ Y . Fix R > I(X,Y ;U). Generate a random
codebook U := (un(m))m∈[b2nRc], where ui(m) ∼ PU i.i.d. across i ∈ [n], m ∈ [b2nRc]. Let
W ∼ Unif([b2nRc]) and Ũn := un(W ). Define random variables (X̃n, Ỹ n) with conditional
distribution (X̃n, Ỹ n)|(Ũn,W,U) ∼ PnX,Y |U . Since X ↔ U ↔ Y forms a Markov chain,
PnX,Y |U = PnX|UP

n
Y |U , and hence X̃n ↔ Ũn ↔ Ỹ n forms a Markov chain. Since Ũn = un(W )

is a function of (W,U), X̃n ↔W ↔ Ỹ n forms a Markov chain conditional on U. Terminal 1
uses the Markov kernel PX̃n|W,U(·|·,U), and Terminal 2 uses the Markov kernel PỸ n|W,U(·|·,U)
(these kernels are “random” and depend on U, though we will later argue that there exists
a fixed value of U that gives good kernels). Applying the soft covering lemma on PX,Y |U ,
we know that

δTV
(
(X̄n, Ȳ n), PnX,Y

∣∣U)→ 0

in probability as n→∞. There is a fixed choice u of U (which depends on n) that gives
δTV((Xn, Ỹ n), PnX,Y |U = u)→ 0, which is the desired result.

We then prove the converse. Fix any scheme. Assume δTV((X̃n, Ỹ n), PnX,Y ) ≤ ε.
Since (W, X̃n, Ỹ n) ∼ PWPX̃n|WPỸ n|W , we have X̃n ↔ W ↔ Ỹ n. Invoking the coupling
lemma (Proposition 34) on PX̃n,Ỹ n and PnX,Y , we can have random sequences Xn, Y n with
(Xn, Y n) ∼ PnX,Y and P((Xn, Y n) 6= (X̃n, Ỹ n)) ≤ ε. We have

nR ≥ H(W )
≥ I(Xn, Y n;W )

=
n∑
i=1

I(Xi, Yi;W |Xi−1, Y i−1)

(a)=
n∑
i=1

I(Xi, Yi;W,Xi−1, Y i−1)

≥
n∑
i=1

I(Xi, Yi;W )

= nI(XQ, YQ;W |Q)
(b)= nI(XQ, YQ;W,Q),
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where (a) is because I(Xi, Yi;Xi−1, Y i−1) = 0, and (b) is because I(Q;XQ, YQ) = 0.
The remaining obstacle is that XQ ↔ (W,Q) ↔ YQ does not hold, and we only have
X̃Q ↔ (W,Q)↔ ỸQ since Terminal 1 outputs X̃Q using W,Q, and Terminal 2 outputs ỸQ
using W,Q. Invoking Lemma 76 (proved in Appendix B), there exists V such that XQ ↔
(W,Q, V )↔ YQ holds andH(V ) ≤ δ|X |,|Y|(ε), where δ|X |,|Y|(ε) is a function that tends to 0 as
ε→ 0 for any fixed |X |, |Y|. We have R ≥ I(XQ, YQ;W,Q) ≥ I(XQ, YQ;W,Q, V )−δ|X |,|Y|(ε).
The result follows from letting ε→ 0.

Readers are referred to (Cuff et al., 2010; Liu et al., 2010; Kurri et al., 2021) for
generalizations of this setting to more than two terminals.

9.3 Local Channel Simulation
9.3.1 One-shot Local Channel Simulation

In the one-shot channel simulation setting without common randomness (Definition 25),
the amount of communication is limited, though the amount of local randomness at the
encoder and decoder is unlimited. We now modify Definition 25 so that the amount of
communication is unlimited, but the total amount of local randomness at the encoder
and decoder is limited. Since the encoder and decoder are linked by an infinite capacity
channel, we may as well consider them as a single entity. This is a “local” channel simulation
setting since it concerns a single terminal, unlike the “distributed” channel simulation
settings with two terminals (encoder and decoder) that has been previously studied in this
monograph. This setting (in the asymptotic case) is simply referred to as channel simulation
in (Steinberg and Verdú, 1994), and referred to as local synthesis in (Cuff, 2013). Since we
are using the term “channel simulation” instead of “channel synthesis” in this monograph,
we call this setting “local channel simulation”.

In the one-shot variable-length local channel simulation setting (which can be considered
as a one-shot version of (Steinberg and Verdú, 1994)), the simulator observes X and the coin
flips WN = (W1, . . . ,WN ) obtained from a random number generator, and has to output Y
such that Y |X ∼ PY |X . One application is software simulation of a physical communication
channel (e.g., a wireless fading channel), which is useful for measuring the performance of
communication protocols (e.g., see (Mezzavilla et al., 2015; Sun et al., 2017)). In case if
true randomness is expensive, the software will have to simulate the channel using as few
random bits as possible (Steinberg and Verdú, 1994). Another interpretation of the setting
is to regard the simulator as a “multi-purpose” random number generator, which is capable
of generating a sample from any distribution in the family (PY |X(·|x))x∈X . Upon receiving
the input x, the simulator outputs a sample Y from the distribution PY |X(·|x). The goal is
to use the least amount of randomness to sample from any distribution in this family.
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Source before coins Coins before source

Figure 9.5: Left: One-shot local channel simulation, source before coins, where the simulator first observes
X, and then interactively invokes the random number generator to obtain coin flips until the stopping time
N (which can depend on X), and then outputs Y .
Right: One-shot local channel simulation, coins before source, where the simulator first interactively invokes
the random number generator to obtain coin flips until the stopping time N (which cannot depend on X),
and then observes X, and then outputs Y .

There are three options for whether the source distribution is known, and which of X
and WN is observed first:

• Known source before coins. X ∼ PX follows a known distribution PX and is
observed before WN , so the simulator can decide on a stopping time N based on X.

• Arbitrary source before coins. X ∈ X is arbitrary and is observed before WN .

• Coins before source. WN is observed before X ∈ X , so the simulator must decide
on the stopping time without knowing X. It does not matter whether the source
distribution is known here.

The known source before coins setting has been studied, for example, in (Uyematsu and
Kanaya, 1999) where a variable-length scheme based on the interval algorithm (Han and
Hoshi, 1997) was proposed. The coins before source setting was discussed in (Cicalese et al.,
2019; Li, 2021). The settings are depicted in Figure 9.5, and are defined below.

Definition 62 (One-shot variable-length local channel simulation). Consider a channel
PY |X (where Y is discrete), and a source distribution PX (for the known source before coins
case). A one-shot variable-length local channel simulation scheme is characterized by a pair
((Cx)x∈X , f) described below:

• Codebook. Cx ⊆ {0, 1}∗ is a full prefix-free codebook for each x ∈ X . For the coins
before source case, we further require that Cx = C are all the same and do not depend
on x.
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• Simulator. Given the source X ∈ X (X ∼ PX for the known source before coins
case) and a sequence of coin flips W1,W2, . . .

iid∼ Bern(1/2), the simulator reads the
coin flips one by one, and stops at

N := min{n ∈ N0 : Wn ∈ CX}.

The simulator then outputs Y := f(X,WN ), where f : X × {0, 1}∗ → Y is the
sampling function.

• Requirement. We require Y |X ∼ PY |X exactly.

• Performance metric. We are interested in the smallest expected number of coin
flips needed E[N ]. For the known source before coin case, let L∗ := inf E[N ] be
the optimal expected number of coin flips, where the infimum is over all schemes
satisfying the requirement. For the other two cases, we consider the worst case
L∗ := inf supx∈X inf E[N |X = x], where the infimum is over all schemes satisfying
the requirement.

The two “source before coins” cases are straightforward. After knowing x, the simulator
simply uses a source simulation scheme for PY |X(·|x). This is basically how a software library
that supports generating random numbers from several different distributions works: when
the user calls a function for generating a random number from a certain distribution, say
the geometric distributrion Geom(1/2), the software library runs the best sampling scheme
for Geom(1/2) and returns the result. The following results for the known source before
coins setting and the arbitrary source before coins setting follow directly from Theorem 55.

Corollary 63 (Known/arbitrary source before coins (Knuth and Yao, 1976)). For the
one-shot variable-length local channel simulation setting, with known or arbitrary source
before coins, the optimal expected number of coin flips is bounded by

• (Known source before coins)

H(Y |X) ≤ L∗ ≤ H(Y |X) + 2.

• (Arbitrary source before coins)

sup
x∈X

H(Y |X = x) ≤ L∗ ≤ sup
x∈X

H(Y |X = x) + 2.
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Proof. For the upper bounds of both cases, for each x, invoke Theorem 55 on PY |X(·|x)
to construct Cx and f(x, ·) so that if N = min{n ∈ N0 : Wn ∈ CX}, then f(x,WN )|{X =
x} ∼ PY |X(·|x), and E[N |X = x] ≤ H(Y |X = x) + 2. For the known source before coins
case, we have E[N ] = E[E[N |X]] ≤ H(Y |X) + 2.

For the lower bounds of both cases, for each x, since f(x,WN )|{X = x} ∼ PY |X(·|x),
this is a scheme for source simulation for the distribution PY |X(·|x), and hence Theorem 55
gives E[N |X = x] ≥ H(Y |X = x).

We then consider the coins before source setting that has been discussed in (Cicalese
et al., 2019; Li, 2021). The simulator must read the coin flips W1,W2, . . . and decide on
the stopping time N = min{n ∈ N0 : Wn ∈ C} before it observes X. This is relevant in
situations where the generator of the coin flips is slow (which may be the case for some
hardware random number generators), and the simulator would like to invoke the coin flip
generator beforehand and cache the result WN , so that when it later receives X, it can
respond quickly and output Y right away. If the generator is unreliable (the time it takes
is unpredictable) or remote (the generator is located at another terminal connected by a
slow communication link), such caching would be desirable for the reduction of the delay
between the input of X into the simulator and the output of Y by the simulator.

Since WN is independent of X, the problem becomes finding WN with the smallest N
such that Y = f(X,WN ) has the desired conditional distribution PY |X . Readers may notice
that this is the functional representation (El Gamal and Kim, 2011) discussed in Section
3.1, which is about finding a distribution PW and a function φ :W×X → Y such that if X
is independent of W ∼ PW , and Y = φ(W,X), then Y |X ∼ PY |X , i.e., φ(W,x) ∼ PY |X(·|x)
for every x ∈ X . However, unlike channel simulation with unlimited common randomness
where we are interested in the smallest possible H(Y |W ) in (3.1), here we are interested
in the smallest possible H(W ), which is approximately the number of coin flips needed to
simulate W due to Theorem 55. Letting

H∗W := inf
(PW ,φ): ∀x:φ(W,x)∼PY |X(·|x)

H(W ), (9.1)

the optimal expected number of coin flips for the coins before source setting is bounded by

H∗W ≤ L∗ ≤ H∗W + 2. (9.2)

This has been discussed in (Cicalese et al., 2019; Li, 2021).
It was observed in (Kocaoglu et al., 2017a) that the minimum entropy of functional

representation in (9.1) is equivalent to the minimum entropy coupling problem (Vidyasagar,
2012; Painsky et al., 2013; Kovačević et al., 2015): given a collection of discrete distributions
(px)x∈X , find the coupling (Yx)x∈X (i.e., (Yx)x are jointly-distributed random variables with
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marginals Yx ∼ px) with the smallest joint entropy H((Yx)x∈X ). Let

H∗((px)x∈X ) := inf
P(Yx)x :Yx∼px

H
(
(Yx)x

)
(9.3)

be the smallest joint entropy among couplings of (px)x∈X . Given a functional representation
(PW , φ), we can produce a coupling of (PY |X(·|x))x∈X by taking Yx = φ(W,x), with
joint entropy H((Yx)x∈X ) ≤ H(W ). For the other direction, given a coupling (Yx)x∈X of
(PY |X(·|x))x∈X , we can define a functional representation byW = (Yx)x∈X and φ(W,x) = Yx.
Therefore, the minimum entropy coupling problem (9.3) is equivalent to the minimum
entropy of functional representation (9.1) (as observed in (Kocaoglu et al., 2017a)), which
in turn is approximately equivalent to the local channel simulation problem due to (9.2) (as
observed in (Cicalese et al., 2019)). Hence, we can approximately characterize the optimal
expected number of coin flips.

Theorem 64 (Coins before source (Kocaoglu et al., 2017a; Cicalese et al., 2019)). We have

H∗W = H∗
(
(PY |X(·|x))x∈X

)
.

Hence, the optimal expected number of coin flips for the local channel simulation problem
(coins before source) is bounded by

H∗
(
(PY |X(·|x))x

)
≤ L∗ ≤ H∗

(
(PY |X(·|x))x

)
+ 2.

Another equivalent way to state the minimum entropy coupling problem is through
the concept of aggregation (Vidyasagar, 2012; Cicalese et al., 2016). For two discrete
distributions p (over X ) and q (over Y), we say that p is an aggregation of q, written as
q v p (adopting the notation in (Li, 2021)), if it is possible to form p by merging some
of the masses of q, that is, if there exists a function g : Y → X such that if Y ∼ q, then
g(Y ) ∼ p. Then the minimum entropy coupling (9.3) can be equivalently stated as

H∗((px)x∈X ) = inf
q: ∀x: qvpx

H(q). (9.4)

Also note that v is a partial order, and entropy is nonincreasing with respect to v (i.e.,
q v p implies H(q) ≥ H(p)). Therefore, if we could find q that is the greatest lower bound
of (px)x∈X (i.e., q v px for all x, and every q′ satisfying q′ v px for all x must also satisfy
q′ v q), then this q would attain the infimum in (9.4).

Unfortunately, v is not a meet-semilattice, meaning that the greatest lower bound does
not always exist. The minimum entropy coupling is difficult to compute. Even when |X | = 2,
the problem of finding H∗(p1, p2) for two distributions p1, p2 is NP-hard (Vidyasagar, 2012;
Kovačević et al., 2015). The characterization in Theorem 64 is not quite helpful for the
computation of the number of coin flips needed L∗.

169



To obtain an efficiently computable bound, (Cicalese et al., 2019) studied another
ordering—the majorization order (Marshall et al., 2011). We say that q is majorized by p,
written as q � p, if

∑k
y=1 q

↓(y) ≤
∑k
y=1 p

↓(y) for all k ∈ N+, where q↓(1) ≥ q↓(2) ≥ · · · are
the entries of q sorted in nonascending order (append 0’s at the end so q↓(y) is defined for
all y ∈ N+). Similar to the aggregation order v, majorization � is also a partial order, and
entropy is nonincreasing with respect to � (this is referred to as the Schur-concavity of
entropy). Also, q v p implies q � p (Cicalese et al., 2016).4

A nice property of majorization is that it forms a lattice (Marshall et al., 2011; Cicalese
and Vaccaro, 2002), and the greatest lower bound of a finite collection of discrete distributions
(px)x∈X , written as q =

∧
x∈X px, can be given as a probability mass function q : N+ → R

where

q(k) := inf
x

k∑
y=1

p↓x(y)− inf
x

k−1∑
y=1

p↓x(y). (9.5)

Note that the greatest lower bound (9.5) may or may not exist when the collection (px)x∈X
is infinite. Nevertheless, if limk→∞ infx

∑k
y=1 p

↓
x(y) = 1, then the greatest lower bound (9.5)

is a valid distribution (Li, 2021).
As a result, we can obtain an efficiently computable lower bound of the minimum entropy

coupling problem by

H∗((px)x∈X ) = inf
q: ∀x: qvpx

H(q)

≥ inf
q: ∀x: q�px

H(q)

= H
(∧
x

px
)

if the greatest lower bound
∧
x px exists.5 Furthermore, a bound in the other direction is

also possible, showing that the solution to the minimum entropy coupling problem (and
hence the local channel simulation problem) can be approximated by the greatest lower
bound, giving an approximate solution that can be efficiently computed.

Theorem 65 (Coins before source (Cicalese et al., 2019; Li, 2021; Compton, 2022)). We
have

H
(∧
x

PY |X(·|x)
)
≤ H∗

(
(PY |X(·|x))x

)
≤ H

(∧
x

PY |X(·|x)
)

+ log2 e

4If q v p, we can let g : Y → X such that if Y ∼ q, then g(Y ) ∼ p. Let y1, y2, . . . be the en-
tries of Y such that q(y1) ≥ q(y2) ≥ · · · are in nonincreasing order. Then

∑k

y=1 q
↓(y) =

∑k

i=1 q(yi) ≤∑
x∈g({yi: i∈[k]}) p(x) ≤

∑k

x=1 p
↓(x).

5If the greatest lower bound does not exist, the entropy of the minimum entropy coupling is infinite. To
show this, note that if

∑k

y=1 p
↓(y) = a < 1, then p↓(y) ≤ a/k for y > k, and hence H(p) ≥ (1− a) log2(k/a).

Therefore, if limk→∞ infx
∑k

y=1 p
↓
x(y) < 1, then supxH(px) =∞, implying H∗((px)x∈X ) =∞.
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if the greatest lower bound with respect to majorization ∧x PY |X(·|x) exists (otherwise H∗
above is infinite). Hence, the optimal expected number of coin flips for the local channel
simulation problem (coins before source) is bounded by

H
(∧
x

PY |X(·|x)
)
≤ L∗ ≤ H

(∧
x

PY |X(·|x)
)

+ log2(4e) bits.

The lower bound H∗ ≥ H(
∧
PY |X(·|x)) was shown by (Cicalese et al., 2019), which

also proved an upper bound H∗ ≤ H(
∧
PY |X(·|x)) + dlog2 |X |e. The upper bound was

improved to H∗ ≤ H(
∧
PY |X(·|x)) + 2 in (Li, 2021), and to H∗ ≤ H(

∧
PY |X(·|x)) + log2 e

in (Compton, 2022). Readers are referred to (Compton, 2022) for the proof. In particular,
(Li, 2021) proved H∗ ≤ H(

∧
PY |X(·|x)) + 2 by showing that if q � p, then

q ×Geom(1/2) v p,

where Geom(1/2) is the geometric distribution with parameter 1/2, and q × Geom(1/2)
denotes the product distribution, which implies that (

∧
x′ PY |X(·|x′)) × Geom(1/2) v

PY |X(·|x) for all x. Also refer to (Shkel and Yadav, 2023; Shkel, 2024) for more bounds and
discussions.

An interesting parallel between the arbitrary source before coins setting in Corollary
63 and the coins before source setting Theorem 65 is that for the arbitrary source before
coins setting, the answer is approximately given by the least upper bound (with respect to
the ordering ≤ over R) of the entropies of PY |X(·|x) for all x ∈ X , whereas for the coins
before source setting, the answer is approximately given by the entropy of the greatest
lower bound (with respect to majorization) of PY |X(·|x) for all x ∈ X . Swapping the order
between the source and the coins corresponds to swapping the order between taking the
entropy and taking the least upper bound / greatest lower bound in the answer.

There are polynomial time algorithms that can produce a coupling with an entropy
within a constant gap away from the minimum (and hence an almost optimal scheme for the
local channel simulation problem) (Kocaoglu et al., 2017b; Rossi, 2019; Cicalese et al., 2019;
Li, 2021; Compton, 2022; Compton et al., 2023). In particular, the greedy algorithm in
(Kocaoglu et al., 2017b) was shown to be within 1.22 bits from the optimum (Compton et al.,
2023). The asymptotic setting of coupling two i.i.d. distributions pn, qn has been studied in
(Yu and Tan, 2018), where it was shown that H∗(pn, qn)− nmax{H(p), H(q)} → 0 at least
exponentially fast as n→∞ if H(p) 6= H(q).

9.3.2 Asymptotic Local Channel Simulation

In this section, we consider the asymptotic local channel simulation setting in (Steinberg
and Verdú, 1994), where the goal is to simulate the memoryless channel PnY |X approximately
with the smallest amount of fixed-length local randomness Wn ∼ Unif([b2nRc]). There are
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Xn Simulator Ỹ n

Wn ∼ Unif([b2nRc])

Figure 9.6: Asymptotic local channel simulation.

two options: known source distribution where Xn ∼ PnX is i.i.d. with a known distribution
PX , and arbitrary source where Xn ∈ X n is arbitrary. Unlike Definition 62, there is no
difference between whether the source is observed before the local randomness, since the
local randomness is fixed to be a uniform integer, and does not depend on the sampler’s
choice. The setting is depicted in Figure 9.6, and is defined below.

Definition 66 (Asymptotic fixed-length local channel simulation). Consider a channel
PY |X (where Y is discrete), and a source distribution PX (for the known source distribution
case). An asymptotic fixed-length local channel simulation scheme is characterized by a
sequence (fn)n∈N+ described below:

• Simulator. Given the source Xn ∈ X n (Xn ∼ PnX for the known source distribution
case) and the local randomness Wn ∼ Unif([b2nRc]), the simulator outputs Ỹ n :=
f(Xn,Wn), where f : X n × [b2nRc]→ Yn is the sampling function.

• Requirement.

– For the known source distribution case, we require that Ỹ n follows the conditional
distribution PnY |X approximately, in the sense that

δTV
(
(Xn, Ỹ n), PnXPnY |X

)
→ 0

as n → ∞. Or equivalently, δTV(Ỹ n, PnY |X |X
n) → 0 in probability as n → ∞

by Lemma 36.

– For the arbitrary source case, we require

sup
xn∈Xn

δTV
(
Ỹ n, PnY |X

∣∣Xn = xn
)
→ 0

as n→∞.

• Performance metric. We are interested in the smallest randomness rate. Let R∗ be
the infimum of R over all schemes satisfying the requirement.
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The optimal randomness rate has been characterized in (Steinberg and Verdú, 1994).
Note the similarity between this result and the one-shot local channel simulation (source
before coin) result in Corollary 63.

Theorem 67 (Steinberg and Verdú 1994). For the asymptotic fixed-length local channel
simulation of PY |X where Y is finite discrete, the optimal randomness rate is:

• (Known source distribution)
R∗ = H(Y |X).

• (Arbitrary source) If X is finite discrete,

R∗ = max
x∈X

H(Y |X = x).

Proof. First prove the achievability of the known source distribution case. Invoke the one-
shot variable-length scheme in Corollary 63 n times, we have a variable-length scheme
that uses

∑n
i=1Ni coin flips, where Ni is the number of coin flips needed to simulate the

channel Xi → Yi, satisfying E[Ni] ≤ H(Y |X) + 2. By law of large numbers, P(
∑n
i=1Ni >

n(H(Y |X) + 3))→ 0 as n→∞. We then construct a fixed-length scheme by capping the
number of coin flips to n(H(Y |X)+3), where the simulator experiences a failure and outputs
any Ỹ n if the number of coin flips is insufficient.6 The probability of failure approaches
0. Hence, we can achieve a rate R = H(Y |X) + 3. To remove the constant 3, instead of
applying the one-shot variable-length scheme on every pair (Xi, Yi), we apply the one-shot
scheme on every group of k time slots, i.e., (Xk, Y k), (X2k

k+1, Y
2k
k+1), . . .. Now we can achieve

a rate R = H(Y |X) + 3/k. The proof can be completed by taking k →∞.
We then prove the arbitrary source case. Again invoke the one-shot variable-length

scheme in Corollary 63 n times, and construct a fixed-length scheme by capping the number
of coin flips to n(1 + ε|X |)(maxxH(Y |X = x) + 3) for some ε > 0. Consider any fixed source
sequence xn. Fix x ∈ X and consider the time indices i where xi = x. Let nx := |{i : xi = x}|
be the number of such time indices. By law of large numbers,

P
( ∑
i:xi=x

Ni > nx(H(Y |X = x) + 3)
)
≤ δx(nx),

where δx(`) is a non-increasing function satisfying lim`→∞ δx(`) = 0 for every x. We have

P
( n∑
i=1

Ni > n(1 + ε|X |)(H(Y |X = x) + 3)
)

6Technically, since Definition 66 has Wn ∼ Unif([b2nRc]) instead of Wn ∼ Unif({0, 1}bnRc), the common
randomness cannot be treated as a fixed-length sequence of bits. Refer to the proof of Theorem 57 for the
conversion from Wn to a sequence of bits.
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≤
∑
x

P
( ∑
i:xi=x

Ni > (nx + bεnc)(H(Y |X = x) + 3)
)

≤
∑
x

δx(nx + bεnc)

≤
∑
x

δx(bεnc)

→ 0

as n→∞. Hence, we can achieve a rate (1 + ε|X |)(maxxH(Y |X = x) + 3). The proof can
be completed by considering groups of k time slots, and taking k →∞, ε→ 0.

For the converse result for the known source distribution case, consider a scheme with
δTV((Xn, Ỹ n), PnXPnY |X) ≤ ε. Since Ỹ n is a function of (Xn,Wn), we have H(Ỹ n|Xn) ≤
H(Wn) ≤ nR. Invoking the coupling lemma (Proposition 34) on PỸ n|Xn(·|Xn) and
PnY |X(·|Xn), we can have a random sequence Y n with Y n|Xn ∼ PnY |X and P(Y n 6= Ỹ n) ≤ ε.
By Fano’s inequality (Fano, 1961),

H(Y n|Ỹ n) ≤ εn log2 |Y|+ 1.

Therefore,

nH(Y |X) = H(Y n|Xn)
≤ H(Ỹ n|Xn) +H(Y n|Ỹ n)
≤ nR+ εn log2 |Y|+ 1.

Taking ε → 0, we have R ≥ H(Y |X). The converse result for the arbitrary source case
follows from the known source distribution case by considering the degenerate source
distribution X = x.

The situation where the input process Xn is general (not necessarily i.i.d.) and the
channel PY n|Xn is general (not necessarily memoryless) has also been studied in (Steinberg
and Verdú, 1994), where the optimal rate is given as the conditional sup-entropy rate of Y
given X. Algorithms based on the interval algorithm (Han and Hoshi, 1997) for computing
the mapping fn have been proposed in (Uyematsu and Kanaya, 1999). The situation where
the source of randomness Wn is a general source (instead of being uniformly distributed)
has been studied in (Altuğ and Wagner, 2012).

A related problem, called local channel synthesis, was studied in (Cuff, 2013), where
the terminal observes Xn ∼ PnX and has to output Zn as a function of Xn and local
randomness, such that when (Xn, Zn) is passed through the memoryless channel PnY |X,Z ,
the output Ỹ n approximately follows a prescribed conditional distribution PnY |X , in the
sense that δTV((Xn, Ỹ n), PnXPnY |X)→ 0. It was shown in (Cuff, 2013) that the optimal local
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Enc DecX1, . . . , Xn Y1, . . . , Yn

Mn ∈ [b2nRc]

Wn ∼ Unif([b2nR0c])Jn ∼ Unif([2nRJ ]) Kn ∼ Unif([2nRK ])

Figure 9.7: Asymptotic approximate fixed-length channel simulation with limited common and local
randomness.

randomness rate is I(Z;Y |X). Note that this result implies the known source distribution
case of Theorem 67 by taking Y = Z.

9.4 Channel Simulation with Limited Common and Local
Randomness

We now return to the “distributed” channel simulation setting with two terminals in
Definition 37. The asymptotic fixed-length channel simulation setting where the local
randomness at the encoder and the decoder is limited has been studied in (Cuff, 2008;
Cuff, 2013). While Definition 37 allows the encoder and the decoder to be stochastic with
unlimited local randomness, we modify the setting as follows:

• The encoder is given the local randomness Jn ∼ Unif([2nRJ ]) (where RJ ≥ 0 is the
encoder local randomness rate), and its outputMn must be a function of (Wn, X

n, Jn).

• The decoder is given the local randomness Kn ∼ Unif([2nRK ]) (where RK ≥ 0 is the
decoder local randomness rate), and its output Ỹ n must be a function of (Mn,Wn,Kn).

Refer to Figure 9.7. We are interested in finding the optimal rate region, defined as the
closure of achievable tuples (R,R0, RJ , RK) in a similar manner as Definition 37. The result
in (Cuff, 2008; Cuff, 2013) is stated below.

Theorem 68 (D/∞/A/FL/KS/LCR/LLR (Cuff, 2008; Cuff, 2013)). For the asymptotic
approximate fixed-length channel simulation setting with known source distribution, limited
common randomness (rate R0), limited local randomness at the encoder (rate RJ) and the
decoder (rate RK), and finite discrete X,Y , the optimal rate region is given by

⋃
PU|X,Y :X↔U↔Y



(R,R0, RJ , RK) ∈ R4 :
R ≥ I(X;U),
R0 +R ≥ I(X,Y ;U),
RJ ≥ 0,
RK ≥ H(Y |U)


.
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Note that the only constraint on RJ is RJ ≥ 0, meaning that the encoder local
randomness rate can be arbitrarily small. We may even move the encoder local randomness
to the common randomness if we do not want any encoder local randomness.

Proof sketch. We will only show the achievability here. We adopt the strategy in (Cuff, 2013).
Suppose we want to construct a scheme with rates R,R0, RJ , RK satisfying R > I(X;U),
R0 + R > I(X,Y ;U), RJ > 0, RK > H(Y |U). It suffices to consider R = I(X;U) + ε

for 0 < ε < 1, since if we have a communication rate greater than I(X;U) + ε, we can
use the excess communication rate to create common randomness instead, so there is
no gain of generality by considering an R greater than I(X;U) + ε. We use the same
construction as in the proof of Theorem 45. Recall that U = (un(m,w))m∈[b2nRc],w∈[b2nR0c]
is a random codebook with i.i.d. entries following PU , M̄ ∼ Unif([b2nRc]) is independent of
W ∼ Unif([b2nR0c]), Ūn := un(M̄,W ), and (X̄n, Ȳ n)|Ūn ∼ PnX|UP

n
Y |U . First, we show that

the encoding Markov kernel PM̄ |X̄n,W,U(·|·, ·,U) can be made into a deterministic function
with an additional input that is the local randomness Jn ∼ Unif([2nRJ ]) for arbitrarily
small RJ . We have

H(M̄ |X̄n,W,U)
= H(M̄ |W,U)− I(M̄ ; X̄n|W,U)
(a)= H(M̄ |W,U)− I(Ūn; X̄n|W,U)
(b)
≤ H(M̄ |W,U)− I(Ūn,U; X̄n|W ) + εn

≤ nR− I(Ūn; X̄n|W ) + εn

(c)= n(R− I(U ;X)) + εn,

= 2εn,

where (a) is because (M̄,W,U) ↔ Ūn ↔ X̄n, (c) is because the unconditional dis-
tribution of Ūn is PnU (since each un(m,w) ∼ PnU ), independent of W . For (b), since
E[δTV(X̄n, PnX |W,U)] → 0 (7.3), by the coupling lemma (Proposition 34), we can have
Xn ∼ PnX independent of W,U, with P(Xn 6= X̄n)→ 0, and

I(U; X̄n|W ) ≤ I(U;Xn|W ) +H(X̄n|Xn) ≤ εn,

for large n due to Fano’s inequality (Fano, 1961). Therefore, the encoder can use the one-shot
variable-length local channel simulation scheme (known source before coins) in Corollary 63
to simulate the Markov kernel PM̄ |X̄n,W,U(·|·, ·,U) using an expected ≤ n(R−I(U ;X))+o(n)
number of coin flips.7 By Markov’s inequality, the probability that the encoder uses more

7Technically the input to the local channel simulation scheme should be Xn instead of X̄n, though this
does not matter since P(Xn 6= X̄n)→ 0.
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than 2
√
εn coin flips is at most

√
ε. Therefore, to turn the variable-length local randomness

into fixed-length, we can cap the number of coin flips at 2
√
εn, with an encoder local

randomness rate RJ = 2
√
ε, incurring an additive penalty

√
ε to the total variation distance.

We obtain the desired result by taking ε→ 0.
It remains to show that the decoding Markov kernel PȲ n|M̄,W,U(·|·, ·,U) (obtained from

passing un(m,w) through the memoryless channel PnY |U ) can be made into a deterministic
function with an additional input that is the local randomness Kn ∼ Unif([2nRK ]) as long
as RK > H(Y |U). This follows directly from the asymptotic local channel simulation result
in Theorem 67.

Also refer to (Hamdi et al., 2024) for a related setting about rate-distortion-perception
tradeoff, where encoder local randomness is not helpful if the compression rate is less than
the entropy of the source.

On the other hand, works on one-shot channel simulation with limited common and
local randomness appear to be limited. Theorem 4 and the cardinality bound in Theorem 13
implies that one-shot channel simulation is possible with ≤ I(X;Y ) + log2(I(X;Y ) + 2) + 3
bits of communication and ≤ log2(|X |(|Y|−1) + 2) + 2 bits of common randomness, without
any local randomness. Theorem 65 implies that one-shot channel simulation is possible with
≤ H(X)+1 bits of communication and H(

∧
x PY |X(·|x))+ log2(4e) bits of local randomness

at the decoder, without any common randomness (encoder simply transmits X and let the
decoder perform local channel simulation). It also implies that one-shot channel simulation
is possible with ≤ H(Y ) + 1 bits of communication and H(

∧
x PY |X(·|x)) + log2(4e) bits of

local randomness at the encoder, without any common randomness (encoder performs local
channel simulation and transmits Y ). Characterizing the tradeoff between communication,
common and local randomness would be an interesting future direction.
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10 Other Settings

10.1 Simulating a Channel with Feedback

For a channel X → Y from an encoder to a decoder, (perfect) feedback refers to the
communication of the channel output Y from the decoder back to the encoder. To simulate
a channel with feedback, in addition to allowing the decoder to output Y , we must also
allow the encoder to know Y (Bennett et al., 2014). This should be done without an
actual feedback channel from the decoder to the encoder. For example, to add the feedback
requirement to the one-shot unlimited-common-randomness setting (Definition 2), the code
would consist of an additional function g′ :W×X ×{0, 1}∗ → Y representing the encoder’s
output for Y , such that g′(W,X,M) = g(W,M) = Y with probability 1. Letting the encoder
know the output Y is useful, for example, if we are designing a component in a large stateful
lossy compression algorithm (e.g. lossy compression with diffusion generative models in
(Theis et al., 2022)), where the decoder’s reconstruction of the next piece of information
depends on its reconstruction of the previous pieces, and hence the encoder should also
know the decoder’s reconstruction of the previous pieces, in order to be “synchronized” with
the decoder and properly compress the next piece.

Conventional deterministic lossy compression schemes always satisfy the feedback re-
quirement, since there is no randomness in the encoder and the decoder, and the information
available at the encoder (source and description) is a superset of the information at the
decoder (description only), implying that any information that can be deduced by the
decoder can also be deduced by the encoder. For a similar reason, channel simulation
schemes with unlimited common randomness (Definition 2) always satisfy the feedback
requirement (or can easily be modified to satisfy the requirement). Due to the unlimited
common randomness, we can assume that the encoding and decoding functions are deter-
ministic, and the information at the encoder (W,X,M) is a superset of the information at
the decoder (W,M).

However, the feedback requirement is not automatically satisfied when the common
randomness is limited, where it may be reasonable to have a stochastic decoding function
(e.g., Section 4), which has an output that is only known to the decoder. If the encoder must
know the output of the decoder, then the decoder should not use a stochastic decoding
function since the decoder’s local randomness is unknown to the encoder. Therefore, the
amount of common randomness may have to be increased so that the decoder can use it in
place of local randomness.

The asymptotic optimal rate region with the feedback requirement has been characterized
in (Bennett et al., 2014).

Theorem 69 (D/∞/A/FL/KS/LCR/Feedback (Bennett et al., 2014)). For the asymptotic
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approximate fixed-length channel simulation setting (Definition 37) with known source
distribution, limited common randomness and discrete X,Y , with the feedback requirement
(i.e., the encoder needs to know the output Ỹ n of the decoder),1 the optimal rate region is
given by {

(R,R0) ∈ R2 : R ≥ I(X;Y ),
R0 +R ≥ H(Y )

}
. (10.1)

Proof. For the achievability, we invoke the same arguments as in the proof of Theorem
45 applied on U = Y , giving I(X;U) = I(X;Y ) and I(X,Y ;U) = H(Y ). The decoding
Markov kernel PȲ n|M̄,W,U(·|·, ·,U) is a deterministic function since Ȳ n = Ūn = un(M̄,W ).
Therefore, the encoder can use this decoding function on (M,W ) to know the output of
the decoder.

For the converse, let ε ≤ 1/4, and apply the same arguments as in the proof of Theorem 45
to define Q ∼ Unif([n]), Y n with Y n|Xn ∼ PnY |X and P(Ỹ n 6= Y n) ≤ ε, and U := (M,W,Q).
We have

R ≥ I(XQ;U),
R0 +R ≥ I(XQ, YQ;U). (10.2)

Let Ŷ n be the output of the encoder, with average symbol error probability P(ŶQ 6= ỸQ) =
n−1∑n

i=1 P(Ŷi 6= Ỹi) ≤ ε. By Fano’s inequality (Fano, 1961),

H(ŶQ|ỸQ) ≤ Hb(ε) + ε log2 |Y|.

Also, since P(ŶQ 6= YQ) ≤ P(ŶQ 6= ỸQ) + P(ỸQ 6= YQ) ≤ 2ε,

H(YQ|ŶQ) ≤ Hb(2ε) + 2ε log2 |Y|.

Hence,

H(YQ|U) ≤ H(YQ|ŶQ) +H(ŶQ|U)
(a)
≤ H(YQ|ŶQ) +H(ŶQ|ỸQ)
≤ 2Hb(2ε) + 3ε log2 |Y|,

where (a) is because ŶQ ↔ U ↔ ỸQ since the decoder outputs ỸQ using only U = (M,W,Q).
Combining this with (10.2),

R ≥ I(XQ;YQ)− (2Hb(2ε) + 3ε log2 |Y|),
1We can either require that the encoder know Ỹ n exactly, or that the encoder outputs Ŷ n with vanishing

block error probability P(Ŷ n 6= Ỹ n)→ 0 as n→∞, or that the encoder outputs Ŷ n with vanishing average
symbol error probability n−1∑n

i=1 P(Ŷi 6= Ỹi)→ 0 as n→∞. All three options give the same optimal rate
region.
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Enc DecXbnRc Ỹ bnRcAn

PB|A
Bn

Wn ∼ PWn

Figure 10.1: Asymptotic simulation of a channel using another channel.

R0 +R ≥ I(XQ, YQ;YQ)− (2Hb(2ε) + 3ε log2 |Y|).

The result follows from letting ε→ 0.

10.2 Simulating a Channel using Another Channel

In all of the previous discussions, the encoder and the decoder are connected by a noiseless
link, where the description M can be sent without error. What if the encoder can only
communicate to the decoder via another noisy link PB|A? In this section, we will study the
problem of simulating a noisy channel PY |X using another noisy channel PB|A.

Definition 70 (Asymptotic simulation of a channel using another channel). Consider
two general channels PB|A, PY |X and a source distribution PX . An channel simulation
scheme from PB|A to PY |X at a rate R > 0 with common randomness rate R0 ∈ [0, ∞]
is characterized by a sequence of tuples (PWn , PAn|Wn,XbnRc , PỸ bnRc|Wn,Bn

)n∈N+ described
below:

• Common randomness. There is a common random source Wn ∈ Wn, Wn ∼ PWn

available to the encoder and the decoder. If R0 =∞ (unlimited common randomness)
we can choose an arbitrary distribution PWn as a part of the coding scheme. If R0 6=∞,
PWn is fixed to be Unif([b2nR0c]).

• Encoder. Let m := bnRc. The encoder observesWn and a source sequence Xm ∼ PmX
(for the arbitrary source case, we can have any Xm ∈ Xm), and sends An|(Wn, X

m) ∼
PAn|Wn,Xm produced by passingWn, X

m through an encoding Markov kernel PAn|Wn,Xm

from Wn ×Xm to An.

• Decoder. The decoder observes the channel output sequence Bn|An ∼ PnB|A, and
then outputs Ỹ m|(Wn, B

n) ∼ PỸm|Wn,Bn
produced by passing Wn, B

n through a
decoding Markov kernel PỸm|Wn,Bn

from Wn × Bn to Ym.
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• Requirement.

– For the known source distribution case, we require that Ỹ m follows the conditional
distribution PmY |X approximately, in the sense that

δTV
(
(Xm, Ỹ m), PmX PmY |X

)
→ 0 (10.3)

as n→∞, where m = bnRc.

– For the arbitrary source case, we require

sup
xm∈Xm

δTV
(
Ỹ m, PmY |X

∣∣Xm = xm
)
→ 0 (10.4)

as n→∞.

• Performance metrics. We say that the rate pair (R,R0) is achievable if there exists
a scheme at rate R with common randomness rate R0 satisfying the above requirement.
For R0 ∈ [0, ∞], write R∗(R0) for the supremum of R such that (R,R0) is achievable.

While channel simulation can be regarded as “lossy source coding with a requirement
on the conditional distribution of Y n given Xn”, Definition 70 can be regarded as “joint
source channel coding with a requirement on the conditional distribution of Y n given Xn”.

The reverse Shannon theorem (Bennett et al., 2002; Bennett et al., 2014) shows that,
under the presence of unlimited common randomness, one can asymptotically simulate a
channel using another channel at a rate given by the ratio between the two capacities.

Corollary 71 (Bennett et al. 2002; Bennett et al. 2014). Consider two channels PB|A, PY |X
where A,B,X, Y are discrete and finite. Assume unlimited common randomness R0 =∞.
We have:

• (Known source distribution)

R∗(∞) = maxPA I(A;B)
I(X;Y ) .

• (Arbitrary source)

R∗(∞) = maxPA I(A;B)
maxPX I(X;Y ) .

181



Proof. The intuition is that, in the presence of unlimited common randomness, n copies of
the channel PB|A is approximately equivalent to nmaxPA I(A;B) noiseless bits due to the
channel coding theorem (for converting PB|A to noiseless bits) and the channel simulation
result in Theorem 38 (for converting noiseless bits to PB|A). If we replace the n copies of
PB|A by nmaxPA I(A;B) bits, then Definition 70 reduces to the original asymptotic channel
simulation setting in Definition 37, and we can invoke Theorem 38 to obtain the optimal
rate. We now present the proof.

For the achievability part and the known source distribution case, fix any R <

(maxPA I(A;B))/I(X;Y ). Assume ε > 0 satisfies R+ ε < (maxPA I(A;B))/I(X;Y ). Apply-
ing the channel coding theorem, we can transmit a message M ∈ [b2n(R+ε)I(X;Y )c] through
n uses of the channel PB|A asymptotically. The result follows from applying Theorem 38 to
simulate bnRc copies of PY |X using the description M . The arbitrary source case is similar.

For the converse part and the known source distribution case, assume the contrary that it
is possible to simulate PY |X from PB|A at a rate R > (maxPA I(A;B))/I(X;Y ) with common
randomness Wn. We call this Scheme 1. Assume ε > 0 satisfies R > (maxPA I(A;B) +
ε)/I(X;Y ). Fix a channel simulation scheme for the channel PB|A with arbitrary source
and unlimited common randomness W ′n at a description rate maxPA I(A;B) + ε (Definition
37), which we call Scheme 2. We now construct a channel simulation scheme for PY |X with
common randomness (Wn,W

′
n), which we call Scheme 3. In Scheme 3, the encoder observes

Xm,Wn,W
′
n, applies Scheme 1 using Wn to produce An, and then applies Scheme 2 using

W ′n to produce a description M ∈ [b2n(maxPA I(A;B)+ε)c]. The decoder observes M,Wn,W
′
n,

applies Scheme 2 to produce Bn, and then applies Scheme 1 to produce Ỹ m. Scheme 3 uses
a description rate (maxPA I(A;B) + ε)/R < I(X;Y ) bits per channel simulated, which is
impossible due to Theorem 38. The arbitrary source case follows from applying the known
source distribution case on the PX achieving maxPX I(X;Y ).

The problem becomes harder when R0 is finite. We state an achievability result in
(Haddadpour et al., 2016). Refer to (Haddadpour et al., 2016) for the proof.

Theorem 72 (Haddadpour et al. 2016). Consider two channels PB|A, PY |X where A,B,X, Y
are discrete and finite. Then PY |X can be asymptotically simulated from PB|A at rate R = 1
with common randomness rate R0 (i.e., the rate pair (1, R0) is achievable) and known source
distribution PX if there exists random variables X,Y,A,B,U satisfying:

(X,Y ) ∼ PXPY |X ,

B|A ∼ PB|A,

(X,U)↔ A↔ B,

(X,A)↔ (B,U)↔ Y,
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R0 + I(U ;B) > I(U ;X,Y ),
I(U ;B) > I(U ;X).

We may also impose an exact condition on the distribution of Y m, i.e., the TV distances
in (10.3), (10.4) are zero. The case where the channels are binary-input binary-output
channels (i.e., A,B,X, Y are binary), R = 1 with unlimited common randomness has been
fully characterized in (Haddadpour et al., 2016). Readers are referred to (Cubitt et al.,
2011; Haddadpour et al., 2016) for further discussions. A setting where local randomness
is also limited has been investigated in (Obead et al., 2021), where schemes which utilize
the randomness in the channel PB|A to reduce local randomness were proposed. A setting
where the joint distribution of An, Bn, Xm, Ỹ m is controlled (not only the joint distribution
of Xm, Ỹ m) has been studied in (Cervia et al., 2020).

10.3 Interactive Channel Simulation

In the interactive channel simulation setting (Gohari and Anantharam, 2011; Yassaee et al.,
2015), the two terminals have An and Bn respectively where (Ai, Bi)

iid∼ PA,B, and share
the common randomness W ∼ Unif([b2nR0c]). The interactive communication consists
of r rounds. In the j-th round where j is an odd number, Terminal 1 generates Mj by
applying a stochastic mapping on W,An,M j−1, and sends it to Terminal 2. In the j-th
round where j is an even number, Terminal 2 generatesMj by applying a stochastic mapping
on W,Bn,M j−1, and sends it to Terminal 1. The communication rate constraints are

1
n

∑
j odd

H(Mj) ≤ R12,
1
n

∑
j even

H(Mj) ≤ R21,

where R12 and R21 are the communication rate from Terminal 1 to Terminal 2 and that
from Terminal 2 to Terminal 1 respectively. After the r rounds interactive communication,
Terminal 1 outputs X̃n by applying a stochastic mapping on W,An,M r, and Terminal 2
outputs Ỹ n by applying a stochastic mapping on W,Bn,M r. We require that X̃n and Ỹ n

approximately follow a prescribed conditional distribution PX,Y |A,B. More precisely, we
require

δTV
(
(An, Bn, X̃n, Ỹ n), PnA,BPnX,Y |A,B

)
→ 0

as n→∞. The optimal rate region is the closure of the set of tuples (R12, R21, R0) such
that there exists a valid channel simulation scheme. Note that this reduces to the setting in
Definition 37 when r = 1 and B = X = ∅. When X,Y are functions of A,B, this becomes
the interactive function computation problem (Yao, 1979; Ma and Ishwar, 2011), which
has been briefly discussed in Section 1.9. This setting is also related to the information of
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formation (Renner and Wolf, 2003), which concerns the approximate distributed simulation
of Xn, Y n through interactive communication, under a constraint that the interactive
communication cannot reveal more information than a sequence Zn jointly distributed with
Xn, Y n.

The optimal rate region is characterized in (Yassaee et al., 2015). Please refer to (Yassaee
et al., 2015) for the proof.

Theorem 73 (Yassaee et al. 2015). The optimal rate region of the interactive channel
simulation setting is

⋃
Ur



(R12, R21, R0) ∈ R2 :
R12 ≥ I(A;U r|B),
R21 ≥ I(B;U r|A),
R0 +R12 ≥ I(A;U r|B) + I(U1;X,Y |A,B),
R0 +R12 +R21
≥ I(A;U r|B) + I(B;U r|A) + I(U r;X,Y |A,B)


,

where the union is over PUr|A,B,X,Y satisfying that

(A,B,X, Y ) ∼ PA,BPX,Y |A,B,

B ↔ (A,U j−1)↔ Uj for odd j,
A↔ (B,U j−1)↔ Uj for even j,

(B, Y )↔ (A,U r)↔ X,

(A,X)↔ (B,U r)↔ Y.

10.4 Secure Channel Simulation

A channel simulation setting with a secrecy constraint was studied in (Cuff, 2013), where we
impose an additional constraint in Definition 37 where the communication Mn occurs over
a public channel, and we require that (Xn, Ỹ n) is approximately independent of Mn, so an
eavesdropper observing Mn cannot learn about Xn, Ỹ n. Note that the common randomness
Wn is assumed to be secret. More specifically, we need

δTV
(
(Xn, Ỹ n,Mn), PnXPnY |XPMn

)
→ 0 (10.5)

as n→∞. The distribution on the left is the actual joint distribution of (Xn, Ỹ n,Mn), and
the distribution on the right is the ideal joint distribution where the channel simulation is
exact, and Mn is independent of (Xn, Ỹ n).

The optimal rate region is given in (Cuff, 2013).
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Theorem 74 (D/∞/A/FL/KS/LCR/Secure (Cuff, 2013)). For the secure asymptotic
approximate fixed-length channel simulation setting (Definition 37) with known source
distribution, limited common randomness, the secrecy constraint in (10.5), and finite discrete
X,Y , the optimal rate region is given by

⋃
PU|X,Y :X↔U↔Y

{
(R,R0) ∈ R2 : R ≥ I(X;U),

R0 ≥ I(X,Y ;U)

}
. (10.6)

Proof sketch. We will only prove the achievability. The construction in (Cuff, 2013) is to
invoke Theorem 74 to construct a scheme with R = I(X;U) + ε and R0 = I(Y ;U |X) + ε

without the secrecy constraint (let its communication and common randomness be Mn ∈
[b2nRc] and Wn ∈ [b2nR0c] respectively), and then use an additional common randomness
rate of R to apply the one-time pad (Shannon, 1949) on Mn. More specifically, we use
an additional common randomness Vn ∼ Unif([b2nRc]), and the encoder transmits M ′n :=
(Mn + Vn− 1 mod b2nRc) + 1 instead. It is straightforward to check that M ′n is independent
of Mn, and hence is independent of (Xn, Ỹ n). The total common randomness rate is
I(Y ;U |X) + ε+R = I(X,Y ;U) + 2ε.

An interactive channel simulation setting (see Section 10.3) with a secrecy constraint
was investigated in (Gohari et al., 2012), where the optimal rate region was given.

10.5 Channel Simulation over Networks

This monograph focuses on “point-to-point” channel simulation where there is one encoder
and one decoder. Channel simulation over networks with three or more terminals has also
been studied in the literature.

Cascade networks. The extension of the channel simulation setting to cascade networks
has been investigated by Bloch and Kliewer (2013), Satpathy and Cuff (2016), and Vellambi
et al. (2017). Consider three nodes sharing nR0 bits of common randomness. Node 1 observes
Xn ∼ PnX and transmits nR1 bits to Node 2. Node 2 then outputs Y n and transmits nR2 bits
to Node 3. Finally, Node 3 outputs Zn. We require (Xn, Y n, Zn) to follow a prescribed i.i.d.
distribution PnX,Y,Z approximately, in the sense that the total variation distance between
PnX,Y,Z and the distribution of (Xn, Y n, Zn) approaches 0 as n → ∞. In (Satpathy and
Cuff, 2016), a security constraint is also imposed, where we require the two messages to be
approximately independent of (Xn, Y n, Zn).
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Multiple encoders. The extension of the channel simulation setting to multiple encoders
(i.e., the simulation of a multiple access channel) has been studied by Kurri et al. (2022),
Atif et al. (2022), and Atif et al. (2021). Encoder 1 and Encoder 2 observe Xn

1 and Xn
2

respectively, where (X1,i, X2,i)
iid∼ PX1,X2 for i ∈ [n]. Encoder 1 can transmit nR1 bits to the

decoder, and Encoder 2 can transmit nR2 bits to the decoder. The decoder then outputs Y n.
We require (Xn

1 , X
n
2 , Y

n) to follow a prescribed i.i.d. distribution PnX1,X2,Y
approximately,

in the sense that the total variation distance between PnX1,X2,Y
and the distribution of

(Xn
1 , X

n
2 , Y

n) approaches 0 as n→∞. A one-shot channel simulation result was given by
Nema et al. (2024). An extension of this setting with a secrecy constraint was studied by
Ramachandran et al. (2024).

Multiple decoders. The extension of the channel simulation setting to multiple decoders
(i.e., the simulation of a broadcast channel) has been studied by Cuff (2013), Haddadpour
et al. (2016), Cao et al. (2023), Cao et al. (2022a), and Managoli and Prabhakaran (2024),
where the encoder observes X and sends a message to each of the two decoders. Decoder 1
and Decoder 2 outputs Y and Z respectively. The goal is to have (Y,Z) follow a prescribed
conditional distribution given X approximately.

General networks. The most general setting would be to have a general network of
nodes connected by noiseless and noisy links. Coordination problems over networks has
been studied in (Cuff et al., 2010). In (Lee and Chung, 2015; Lee and Chung, 2018), an
achievability result for general network with an empirical coordination constraint is studied.
It can be checked that (Lee and Chung, 2015; Lee and Chung, 2018) also gives a channel
simulation result if the nodes share unlimited common randomness. A one-shot result for
channel simulation over a general network with unlimited common randomness is given
in (Liu and Li, 2024). An automated theorem proving framework, that can automatically
compute inner and outer bounds of the optimal rate region of a general network for channel
simulation with unlimited common randomness (as well as source and channel coding
problems), was given in (Li, 2023). The framework is implemented in a computer program
called Python Symbolic Information Theoretic Inequality Prover (Li, 2020).

10.6 Single-Input Multiple-Output Channel Simulation

Multiple-output channel simulation (Choi and Li, 2021) concerns the setting where the
encoder observes a single input symbol X, and sends a prefix-free codeword to the decoder,
which will output Y1, . . . , Yn which are conditionally i.i.d. following a prescribed conditional
distribution PY |X given X. An equivalent formulation of the setting is that, given a certain
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parametric family of distributions (Qθ)θ∈A, the encoder observes a parameter θ ∈ A, and
sends a prefix-free codeword to the decoder, which will output Y1, . . . , Yn which are i.i.d.
following Qθ given θ. This is useful for conveying information about a distribution to the
decoder, where the decoder does not require the exact analytical formula of the distribution,
but only requires samples following that distribution, so that statistical inference for the
distribution can be conducted on those samples. Interested readers are referred to (Choi
and Li, 2021) for schemes based on dyadic decomposition (Li and El Gamal, 2017; Li and
El Gamal, 2018a), and to (Kobus et al., 2024b) for a sampling scheme based on iteratively
updating the reference distribution given the previous samples.
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Unlimited common randomness No common randomness Limited common randomness

One-

shot

Exact

VL

L∗ ≤ I(X;Y )+

log2(I(X;Y ) + 2) + 3

H∗ = G(X;Y )

:= min
X↔W↔Y

H(W ) See Sec. 9.4

Sec. 3, Thm. 4 Sec. 4, Prop. 27

Exact

FL

N∗ = min
{
k : PY |X ∈

conv
(
{QY |X : ‖1TQY |X‖0≤k}

)} N∗ = rank+(PY |X)

Sec. 3.7, Thm. 24 Sec. 4, Prop. 26

Approx.

FL
Sec. 8, Thm. 50 Sec. 8, Thm. 51 Sec. 8, Thm. 53

Asymp-

totic

Exact

VL

R∗ = I(X;Y )
R∗ = G(X;Y )

:= limn→∞
1
nG(Xn;Y n)

R∗ ≤ min
X↔U↔Y

max
{
I(X;U),

H(U)−R0
}

Sec. 5, Thm. 32 Sec. 6, Prop. 44 Sec. 7, Thm. 47

Approx.

FL

R∗ = I(X;Y )
R∗ = J(X;Y )

:= min
X↔U↔Y

I(X,Y ;U)

R∗ = min
X↔U↔Y

max
{
I(X;U),

I(X,Y ;U)−R0
}

Sec. 5, Thm. 38 Sec. 6, Thm. 40 Sec. 7, Thm. 45

Table 11.1: Channel simulation results under different assumptions: whether we consider one-shot (1) or
asymptotic (∞), whether we require the output Y to follow the desired conditional distribution exactly (E)
or approximately (A), whether the description M is fixed-length (FL) or variable-length (VL), and whether
we allow common randomness between the encoder and the decoder. We assume the source distribution PX
is known (KS) in this table.

11 Conclusions and Future Directions

We briefly summarize the results on channel simulation and related problems discussed in
this monograph. An overview of the optimal description lengths or rates of various settings
is given in Table 11.1.

One-shot exact variable-length channel simulation. Techniques applicable to the
one-shot exact simulation of general channels are of practical interest since they do not
require any assumption on the source and channel structure. They include greedy rejection
sampling (Section 3.2.2), Poisson functional representation (Section 3.3) and other sampling-
based methods (Section 3.5). They can achieve an expected description length close to the
capacity of the channel simulated, within a logarithmic gap (Theorem 4 and Corollary 8).
Dithering-based schemes (Section 3.6) are applicable to additive noise channels. Schemes
based on dyadic decomposition (Section 4.2) have the advantage that they do not require
common randomness.
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One-shot approximate fixed-length channel simulation. Likelihood encoder and
minimal random coding (Sections 3.4, 5.6 and 8.2) only requires a fixed-length description,
though they can only simulate the channel approximately. They achieve a description length
close to the KL divergence between the target distribution and the reference distribution
(Theorem 15), similar to greedy rejection sampling and Poisson functional representation.

Asymptotic channel simulation. Letting the blocklength approach infinity and tolerat-
ing a vanishing total variation distance allows us to characterize the optimal description rate
and common randomness rate precisely (Theorem 45), giving elegant results of theoretical
interest. Most of the asymptotic approximate results in this monograph are proved using
the soft covering lemma (Section 5.5). Asymptotic exact results can also be derived using
various techniques (Sections 5.1, 5.2, 6.2 and 7.2).

Other results. Other notable results including the source and local channel simulation
results (Section 9), the simulation of a channel with feedback (Section 10.1), the simulation
of a channel using another channel (Section 10.2), interactive channel simulation (Section
10.3), secure channel simulation (Section 10.4), and various results on channel simulation
over networks (Section 10.5).

We now discuss several future research directions.

Gaussian channel simulation. With applications to neural compression (Havasi et al.,
2019; Flamich et al., 2022; He et al., 2024a) and differential privacy (Hasırcıoğlu and Gündüz,
2024; Hegazy et al., 2024; Yan et al., 2023), the additive Gaussian noise channel appears to
be one of the most popular channels to be simulated. Finding the right balance between
short description length and algorithmic efficiency is therefore of practical interest. Apart
from general-purpose channel simulation schemes such as minimal random coding, schemes
based on vector quantization (Ling and Li, 2024; Kobus et al., 2024a) are also promising.

Simulation of differential privacy mechanisms. The simulation of a differential
privacy mechanism has an additional constraint that the scheme must be differentially
private against the decoder. While approximate simulation schemes for general mechanisms
have been studied in (Bassily and Smith, 2015; Bun et al., 2019; Shah et al., 2022), and an
exact scheme has been studied in (Liu et al., 2024), our understanding on the fundamental
limits of privacy mechanism simulation is still rather limited. For example, it is unknown
whether the two-fold increase of the privacy budget in (Shah et al., 2022; Liu et al., 2024)
(Theorem 16 and Section 3.3.5) is fundamental to general simulation schemes with pure
differential privacy that are exact or approximate within a small total variation distance.
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One-shot variable-length channel simulation with limited common randomness.
Readers may notice that this monograph discusses the “unlimited common randomness” and
“no common randomness” cases of one-shot variable-length channel simulation, but not the
“limited common randomness” case (except the brief mention at the end of Section 9.4). It
would be interesting to investigate whether we can prove a one-shot variable-length version
of the trade-off region between description length and common randomness in Theorem 45
and Theorem 47. For the common randomness, we can consider the case where the encoder
and decoder generate the coin flips before observing the source and the description (similar
to the coins before source setting in Section 9.3.1), and the case where they can generate
the coin flips after observing the source and the description, but must keep the two coin
flip sequences synchronized (similar to the source before coins setting in Section 9.3.1).

We would also like to mention a recent work (Sriramu et al., 2024) on an efficient
algorithm for channel simulation via polar codes (Arikan, 2009). The use of structured
codes for channel simulation is a promising future direction.
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A Zipf Distribution
The Zipf distribution (Ross, 2019) (also known as zeta distribution) with parameter s > 1
is a distribution over N+ with probability mass function

Zipf(k; s) := k−s

ζ(s) ,

where ζ(s) =
∑∞
k=1 k

−s is the Riemann zeta function. It is the maximum entropy distribution
for K ∈ N+ when E[log2K] is fixed. We can use the Zipf distribution to show the following
bound (e.g., see (Li and El Gamal, 2018b)).

Proposition 75. For random variable K ∈ N+ following the distribution PK , its cross
entropy with Zipf(s) is bounded by

H(PK ,Zipf(s)) ≤ sE[log2K] + log2
s

s− 1 . (A.1)

Therefore, if E[log2K] ≤ `, letting s = 1 + 1/`, we have

H(K) ≤ H(PK ,Zipf(s)) ≤ `+ log2(`+ 1) + 1.

Proof. We have

H(PK ,Zipf(s)) =
∞∑
k=1

PK(k) log2
ζ(s)
k−s

= sE[log2K] + log2 ζ(s),

where
ζ(s) ≤ 1 +

∫ ∞
1

κ−sdκ = s

s− 1 . (A.2)

The result follows.

Proposition 75 suggests that, if we know that E[log2K] ≤ `, then we can use the
Shannon code (Shannon, 1948) designed for the distribution Zipf(s) where s = 1 + 1/` to
encode K, to obtain a codeword with expected length upper-bounded by

H(PK ,Zipf(s)) + 1 ≤ `+ log2(`+ 1) + 2 bits.

Refer to Section 1.12. The downside is that we need to know ` when we construct the code,
and the Shannon code over an infinite alphabet can be hard to construct.

In contrast, if we do not know the bound E[log2K] ≤ ` when we design the code, we
can still use the Elias delta code (Elias, 1975) to encode K, which will result in a codeword
length upper-bounded by

`+ 2 log2(`+ 1) + 1 bits
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if E[log2K] ≤ `. While it is possible to improve this bound to `+(1+ε) log2(`+1)+O(1), for
example, by using the Elias omega code (Elias, 1975), it is impossible to design a prefix-free
code over N+ that achieves an expected length upper-bounded by `+ log2(`+ 1) +O(1) for
every ` and random variable K with E[log2K] ≤ `.1 Therefore, although using a “universal”
code such as the Elias delta code has the advantage that we do not need to know the bound
E[log2K] ≤ ` beforehand, it comes with a small penalty on the expected length.

Practically, if we are given the bound E[log2K] ≤ `, then there are several options for
the encoding of K ∈ N+:

• Shannon code (Shannon, 1948) for the distribution Zipf(1 + 1/`), or any prefix-free
code f : N+ → {0, 1}∗ with |f(k)| ≤ dZipf(k; 1 + 1/`)e for k ∈ N+. The expected
length is upper-bounded by `+log2(`+1)+2. Nevertheless, it can be hard to construct.

• A code over positive integers with efficient encoding and decoding algorithms such as
the Elias delta code (Elias, 1975), with a slight penalty on the expected length. The
advantage is that the code does not depend on `.

• Use a “hybrid” approach: first construct the Shannon code fS : [k0 + 1]→ {0, 1}∗ for
the distribution of K̃ := min{K, k0 + 1} where K ∼ Zipf(1 + 1/`) and k0 is a large
fixed integer (but not too large so it is viable to construct the Shannon code), and
then encode k ∈ N+ into fS(k) if k ≤ k0, or fS(k0 + 1)‖fδ(k − k0) if k > k0, where
fδ : N+ → {0, 1}∗ is the Elias delta code, and “‖” stands for concatenation.

• A suitable comma code such as the Fibonacci code (Fraenkel and Kleinb, 1996) (which
is optimal for a Zipf distribution with a certain parameter).

1This is because
∑∞

k=1 2− log2 k−log2(log2 k+1)−c =
∑∞

k=1
1

2ck(log2 k+1) =∞, violating Kraft’s inequality
(Kraft, 1949).
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B Turning Approximate Markov Chains into Exact Markov
Chains

The following lemma shows that if the Markov chain “X ↔ U ↔ Y ” almost holds, that is,
there exists random variables X̃, Ỹ with X̃ ↔ U ↔ Ỹ and P((X,Y ) 6= (X̃, Ỹ )) ≈ 0, then
there exists a random variable V with small entropy such that X ↔ (U, V ) ↔ Y holds
exactly.

Lemma 76. For finite discrete random variables X,Y, X̃, Ỹ , U (X, X̃ ∈ X and Y, Ỹ ∈ Y)
with X̃ ↔ U ↔ Ỹ , there exists a random variable V ∈ V with X ↔ (U, V ) ↔ Y ,
|V| ≤ min{|X |, |Y|}+ 1, and

H(V ) ≤ Hb(min{η, 1/2}) + η log2 min{|X |, |Y|},

where Hb is the binary entropy function, and

η := 2(|X ||Y|)1/4
√
P
(
(X,Y ) 6= (X̃, Ỹ )

)
.

Proof. We first prove the following claim, which basically states that if two random variables
has a small TV distance from being independent, then they are conditionally independent
given a random variable that is close to being degenerate:

For finite discrete random variables X,Y, X̃, Ỹ with X̃ independent of Ỹ , there exists a
random variable V ∈ [0..min{|X |, |Y|}] with X ↔ V ↔ Y and

PV (0) ≥ 1− 2(|X ||Y|)1/4
√
δTV((X,Y ), (X̃, Ỹ )).

We now show this claim. Assume X = [|X |] and |X | ≤ |Y|. Applying the coupling
lemma (Proposition 34), we can assume δTV((X,Y ), (X̃, Ỹ )) = P(E), where E is the event
(X,Y ) 6= (X̃, Ỹ ). Define V ∈ [0..|X |] with

PV,X,Y (0, x, y)

:=
[
PX̃(x)−

( |Y|
|X |

) 1
4
√
P(E, X̃ = x)

]
+

[
PỸ (y)−

( |X |
|Y|

) 1
4
√
P(E, Ỹ = y)

]
+
,

where [t]+ := max{t, 0}, PV,X,Y (x, x, y) := PX,Y (x, y)−PV,X,Y (0, x, y), and PV,X,Y (v, x, y) :=
0 for v 6= x. To check that this is a valid distribution,

PV,X,Y (0, x, y)

=
[
PX̃(x)−

( |Y|
|X |

) 1
4
√
P(E, X̃ = x)

]
+

[
PỸ (y)−

( |X |
|Y|

) 1
4
√
P(E, Ỹ = y)

]
+
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≤
[
PX̃(x)−

( |Y|
|X |

) 1
4
√
P(E, (X̃, Ỹ ) = (x, y))

]
+

·
[
PỸ (y)−

( |X |
|Y|

) 1
4
√
P(E, (X̃, Ỹ ) = (x, y))

]
+

(a)
≤ PX̃(x)PỸ (y)− P(E, (X̃, Ỹ ) = (x, y))
= P((X̃, Ỹ ) = (x, y))− P((X,Y ) 6= (x, y), (X̃, Ỹ ) = (x, y))
≤ PX,Y (x, y),

where (a) is due to the inequality [a− s]+[b− t]+ ≤ [ab− st]+ for a, b, s, t ≥ 0.1 We have
the Markov chain X ↔ V ↔ Y . We also have∑

x

( |Y|
|X |

)1/4√
P(E, X̃ = x) ≤

( |Y|
|X |

)1/4
|X |
√

1
|X |

∑
x

P(E, X̃ = x)

= (|X ||Y|)1/4
√
P(E).

Hence,

PV (0) =
(∑

x

[
PX̃(x)−

( |Y|
|X |

)1/4√
P(E, X̃ = x)

]
+

)
·
(∑

y

[
PỸ (y)−

( |X |
|Y|

)1/4√
P(E, Ỹ = y)

]
+

)

≥
[
1− (|X ||Y|)1/4

√
P(E)

]2

+

≥ 1− 2(|X ||Y|)1/4
√
P(E),

which is the desired claim.

We now prove Lemma 76. Applying the claim on PX,Y,X̃,Ỹ |U (·|u) for each u, there exists
V ∈ [0..min{|X |, |Y|}] with X ↔ V ↔ Y conditional on U = u (and hence X ↔ (U, V )↔
Y ) and

PV |U (0|u) ≥ 1− 2(|X ||Y|)1/4
√
P
(
(X,Y ) 6= (X̃, Ỹ )

∣∣U = u
)
.

We have

PV (0) ≥ 1− EU
[
2(|X ||Y|)1/4

√
P
(
(X,Y ) 6= (X̃, Ỹ )

∣∣U)]
≥ 1− 2(|X ||Y|)1/4

√
P((X,Y ) 6= (X̃, Ỹ )).

1Assume a > s, b > t (otherwise the inequality is trivial). We have [a− s]+[b− t]+ = ab− at− bs+ st <
ab− st ≤ [ab− st]+.
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Hence PV (0) ≥ 1− η, and

H(V ) = Hb(PV (0)) + (1− PV (0))H(V |V 6= 0)
≤ Hb(min{η, 1/2}) + η log2 min{|X |, |Y|}.

196



References
Abadi, M., A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang.

(2016). “Deep learning with differential privacy”. In: Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security. 308–318.

Agustsson, E. and L. Theis. (2020). “Universally quantized neural compression”. In: Advances
in Neural Information Processing Systems. Vol. 34. 12367–12376.

Altuğ, Y. and A. B. Wagner. (2012). “Source and channel simulation using arbitrary
randomness”. IEEE Transactions on Information Theory. 58(3): 1345–1360.

Amiri, S., A. Belloum, S. Klous, and L. Gommans. (2021). “Compressive differentially
private federated learning through universal vector quantization”. In: AAAI Workshop
on Privacy-Preserving Artificial Intelligence. 2–9.

Anantharam, V. and V. Borkar. (2007). “Common randomness and distributed control: A
counterexample”. Systems & control letters. 56(7-8): 568–572.

Andrés, M. E., N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi. (2013). “Geo-
indistinguishability: Differential privacy for location-based systems”. In: Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security. 901–914.

Angel, O. and Y. Spinka. (2019). “Pairwise optimal coupling of multiple random variables”.
arXiv preprint arXiv:1903.00632.

Arikan, E. (2009). “Channel polarization: A method for constructing capacity-achieving
codes for symmetric binary-input memoryless channels”. IEEE Transactions on Infor-
mation Theory. 55(7): 3051–3073.

Atif, T. A., A. Padakandla, and S. S. Pradhan. (2021). “Synthesizing correlated random-
ness using algebraic structured codes”. In: 2021 IEEE International Symposium on
Information Theory (ISIT). IEEE. 2417–2422.

Atif, T. A., A. Padakandla, and S. S. Pradhan. (2022). “Source coding for synthesizing
correlated randomness”. IEEE Transactions on Information Theory. 69(1): 626–649.

Ballé, J., P. A. Chou, D. Minnen, S. Singh, N. Johnston, E. Agustsson, S. J. Hwang, and
G. Toderici. (2020). “Nonlinear transform coding”. IEEE Journal of Selected Topics in
Signal Processing. 15(2): 339–353.

Ballé, J., V. Laparra, and E. P. Simoncelli. (2017). “End-to-end optimized image compres-
sion”. In: 5th International Conference on Learning Representations, ICLR 2017.

Bao, J., P. Basu, M. Dean, C. Partridge, A. Swami, W. Leland, and J. A. Hendler. (2011).
“Towards a theory of semantic communication”. In: 2011 IEEE Network Science Work-
shop. IEEE. 110–117.

Barak, B., M. Braverman, X. Chen, and A. Rao. (2010). “How to compress interactive
communication”. In: Proceedings of the forty-second ACM symposium on Theory of
computing. 67–76.

197



Barnum, H., C. M. Caves, C. A. Fuchs, R. Jozsa, and B. Schumacher. (2001). “On quantum
coding for ensembles of mixed states”. Journal of Physics A: Mathematical and General.
34(35): 6767.

Bassily, R., S. Moran, I. Nachum, J. Shafer, and A. Yehudayoff. (2018). “Learners that use
little information”. In: Algorithmic Learning Theory. PMLR. 25–55.

Bassily, R. and A. Smith. (2015). “Local, private, efficient protocols for succinct histograms”.
In: Proceedings of the forty-seventh annual ACM symposium on Theory of computing.
127–135.

Bell, J. S. (1964). “On the Einstein Podolsky Rosen paradox”. Physics Physique Fizika.
1(3): 195.

Bennett, C. H., G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters. (1993).
“Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen
channels”. Physical review letters. 70(13): 1895.

Bennett, C. H., P. W. Shor, J. Smolin, and A. V. Thapliyal. (2002). “Entanglement-assisted
capacity of a quantum channel and the reverse Shannon theorem”. IEEE Transactions
on Information Theory. 48(10): 2637–2655.

Bennett, C. H. and S. J. Wiesner. (1992). “Communication via one-and two-particle
operators on Einstein-Podolsky-Rosen states”. Physical review letters. 69(20): 2881.

Bennett, C. H., I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter. (2014). “The
quantum reverse Shannon theorem and resource tradeoffs for simulating quantum
channels”. IEEE Transactions on Information Theory. 60(5): 2926–2959. issn: 0018-
9448. doi: 10.1109/TIT.2014.2309968.

Berger, T. (1971). Rate Distortion Theory: A Mathematical Basis for Data Compression.
Prentice-Hall, NJ, USA.

Berger, T. (2003). “Rate-distortion theory”. Wiley Encyclopedia of Telecommunications.
Berman, A. and R. J. Plemmons. (1994). Nonnegative matrices in the mathematical sciences.

SIAM.
Berta, M., J. M. Renes, and M. M. Wilde. (2014). “Identifying the information gain of a

quantum measurement”. IEEE Transactions on Information Theory. 60(12): 7987–8006.
Blau, Y. and T. Michaeli. (2018). “The perception-distortion tradeoff”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition. 6228–6237.
Blau, Y. and T. Michaeli. (2019). “Rethinking lossy compression: The rate-distortion-

perception tradeoff”. In: International Conference on Machine Learning. PMLR. 675–
685.

Bloch, M. R. and J. Kliewer. (2013). “Strong coordination over a line network”. In: 2013
IEEE International Symposium on Information Theory. IEEE. 2319–2323.

Block, A. and Y. Polyanskiy. (2023). “The sample complexity of approximate rejection
sampling with applications to smoothed online learning”. In: The Thirty Sixth Annual
Conference on Learning Theory. PMLR. 228–273.

198

https://doi.org/10.1109/TIT.2014.2309968


Bowe, S., A. Gabizon, and I. Miers. (2017). “Scalable multi-party computation for zk-SNARK
parameters in the random beacon model”. Cryptology ePrint Archive.

Brassard, G., R. Cleve, and A. Tapp. (1999). “Cost of exactly simulating quantum entan-
glement with classical communication”. Physical Review Letters. 83(9): 1874.

Braun, G., R. Jain, T. Lee, and S. Pokutta. (2017). “Information-theoretic approximations
of the nonnegative rank”. computational complexity. 26: 147–197.

Braverman, M. and A. Garg. (2014). “Public vs private coin in bounded-round information”.
In: International Colloquium on Automata, Languages, and Programming. Springer.
502–513.
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